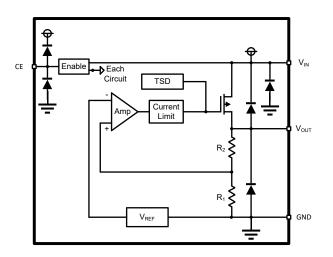


JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD

60V Low Current Consumption 150mA CMOS Voltage Regulator

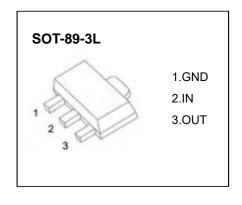
CJ88XX Series


■ INTRODUCTION

The CJ88XX series are a group of positive voltage regulators manufactured by CMOS technologies with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input-output voltage is small. The CJ88XX series can deliver 150mA output current and allow an input voltage as high as 60V. The series are very suitable for the battery-powered equipments, such as RF applications and other systems requiring a quiet voltage source.

APPLICATIONS

- Cordless Phones
- Radio control systems
- Laptop, Palmtops and PDAs
- Single-lens reflex DSC
- PC peripherals with memory


■ BLOCK DIAGRAM

■ FEATURES

- Low Quiescent Current:3µA
- Operating Voltage Range: 2.5V∼60V
- Output Current: 150mA
- Low Dropout Voltage: 500mV@50mA(V_{OUT}=3.3V)
- Output Voltage: 1.2~ 12.0V
- High Accuracy: ±2% (Typ.)
- High Power Supply Rejection Ratio: 80dB@1kHz
- Low Output Noise:
 27xV_{OUT}µ V_{RMS}(10Hz~100kHz)
- Excellent Line and Load Transient Response
- Built-in Current Limiter, Short-Circuit Protection
- Over-Temperature Protection
- Wireless Communication Equipments
- Portable Audio Video Equipments
- Car Navigation Systems
- LAN Cards
- Ultra Low Power Microcontroller

PACKAGING INFORMATION

■ ABSOLUTE MAXIMUM RATINGS(1)

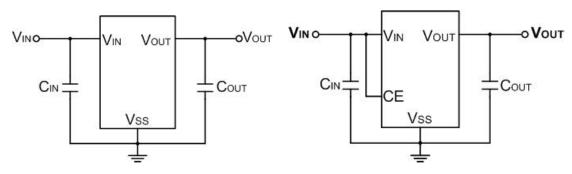
(Unless otherwise specified, T_A=25°C)

PARAMETER	SYMBOL	RATINGS	UNITS
Input Voltage(2)	V _{IN}	-0.3~65	V
Output Voltage ⁽²⁾	V_{OUT}	-0.3~15	V
CE Pin Voltage ⁽²⁾	V_{CE}	-0.3~V _{IN} +0.3	V
Output Current	l _{оит}	400	mA
Power Dissipation		600	mW
Operating Junction Temperature	т	-40~125	°C
Range	T _j	-40~125	
Storage Temperature	T_{stg}	-40~125	°C
Lead Temperature(Soldering, 10 sec)	T_{solder}	260	°C
	Human Body	2	kV
ESD rating ⁽³⁾	Model-(HBM)		N.V
	Machine Model- (MM)	200	V

- (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.
- (2)All voltages are with respect to network ground terminal.
- (3)ESD testing is performed according to the respective JESD22 JEDEC standard. The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k}\Omega$ resistor into each pin. The machine model is a 200pFcapacitor discharged directly into each pin.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	MIN.	NOM.	MAX.	UNITS
Supply voltage at V _{IN}	2.5		60	V
Operating junction temperature range, T _j	-40		125	°C
Operating free air temperature range, T _A	-40		85	°C


MODEL DEFINITION INFORMATION

Model	Output Voltage		
CJ8833	3.3V		
CJ8850	5.0V		
CJ88120	12V		

(Vce=Vin=Vout+2V, Cin=Cout=1 μ F, TA=25 $^{\circ}$ C,unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNITS
Input Voltage	V _{IN}			2.5	_	60	V
Output Voltage Range	V _{OUT}			1.2	_	12	V
DC Output Accuracy		I -4 A		-2	_	2	%
DC Output Accuracy		IOUT	I _{OUT} =1mA		_	1	%
Dropout Voltage	V_{dif}	I _{OUT} =50mA	I _{OUT} =50mA,V _{OUT} =3.3V		500	_	mV
Supply Current		1 -04	V _{OUT} ≤5.0V	_	3	6	μA
Supply Current	I _{SS}	I _{OUT} =0A	V _{OUT} >5.0V		5	10	μA
Standby Current	I _{STBY}	CE	CE = V _{SS}		0.1	0.5	μA
Line Regulation	$\Delta V_{ m OUT}$	I _{OUT} =10mA			- 0.01	0.3	%/V
Line Negulation	$V_{OUT} \times \Delta V_{IN}$	V _{OUT} +1\	V _{OUT} +1V≤V _{IN} ≤18V		0.01		
Load Regulation	<u> </u>	V _{IN} = V _{OUT} +1V, 1mA≤I _{OUT} ≤100mA		_	10	_	mV
Load Negulation	<u> </u>				10		
Temperature	ΔV_{OUT}	I _{OUT} =10mA,			50		ppm
Coefficient	$V_{OUT} \times \Delta T_A$	-40°C <t<sub>A<125°C</t<sub>			30		ррііі
Output Current Limit	I _{LIM}		V_{OUT} = 0.5 x $V_{OUT(Normal)}$, V_{IN} = 5V		250		mA
Output Ourrent Emili	ILIIVI	V _{IN} = 5V			200		1117
Short Current	I _{SHORT}	Vou	V _{OUT} =V _{SS}		20	_	mA
			100Hz		75		
Power Supply	PSRR	I _{OUT} =50mA	1kHz	_	80	_	dB
Rejection Ratio	PSKK 100T-30	1001-30111A	10kHz	_	60	_	_ ub
			100kHz	_	45	_	
Output Noise Voltage	V _{ON}	BW=10Hz to 100kHz		_	27 x V _{OUT}	_	μV _{RMS}
Thermal Shutdown Temperature	T _{SD}			_	170	_	°C
Thermal Shutdown Hysteresis	ΔT _{SD}			_	20	_	°C
CE "High" Voltage	V _{CE} "H"			1.5		V _{IN}	V
CE "Low" Voltage	V _{CE} "L"					0.3	V

■ TYPICAL APPLICATION CIRCUIT

C_{IN}:1.0µF or more

 C_{OUT} :1.0 μF or more, 10 μF is recommended

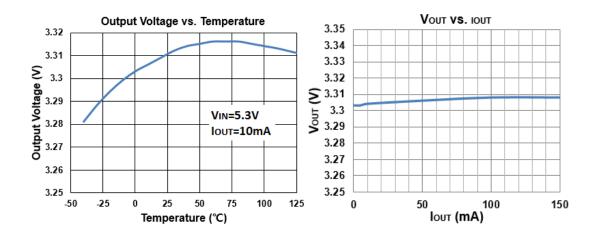
Typical Characteristics

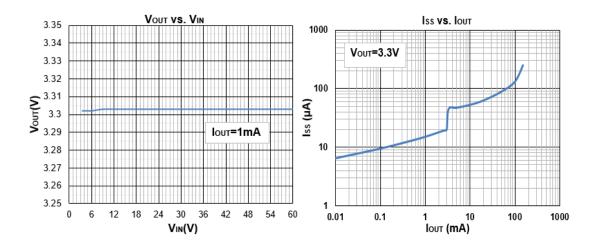
APPLICATION INFORMATION

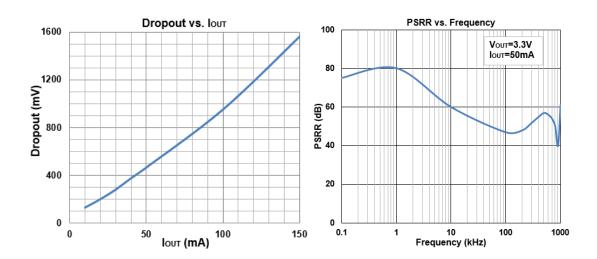
Selection of Input/ Output Capacitors

Phase compensation is provided to secure operation even when the load current is varied. For this purpose, use a $1.0\mu F$ or more output capacitor (C_{OUT}) with good frequency characteristics and proper ESR (Equivalent Series Resistance). Connect a $1.0\mu F$ or more input capacitor (C_{IN}) between the V_{IN} pin and the V_{SS} pin as close as possible to the pins. The value of the output overshoot or undershoot transient response varies depending on the

value of the output capacitor.

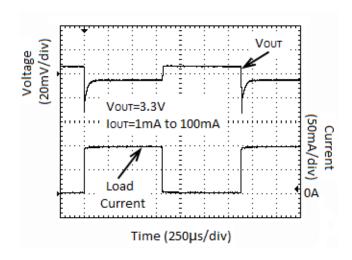

When selecting the output capacitor, perform sufficient evaluation, including evaluation of temperature characteristics, on the actual device.

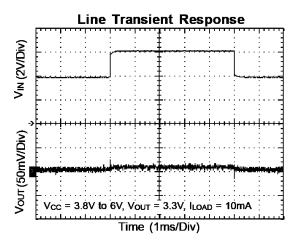

In the design of portable devices the ceramic capacitors are often chosen because of their small size, low equivalent series resistance (ESR) and high RMS current capability. Also, designers have been looking to ceramic capacitors due to shortages of tantalum capacitors.

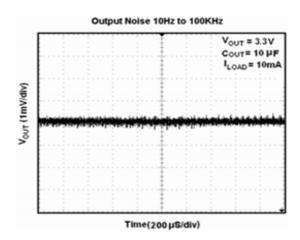

Unfortunately, using ceramic capacitors for input filtering can cause problems. Applying a voltage step to a ceramic capacitor causes a large current surge that stores energyin the inductances of the power leads. A large voltage spike is created when the stored energy is transferred from these inductances into the ceramic capacitor. These voltagespikes can easily be twice the amplitude of the input voltage step.

Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multilayer ceramic capacitors (MLCC). Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the LDO input to a live power source. Adding a 3Ω resistor in series with an X5R ceramic capacitor will minimize start-up voltage transients.

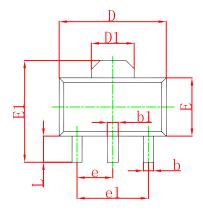
(V_{CE}=V_{IN}=V_{OUT}+2V, C_{IN}=1 μ F, C_{OUT}=10 μ F , T_A=25 $^{\circ}$ C,unless otherwise specified)

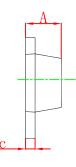


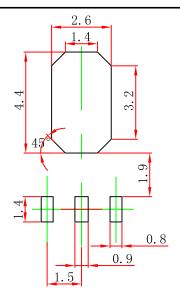




Typical Characteristics






SOT-89-3L Package Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.197	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550 REF		0.061 REF		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP		0.060 TYP		
e1	3.000 TYP		3.000 TYP 0.118 TYP		
L	0.900	1.200	0.035	0.047	

SOT-89-3L Suggested Pad Layout

Note:

- 1. Controlling dimemsion"in"milimeters.
- 2.General tolerance: ±0.05mm.
- 3. The pad layout is for reference purpose only.

DISCLAIMER

IMPORTANT NOTICE, PLEASE READ CAREFULLY

The information in this data sheet is intended to describe the operation and characteristics of our products. JSCJ has the right to make any modification, enhancement, improvement, correction or other changes to any content in this data sheet, including but not limited to specification parameters, circuit design and application information, without prior notice.

Any person who purchases or uses JSCJ products for design shall: 1. Select products suitable for circuit application and design; 2. Design, verify and test the rationality of circuit design; 3. Procedures to ensure that the design complies with relevant laws and regulations and the requirements of such laws and regulations. JSCJ makes no warranty or representation as to the accuracy or completeness of the information contained in this data sheet and assumes no responsibility for the application or use of any of the products described in this data sheet.

Without the written consent of JSCJ, this product shall not be used in occasions requiring high quality or high reliability, including but not limited to the following occasions: medical equipment, automotive electronics, military facilities and aerospace. JSCJ shall not be responsible for casualties or property losses caused by abnormal use or application of this product.

Official Website: www.jscj-elec.com

Copyright © JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by Changjing Electronics Technology manufacturer:

Other Similar products are found below:

LV5684PVD-XH MCDTSA6-2R L7815ACV-DG LV56801P-E UA7805CKC 714954EB ZMR500QFTA BA033LBSG2-TR

NCV78M05ABDTRKG LV5680P-E L79M05T-E L78LR05D-MA-E NCV317MBTG NTE7227 MP2018GZD-33-P MP2018GZD-5-P

LV5680NPVC-XH ZTS6538SE UA78L09CLP UA78L09CLPR CAT6221-PPTD-GT3 MC78M09CDTRK NCV51190MNTAG

BL1118CS8TR1833 BL8563CKETR18 BL8077CKETR33 BL9153-33CC3TR BL9161G-15BADRN BL9161G-28BADRN

BRC07530MMC CJ7815B-TFN-ARG LM317C GM7333K GM7350K XC6206P332MR HT7533 LM7912S/TR LT1764S/TR LM7805T

LM338T LM1117IMP-3.3/TR HT1117AM-3.3 HT7550S AMS1117-3.3 HT7150S 78L12 HT7550 HT7533-1 HXY6206I-2.5 HT7133