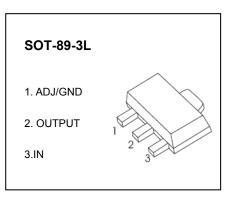
JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD



1A LOW DROPOUT LINEAR REGULATOR

SCJA1117B-XXX-A

FEATURES

- Low Dropout Voltage: 1.3V at 0.8A Output Current
- Trimmed Current Limit
- On-Chip Thermal Shutdown
- Three-Terminal Adjustable or Fixed 1.2V,1.8V, 2.5V, 3.3V, 5V
- Operation Junction Temperature: -20 °C to 125 °C

GENERAL DESCRIPTION

The SCJA1117B-XXX-A is a series of low dropout three-terminal regulators with a dropout of 1.3V(typ.) at 1A output current.

The SCJA1117B-XXX-A series provides current limiting and thermal shutdown. Its circuit includes a trimmed bandage reference to assure output voltage accuracy to be within 2%. Current limit is trimmed to ensure specified. Output current and controlled short-circuit current. On-chip thermal shutdown provides protection against any combination of ambient temperature that would create excessive junction temperature.

The SCJA1117B-XXX-A has an adjustable version, that can provide the output voltage from 1.25V to 12V with only 2 external resistors.

APPLICATIONS

- PC Motherboard
- LCD Monitor
- Graphic Card
- DVD-Video Player
- NIC/Switch
- Telecom Modem
- ADSL Modem
- Printer and other peripheral Equipment

Marking:

A1117B = Device code XXX: output voltage

MAXIMUM RATINGS

ORDERING INFORMATION

Package	Operating Junction Temperature Range	Part NO.
		SCJA1117B-ADJ-A
		SCJA1117B-1.2-A
SOT-89-3L	-20 to 125 ℃	SCJA1117B-1.8-A
		SCJA1117B-2.5-A
		SCJA1117B-3.3-A
		SCJA1117B-5.0-A

ABOSLUTE MAXIMUM RATINGS (T_a=25℃ unless otherwise noted)

Parameter	Symbol	Value	Unit
Input Voltage	Vi	20	V
Thermal Resistance from Junction to Ambient	R _{0JA}	250	°C/W
Operating Ambient Temperature	T _A	-40~+85	°C
Operating Junction Temperature	Tj	-40~+150	°C
Storage Temperature	T _{stg}	-40~+150	°C
Lead Temperature (Soldering, 10s)	TL	260	°C
ESD Rating	Human Body Model, HBM	8	kV

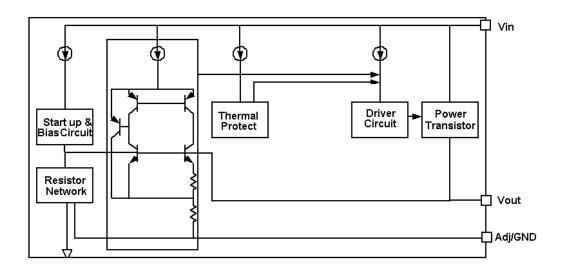
Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Input Voltage	Vi	15	V
Operating Junction Temperature	Tj	-20~+125	°C

ELECTRICAL CHARACTERISTICS

$T_J {=} 25 \, {}^\circ {\rm C}$ unless otherwise specified.


Parameter	Symbol	Part NO.	Test conditions	Min	Тур	Max	Unit	
Reference Voltage	V _{IROC}	SCJA1117B-ADJ-A	I _{OUT} =10mA, V _{IN} =3.25V	1.225	1.25	1.275	V	
		SCIATTITIB-ADJ-A	10mA≤I _{OUT} ≤1A, 2.75V≤V _{IN} -V _{OUT} ≤12V	, 2.75V≤V _{IN} -V _{OUT} ≤12V 1.219 1.25 1.281				
		SCJA1117B-1.2-A	I _{OUT} =10mA, V _{IN} =3.2V	1.176	1.2	1.224		
		30JATTI/B-1.2-A	10mA≤I _{OUT} ≤1A, 2.7V≤V _{IN} ≤12V	1.170	1.2	1.230		
		SCJA1117B-1.5-A	I _{OUT} =10mA, V _{IN} =3.5V	1.470	1.5	1.530		
		30JATTI/B-1.3-A	10mA≤I _{OUT} ≤1A, 3V≤V _{IN} ≤12V	1.463	1.5	1.537		
		SCJA1117B-1.8-A	I _{OUT} =10mA, V _{IN} =3.8V	1.764	1.8	1.836	V	
Outrast Valtage	N	SCJATTI/B-1.0-A	10mA≤I _{OUT} ≤1A, 3.3V≤V _{IN} ≤12V	1.755	1.8	1.845		
Output Voltage	Vo	SC 144447D 3 5 4	I _{OUT} =10mA, V _{IN} =4.5V	2.450	2.5	2.550		
		SCJA1117B-2.5-A	10mA≤I _{OUT} ≤1A, 4V≤V _{IN} ≤12V	2.438	2.5	2.562		
		00 1044475 0.0.4	I _{OUT} =10mA, V _{IN} =5.3V	3.234	3.3	3.366		
		SCJA1117B-3.3-A	10mA≤I _{OUT} ≤1A, 4.8V≤V _{IN} ≤12V	3.218	3.3	3.382		
			I _{OUT} =10mA, V _{IN} =7.0V	4.900	5.0	5.100		
		SCJA1117B-5.0-A	10mA≤I _{OUT} ≤1A, 6.5V≤V _{IN} ≤12V	4.875	5.0	5.125		
		SCJA1117B-ADJ-A	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤10.75V		0.03	0.2	%	
Line Regulation	LNR	SCJA1117B-1.2-A	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤8.8V		0.03	0.2		
		SCJA1117B-1.5-A	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤8.5V		0.03	0.2	%/V	
		SCJA1117B-1.8-A	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤10.2V		0.03	0.2		
		SCJA1117B-2.5-A	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤9.5V		0.03	0.2		
		SCJA1117B-3.3-A	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤8.7V		0.03	0.2		
		SCJA1117B-5.0-A	I _{OUT} =10mA, 1.5V ≤V _{IN} -V _{OUT} ≤7V		0.03	0.2		
	LDR	SCJA1117B-ADJ-A			2	8	mV	
		SCJA1117B-1.2-A			2	8	• mV	
		SCJA1117B-1.5-A			2	8		
Load Regulation		SCJA1117B-1.8-A	V_{IN} - V_{OUT} =1.5V, 10mA \leqslant I $_{\text{OUT}}$ \leqslant 1A		3	12		
		SCJA1117B-2.5-A			4	16		
		SCJA1117B-3.3-A			6	24		
		SCJA1117B-5.0-A			9	36		
Dropout Voltage	VD		I _{OUT} =1A		1.3	1.5	V	
			V _{IN} = 5V, I _{OUT} =10mA		55	120	μA	
Adjust Pin Current	I _{Adj}	SCJA1117B-ADJ-A	V _{IN} = 5V, I _{OUT} =1A		55	120	μA	
I _{Adj} change	I _{change}	SCJA1117B-ADJ-A	V _{IN} = 5V 10mA≤I _{OUT} ≤1A		0.2	10	μA	
Minimum Load Current	lL	SCJA1117B-ADJ-A			2	10	mA	
		SCJA1117B-1.2-A	V _{IN} = 10V		2	5	mA	
		SCJA1117B-1.5-A	V _{IN} = 10V		2	5	mA	
		SCJA1117B-1.8-A	V _{IN} = 12V		2	5	mA	
Quiescent Current	lq	SCJA1117B-2.5-A	V _{IN} = 12V		2	5	mA	
		SCJA1117B-3.3-A	V _{IN} = 12V		2	5	mA	
		SCJA1117B-5.0-A	V _{IN} = 12V	+	2	5	mA	
Ripple Rejection	RR		f=1kHz,C _{IN} =10μF/25V, C _{OUT} =10μF/25V ,		60		dB	

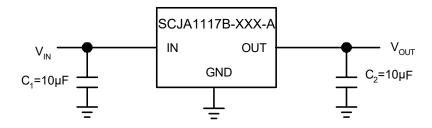
* With package soldering to copper area over backside ground plane or internal power plane R $_{\text{BJA}}$ can vary from 46 $\,^\circ\!\!\!\mathrm{C/W}$ to

>90 $^\circ\!\mathrm{C}/W$ depending on mounting technique and the size of the copper area

FUNCTIONAL BLOCK and TYPICAL APPLICATION

FUNCTIONAL BLOCK DIAGRAM

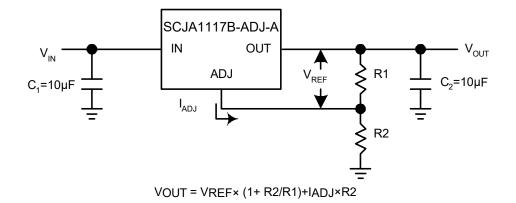
DETAILED DESCRIPTION


SCJA1117B-XXX-A is a series of low dropout voltage, three terminal regulators. Its application circuit is very simple: the fixed version only needs two capacitors and the adjustable version only needs two resistors and two capacitors to work. It is composed of some modules including start-up circuit, bias circuit, bandgap, thermal shutdown, power transistors and its driver circuit and so on.

The thermal shut down modules can assure chip and its application system working safety when the junction temperature is larger than 140°C.

The bandgap module provides stable reference voltage, whose temperature coefficient is compensated by careful design considerations. The temperature coefficient is under 100 ppm/°C. And the accuracy of output voltage is guaranteed by trimming technique.

TYPICAL APPLICATION


Fixed Output Voltage Version

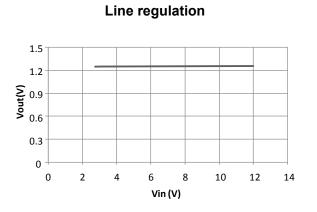
- 1) Recommend using 10uF tan capacitor as bypass capacitor (C1) for all application circuit.
- 2) Recommend using 10uF tan capacitor to assure circuit stability.

TYPICAL APPLICATION

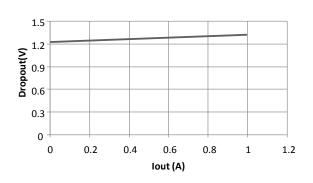
Adjustable Output Voltage Version

The output voltage of adjustable version follows the equation: Vout=1.25×(1+R2/R1)+IAdj×R2. We can ignore IAdj because IAdj (about 50uA) is much less than the current of R1 (about 2~10mA).

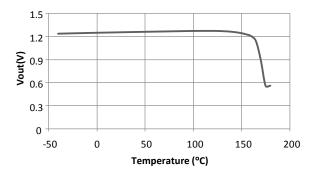
1) To meet the minimum load current (>10mA) requirement, R1 is recommended to be 125ohm or lower. As SCJA1117B-ADJ-A can keep itself stable at load current about 2mA, R1 is not allowed to be higher than 625ohm.

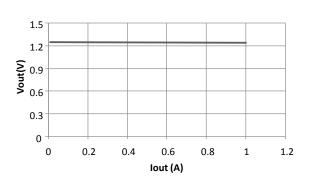

2) Using a bypass capacitor (C_{ADJ}) between the ADJ pin and ground can improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. The impedance of C_{ADJ} should be less than R1 to prevent ripple from being amplified. As R1 is normally in the range of 100Ω ~500 Ω , the value of C_{ADJ} should satisfy this equation: $1/(2\pi \times f_{ripple} \times C_{ADJ})$ <R1.

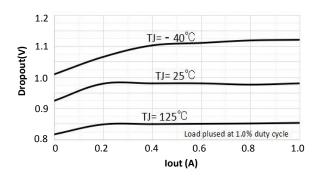
THERMAL CONSIDERATION


We have to take heat dissipation into great consideration when output current or differential voltage of input and output voltage is large. Because in such cases, the power dissipation consumed by SCJA1117B-ADJ-A is very large. SCJA1117B-ADJ-A series uses SOT-223 package type and its thermal resistance is about 20°C/W. And the copper area of application board can affect the total thermal resistance. If copper area is 5cm*5cm (two sides), the resistance is about 30°C/W. So the total thermal resistance is about 20°C/W+30°C/W. We can decrease total thermal resistance by increasing copper area in application board. When there is no good heat dissipation copper are in PCB, the total thermal resistance will be as high as 120°C/W, then the power dissipation of SCJA1117B-ADJ-A could allow on itself is less than 1W. And furthermore, SCJA1117B-ADJ-A will work at junction temperature higher than 125°C under such condition and no lifetime is guaranteed.

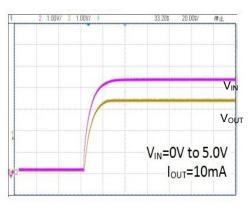
TYPICAL PERFORMANCE CHARACTERISTICS


TA=25 $^{\circ}$ C, unless otherwise noted.

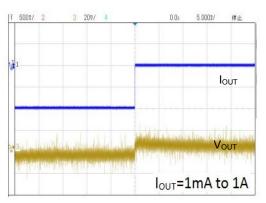

Dropout Voltage (ADJ Except)

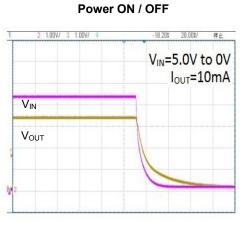

Thermal performance with OTP

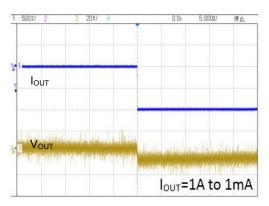
Load regulation



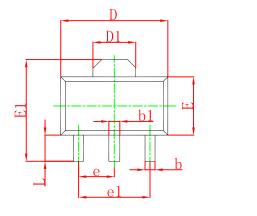
Dropout Voltage (ADJ Only)

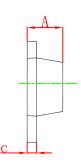

TYPICAL PERFORMANCE CHARACTERISTICS


TA=25 $^{\circ}$ C, unless otherwise noted.

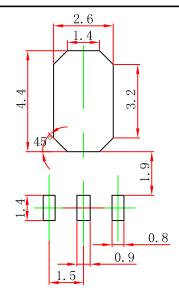

Power ON / OFF

Load Transient Response





Load Transient Response


SOT-89-3L Package Outline Dimensions

Symbol	Dimensions	In Millimeters	Dimension	s In Inches	
Symbol	Min	Max	Min	Max	
А	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550	REF.	0.061 REF.		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500	TYP.	0.060 TYP.		
e1	3.000	TYP.	0.118	TYP.	
L	0.900	1.200	0.035	0.047	

SOT-89-3L Suggested Pad Layout

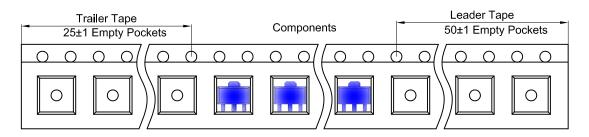
Note:

1.Controlling dimemsion"in"milimeters.

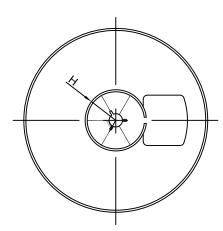
2.General tolerance: ±0.05mm.

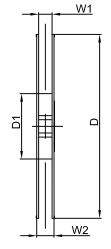
3. The pad layout is for reference purpose only.

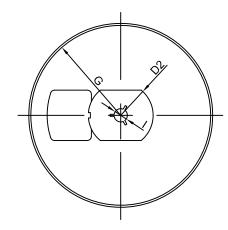
SOT-89-3L Tape and Reel


SOT-89-3L Embossed Carrier Tape

Packaging Description:


SOT-89-3L parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 1,000 units per 7" or 18.0 cm diameter reel. The reels are clear in color and is made of polystyrene plastic (anti-static coated).


Dimensions are in millimeter										
Pkg type	А	В	С	d	Е	F	P0	Р	P1	W
SOT-89-3L	4.85	4.45	1.85	Ø1.50	1.75	5.50	4.00	8.00	2.00	12.00


SOT-89-3L Tape Leader and Trailer

SOT-89-3L Reel

Dimensions are in millimeter									
Reel Option	D	D1	D2	G	Н	I	W1	W2	
7"Dia	Ø180.00	60.00	R32.00	R86.50	R30.00	Ø13.00	13.20	16.50	

REEL	Reel Size	Box	Box Size(mm)	Carton	Carton Size(mm)	G.W.(kg)
1000 pcs	7 inch	10,000 pcs	203×203×195	40,000 pcs	438×438×220	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by Changjing Electronics Technology manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG PQ3DZ53U LV56801P-E TLE42794G L78L05CZ/1SX L78LR05DL-MA-E 636416C 714954EB BA033LBSG2-TR LV5680P-E L78M15CV-DG TLS202B1MBV33HTSA1 L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 LV5680NPVC-XH LT1054CN8 MP2018GZD-5-Z MP2018GZD-33-Z MIC5281-3.3YMM MC78L06BP-AP TA48LS05F(TE85L,F) TA78L12F(TE12L,F) TC47BR5003ECT TCR2LN12,LF(S TCR2LN28,LF(S TCR2LN30,LF(S TCR3DF295,LM(CT TCR3DF40,LM(CT BA178M20CP-E2 L78M12ABDT LM7812SX/NOPB LR645N3-G-P003 LR645N3-G-P013 ZXTR2005P5-13 SCD7812BTG TCR3DF335,LM(CT ZXTR2012K-13 TLE42994E V33 ZXTR2008K-13 ZXTR2005K-13 LA5693D-E L88R05DL-E ADP3300ARTZ-2.7RL7 LM120K-15/883