
1A LOW DROPOUT LINEAR REGULATOR

SCJT1117B Series

FEATURES

- Low Dropout Voltage: 1.3V(typ.) at 1A Output Current
- Thermal Shutdown
- Three-Terminal Adjustable to 1.2V,1.5V,1.8V, 2.5V, 3.3V, 5V
- Operation Junction Temperature: -40°C to 125°C
- Space-saving SOT-223 packages

GENERAL DESCRIPTION

The SCJT1117B series is a group of low dropout three-terminal regulators with a dropout of 1.3V(typ.) at 1A output current.

The SCJT1117B series is available in an adjustable version, which can set the output voltage from 1.25V to 12 V with only two external resistors. In addition, it is available in five fixed voltages: 1.2V, 1.5V, 1.8 V, 2.5 V, 3.3 V and 5 V.

The SCJT1117B series offer thermal shutdown protection. Its circuit includes a Zener trimmed bandgap reference to assure output voltage accuracy to within $\pm 2\%$.

A minimum of 10µF tantalum capacitor is required at the output to improve the transient response and stability.

APPLICATIONS

- PC Motherboard
- LCD Monitor
- Graphic Card
- DVD-Video Player
- NIC/Switch
- Telecom Modem
- ADSL Modem
- Printer and Other Peripheral Equipment

MARKING

CJT1117B = Device code XXX: output voltage

ORDERING INFORMATION

Package	Operating Junction Temperature Range	Part NO.
		SCJT1117B-ADJ
	-40 to 125℃	SCJT1117B-1.2
		SCJT1117B-1.5
SOT-223		SCJT1117B-1.8
		SCJT1117B-2.5
		SCJT1117B-3.3
		SCJT1117B-5.0

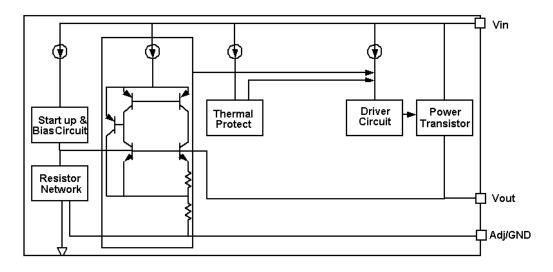
ABOSLUTE MAXIMUM RATINGS (T_A=25℃ unless otherwise noted)

Parameter	Symbol	Value	Unit
Input Voltage	Vi	20	V
Thermal Resistance from Junction to Ambient	R _{0JA}	100	°C/W
Operating Ambient Temperature	T _A	-40~+85	°C
Maximum Junction Temperature	Tj	-40~+150	°C
Storage Temperature	T _{stg}	-40~+150	°C
Lead Temperature (Soldering, 10s)	TL	260	°C
ESD Rating	Human Body Model, HBM	2.5	kV

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Input Voltage	Vi	15	V
Operating Junction Temperature	Tj	-40~+125	°C


ELECTRICAL CHARACTERISTICS

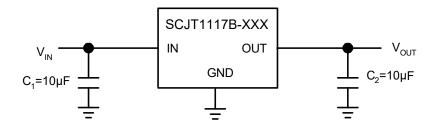
$V_{IN}{\leqslant}10V,\,T_J{=}25\,^\circ\!\!{\rm C}$ unless otherwise specified.

Parameter	Symbol	Part NO.	Test conditions	Min	Тур	Мах	Unit			
Poference Voltage	V _{IROC}	SCJT1117B-ADJ	I _{OUT} =10mA, V _{IN} =3.25V	1.225	1.25	1.275	V			
Reference Voltage	V IROC	SCJIIII/B-ADJ	10mA≤I _{OUT} ≤1A, 2.75V≤V _{IN} -V _{OUT} ≤12V	1.219	1.25	1.281	v			
		SCJT1117B-1.2	I _{OUT} =10mA, V _{IN} =3.2V	1.2	1.224					
		30J1117B-1.2	10mA≤I _{OUT} ≤1A, 2.7V≤V _{IN} ≤12V	1.170	12	1.230				
		SCJT1117B-1.5	I _{OUT} =10mA, V _{IN} =3.5V	1.470	1.5	1.530				
		30J1117B-1.5	10mA≤I _{OUT} ≤1A, 3V≤V _{IN} ≤12V	1.463	1.5	1.537				
			I_{OUT} =10mA, V_{IN} =3.8V	1.764	1.8	1.836	V			
• • • • •	Vo	SCJT1117B-1.8	10mA≤I _{OUT} ≤1A, 3.3V≤V _{IN} ≤12V	1.755	1.8	1.845				
Output Voltage	vo	SC 1744778 2 5	I_{OUT} =10mA, V_{IN} =4.5V	2.450	2.5	2.550				
		SCJT1117B-2.5	10mA≤I _{OUT} ≤1A, 4V≤V _{IN} ≤12V	2.438	2.5	2.562				
		CC 174447D 2 2	I _{OUT} =10mA, V _{IN} =5.3V	3.234	3.3	3.366				
		SCJT1117B-3.3	10mA≤I _{OUT} ≤1A, 4.8V≤V _{IN} ≤12V	3.218	3.3	3.382				
			I _{OUT} =10mA, V _{IN} =7.0V	4.900	5.0	5.100	,			
		SCJT1117B-5.0	10mA≤I _{OUT} ≤1A, 6.5V≤V _{IN} ≤12V	4.875	5.0	5.125				
		SCJT1117B-ADJ	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤10.75V		0.03	0.2	%			
		SCJT1117B-1.2	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤8.8V		0.03	0.2				
	LNR	SCJT1117B-1.5	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤8.5V		0.03	0.2				
Line Regulation		SCJT1117B-1.8	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤10.2V	0.03	0.2	%/V				
		SCJT1117B-2.5	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤9.5V		0.03	0.2	. %/V			
		SCJT1117B-3.3	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤8.7V		0.03	0.2				
		SCJT1117B-5.0	I _{OUT} =10mA, 1.5V ≤V _{IN} -V _{OUT} ≤7V		0.03	03 0.2				
		SCJT1117B-ADJ			2	8	mV			
		SCJT1117B-1.2	1		2	8	mV			
		SCJT1117B-1.5			2	8				
Load Regulation	LDR	SCJT1117B-1.8	V_{IN} - V_{OUT} =1.5V, 10mA \leqslant I $_{\text{OUT}}$ \leqslant 1A		3	12				
		SCJT1117B-2.5			4	16				
		SCJT1117B-3.3	1		6	24				
		SCJT1117B-5.0	1		9	36				
Dropout Voltage	VD		I _{OUT} =1A		1.3	1.5	V			
			V _{IN} = 5V, I _{OUT} =10mA		55	120	μA			
Adjust Pin Current	I _{Adj}	SCJT1117B-ADJ	V _{IN} = 5V, I _{OUT} =1A		55	120	μA			
I _{Adj} change	I _{change}	SCJT1117B-ADJ	V _{IN} = 5V 10mA≤I _{OUT} ≤1A		0.2	10	μA			
Minimum Load Current	IL I	SCJT1117B-ADJ			2	10	mA			
		SCJT1117B-1.2	V _{IN} = 10V		2	5	mA			
		SCJT1117B-1.5	V _{IN} = 10V		2	5	mA			
		SCJT1117B-1.8	V _{IN} = 12V		2	5	mA			
Quiescent Current	Ιq	SCJT1117B-2.5	V _{IN} = 12V		2	5	mA			
		SCJT1117B-3.3	V _{IN} = 12V		2	5	mA			
		SCJT1117B-5.0	V _{IN} = 12V		2	5	mA			
Ripple Rejection RR		f=120Hz, C_{OUT} =22µF Tantalum, V_{IN} - V_{OUT} =3V, I _{OUT} =1A		60		dB				

FUNCTIONAL BLOCK and TYPICAL APPLICATION

FUNCTIONAL BLOCK DIAGRAM

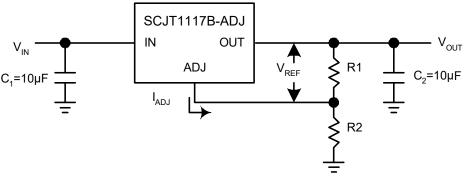
DETAILED DESCRIPTION


SCJT1117B-XXX is a series of low dropout voltage, three terminal regulators. Its application circuit is very simple: the fixed version only needs two capacitors and the adjustable version only needs two resistors and two capacitors to work. It is composed of some modules including start-up circuit, bias circuit, bandgap, thermal shutdown, power transistors and its driver circuit and so on.

The thermal shut down modules can assure chip and its application system working safety when the junction temperature is larger than 140°C.

The bandgap module provides stable reference voltage, whose temperature coefficient is compensated by careful design considerations. The temperature coefficient is under 100 ppm/°C. And the accuracy of output voltage is guaranteed by trimming technique.

TYPICAL APPLICATION


Fixed Output Voltage Version

- 1) Recommend using 10uF tan capacitor as bypass capacitor (C1) for all application circuit.
- 2) Recommend using 10uF tan capacitor to assure circuit stability.

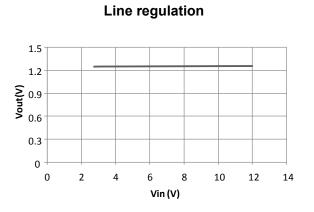
TYPICAL APPLICATION

Adjustable Output Voltage Version

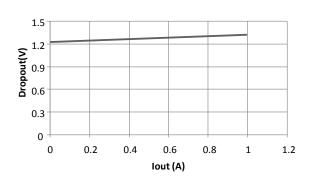
VOUT = VREF× (1+ R2/R1)+IADJ×R2

The output voltage of adjustable version follows the equation: Vout=1.25×(1+R2/R1)+IAdj×R2. We can ignore IAdj because IAdj (about 50uA) is much less than the current of R1 (about 2~10mA).

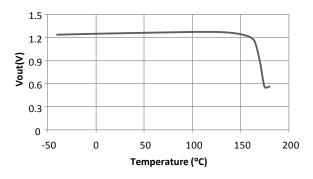
1) To meet the minimum load current (>10mA) requirement, R1 is recommended to be 125ohm or lower. As SCJT1117B-ADJ can keep itself stable at load current about 2mA, R1 is not allowed to be higher than 625ohm.

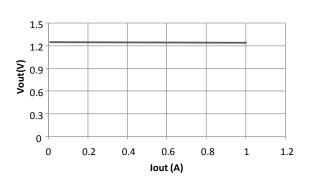

2) Using a bypass capacitor (C_{ADJ}) between the ADJ pin and ground can improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. The impedance of C_{ADJ} should be less than R1 to prevent ripple from being amplified. As R1 is normally in the range of 100Ω ~ 500Ω , the value of C_{ADJ} should satisfy this equation: $1/(2\pi \times f_{ripple} \times C_{ADJ})$ <R1.

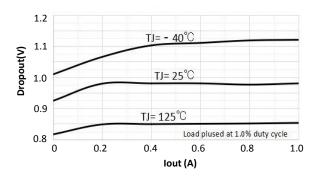
THERMAL CONSIDERATION


We have to take heat dissipation into great consideration when output current or differential voltage of input and output voltage is large. Because in such cases, the power dissipation consumed by SCJT1117B-ADJ is very large. SCJT1117B-ADJ series uses SOT-223 package type and its thermal resistance is about 20°C/W. And the copper area of application board can affect the total thermal resistance. If copper area is 5cm*5cm (two sides), the resistance is about 30° C/W. So the total thermal resistance is about 20°C/W+30°C/W. We can decrease total thermal resistance by increasing copper area in application board. When there is no good heat dissipation copper are in PCB, the total thermal resistance will be as high as 120°C/W, then the power dissipation of SCJT1117B-ADJ could allow on itself is less than 1W. And furthermore, SCJT1117B-ADJ will work at junction temperature higher than 125°C under such condition and no lifetime is guaranteed.

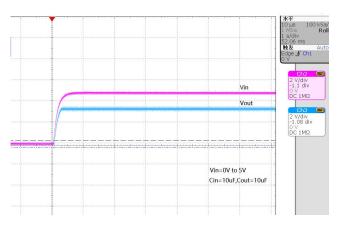
TYPICAL PERFORMANCE CHARACTERISTICS


TA=25 $^{\circ}$ C, unless otherwise noted.


Dropout Voltage (ADJ Except)

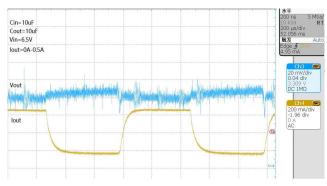

Thermal performance with OTP

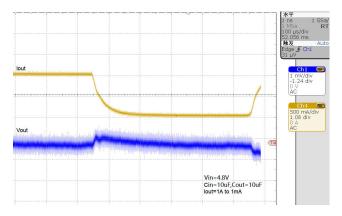
Load regulation

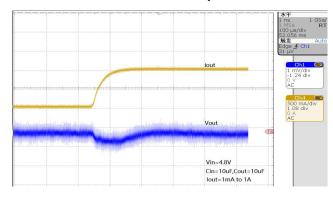

Dropout Voltage (ADJ Only)

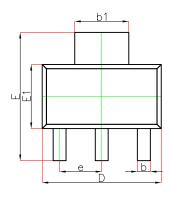
TYPICAL PERFORMANCE CHARACTERISTICS

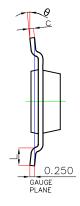
TA=25℃, unless otherwise noted.

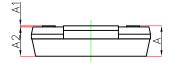



Power OFF

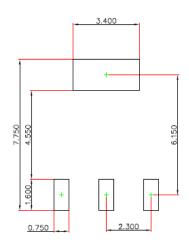

Load Transient Response


Load Transient Response




Load Transient Response

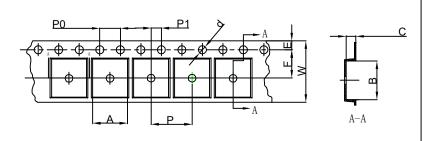
SOT-223 Package Outline Dimensions



Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α		1.800		0.071	
A1	0.020	0.100	0.001	0.004	
A2	1.500	1.700	0.059	0.067	
b	0.660	0.840	0.026	0.033	
b1	2.900	3.100	0.114	0.122	
С	0.230	0.350	0.009	0.014	
D	6.300	6.700	0.248	0.264	
Е	6.700	7.300	0.264	0.287	
E1	3.300	3.700	0.130	0.146	
е	2.30	0(BSC)	0.091	(BSC)	
L	0.750		0.030		
θ	0° 10°		0°	10°	

SOT-223 Suggested Pad Layout

Note:

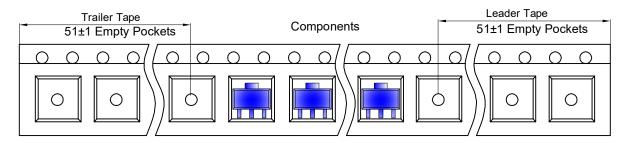

1.Controlling dimension:in millimeters.

2.General tolerance:±0.050mm.

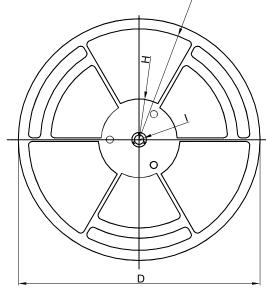
3. The pad layout is for reference purposes only.

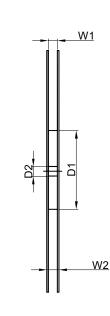
SOT-223 Tape and Reel

SOT-223 Embossed Carrier Tape



6


Packaging Description: SOT-223 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 2,500 units per 13" or 33.0cm diameter reel. The reels are clear in color and is made of polystyrene plastic (anti-static coated).


Dimensions are in millimeter										
Pkg type A B C d E F P0 P P1 W								W		
SOT-223	6.765	7.335	1.88	Ø1.50	1.75	5.50	4.00	8.00	2.00	12.00

SOT-223 Tape Leader and Trailer

SOT-223 Reel

Dimensions are in millimeter										
Reel Option	D	D1	D2	G	н	I	W1	W2		
13"Dia	Ø330.00	100.00	13.00	R151.00	R56.00	R6.50	12.40	17.60		
REEL	Reel Si	Reel Size E		Box Size(mm) Carton		Carton	Size(mm)	G.W.(kg)		
2,500 pcs	00 pcs 13 inch 2.500 pcs 336×336×48 20.000 pcs 445×355×365									

DISCLAIMER

IMPORTANT NOTICE, PLEASE READ CAREFULLY

The information in this data sheet is intended to describe the operation and characteristics of our products. JSCJ has the right to make any modification, enhancement, improvement, correction or other changes to any content in this data sheet, including but not limited to specification parameters, circuit design and application information, without prior notice.

Any person who purchases or uses JSCJ products for design shall: 1. Select products suitable for circuit application and design; 2. Design, verify and test the rationality of circuit design; 3. Procedures to ensure that the design complies with relevant laws and regulations and the requirements of such laws and regulations. JSCJ makes no warranty or representation as to the accuracy or completeness of the information contained in this data sheet and assumes no responsibility for the application or use of any of the products described in this data sheet.

Without the written consent of JSCJ, this product shall not be used in occasions requiring high quality or high reliability, including but not limited to the following occasions: medical equipment, automotive electronics, military facilities and aerospace. JSCJ shall not be responsible for casualties or property losses caused by abnormal use or application of this product.

Official Website: www.jscj-elec.com

Copyright © JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by Changjing Electronics Technology manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG PQ3DZ53U LV56801P-E TLE42794G L78L05CZ/1SX L78LR05DL-MA-E 636416C 714954EB BA033LBSG2-TR LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 LV5680NPVC-XH LT1054CN8 MP2018GZD-5-Z MP2018GZD-33-Z MIC5281-3.3YMM MC78L06BP-AP TA48LS05F(TE85L,F) TA78L12F(TE12L,F) TC47BR5003ECT TCR2LN12,LF(S TCR2LN28,LF(S TCR2LN30,LF(S TCR3DF295,LM(CT TCR3DF40,LM(CT BA178M20CP-E2 L78M12ABDT LM7812SX/NOPB LR645N3-G-P003 LR645N3-G-P013 ZXTR2005P5-13 SCD7812BTG TCR3DF335,LM(CT ZXTR2012K-13 TLE42994E V33 ZXTR2008K-13 ZXTR2005K-13 L88R05DL-E ADP3300ARTZ-2.7RL7 LM120K-15/883 IFX54441LDVXUMA1 LM317D2T-TR