

CLM4717

$4.5\Omega/20\Omega$, 300MHz Bandwidth, Dual SPDT Chiplon Switches in UCSP

General Description

The CLM4717 low-voltage, low on-resistance (R_{ON}), dual single-pole/double throw (SPDT) Chiplon switches operate from a single +1.8V to +5.5V supply. These devices are designed for USB 1.1 and audio switching applications.

The CLM4717 features two 4.5Ω RoN (max) SPDT switches with 1.2Ω flatness and 0.3Ω matching between channels. The CLM4717 features one 4.5Ω RoN (max) SPDT switch and one 20Ω RoN (max) SPDT switch. The 20Ω switch has a guaranteed matching and flatness of 0.4Ω and 1.2Ω , respectively. These switches offer break- before-make switching (1ns) with ton <80ns and toff <40ns at +2.7V. The digital logic inputs are +1.8V logic compatible with a +2.7V to +3.6V supply.

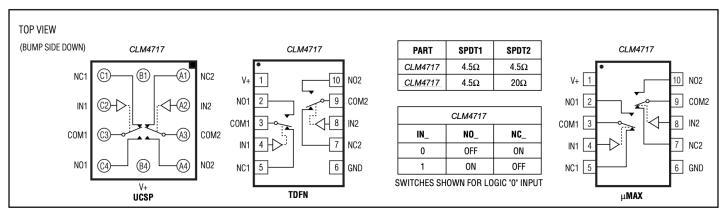
These switches are packaged in a chip-scale package (UCSP TM), significantly reducing the required PC board area. The chip occupies only a 2.0mm \times 1.50mm area and has a 4 \times 3 bump array with a bump pitch of 0.5mm. These switches are also available in 10-pin μ MAX $^{\$}$ and 10-pin TDFN packages.

Applications

USB 1.1 Signal Switching Circuits
Battery-Operated Equipment Audio/
Video-Signal Routing Headphone
Switching
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
Cell Phones
PDAs

UCSP is a trademark of Maxim Integrated Products, Inc. µMAX is a registered trademark of Maxim Integrated Products, Inc.

Features


- USB 1.1 Signal Switching Compliant (TID = 4000231)
- 2ns (max) Differential Skew
- -3dB Bandwidth: > 300MHz
- ◆ Low 15pF On-Channel Capacitance
- Single-Supply Operation from +1.8V to +5.5V
- + 4.5 Ω Ron (max) Switches (CLM4717) 0.3 Ω (max) Ron Match (+3.0V Supply) 1.2 Ω (max) Flatness (+3.0V Supply)
- 20Ω RON (max) Switch (CLM4717)
 0.4Ω (max) RON Match (+3.0V Supply)
 1.2Ω (max) Flatness (+3.0V Supply)
- Rail-to-Rail Signal Handling
- High Off-Isolation: -55dB (10MHz)
- Low Crosstalk: -80dB (10MHz)
- ♦ Low Distortion: 0.03%
- ◆ +1.8V CMOS-Logic Compatible
- < 0.5nA Leakage Current at +25°C

Ordering Information

PART	TEMP RANGE	PIN/BUMP- PACKAGE	TOP MARK
CLM4717EUB	-40°C to +85°C	10 μMAX	_
CLM4717ETB	-40°C to +85°C	10 TDFN-EP*	ACV
CLM4717EBC-T	-40°C to +85°C	12 UCSP-12	ABH
CLM4717EUB	-40°C to +85°C	10 μMAX	_
CLM4717ETB	-40°C to +85°C	10 TDFN-EP*	ACW
CLM4717EBC-T	-40°C to +85°C	12 UCSP-12	ABI

^{*}EP = Exposed paddle.

Pin Configurations/Functional Diagrams/Truth Tables

ABSOLUTE Chiplon RATINGS

(All voltages are referenced to GND.)	
V+, IN	V to +6.0V
COM_, NO_, NC_ (Note 1)	0.3V to (V+ + 0.3V)
Continuous Current COM_, NO_, NC	±100mA
Peak Current COM_, NO_, NC_	
(pulsed at 1ms, 10% duty cycle)	±200mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
10-Pin µMAX (derate 5.6mW/°C above +7	'0°C)444mW
10-Pin TDFN (derate 24.4mW/°C above +	70°C)1951mW
12-Bump UCSP (derate 11.4mW/°C above	e +70°C)909mW

ESD Method 3015.7	>2kV
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Bump Temperature (soldering)	
Infrared (15s)	+220°C
Vapor Phase (60s)	+215°C

Note 1: Signals on COM_, NO_, or NC_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to Chiplon current rating.

Stresses beyond those listed under "Absolute Chiplon Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute Chiplon rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+ = +2.7V \text{ to } +3.6V, V_{IH} = +1.4V, V_{IL} = +0.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V+ = +3.0V, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Chiplon Signal Range	V _{COM} , V _{NO} , V _{NC}		T _{MIN} to	0		V+	V
Chiplon SWITCH (Low RON—CLM	4717 SPDT 1)						•
On-Resistance (Note	R _{ON}	\/+ = 2.7\/ look = 10mA: \/kio	+25°C		3.0	4.5	Ω
4)	. ON	V+ = 2.7V, I _{COM} _ = 10mA; V _{NO} _ or V _{NC} _ = 1.5V	T _{MIN} to			5	
On-Resistance Match Between	ΔRON	\/+ = 2.7\/ looy = 10mA:\/yo	+25°C		0.1	0.3	Ω
Channels (Notes 4, 5)	ZI TON	V+ = 2.7V, I _{COM} _ = 10mA; V _{NO} _ or V _{NC} _ = 1.5V	T _{MIN} to			0.4	32
On-Resistance Flatness	RELATION)	V+ = 2.7V, I _{COM} _ = 10mA; V _{NO} _ or V _{NC} _ = 1.0V, 1.5V, 2.0V	+25°C		0.6	1.2	Ω
(Note 6)	TYFLAT(ON)		T _{MIN} to			1.5] 52
NO NO OF Laskage Comment	hio (OFF)	\(\(\begin{array}{cccccccccccccccccccccccccccccccccccc	+25°C	-0.5	+0.01	+0.5	
NO_, NC_ Off-Leakage Current (Note 7)	INO_(OFF), INC_(OFF)	V+ = 3.6V, V _{COM} = 0.3V, 3.3V; V _{NO} or V _{NC} = 3.3V, 0.3V	T _{MIN} to	-1		+1	nA
2011 2 1 1 2 1		V+ = 3.6V, V _{COM} _ = 0.3V, 3.3V;	+25°C	-1	+0.01	+1	
COM_On-Leakage Current (Note 7)	ICOM_(ON)	VNO_or VNC_ = 0.3V, 3.3V, or floating	T _{MIN} to	-2		+2	nA
Chiplon SWITCH (High RON—CLN	14717 SPDT 2)						•
On Desistance (Nets 4)	R _{ON}	\(\(= 2.7\\ \ \ \ \ \ = 10m\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+25°C		15	20	Ω
On-Resistance (Note 4)	, VOIN	V+ = 2.7V, I _{COM} _ = 10mA; V _{NO} _ or V _{NC} _ = 1.5V	T _{MIN} to			25	52

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V+ = +2.7V \text{ to } +3.6V, V_{IH} = +1.4V, V_{IL} = +0.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at V+ = +3.0V, $T_A = +25^{\circ}C$, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
	ΔRon		+25°C		0.15	0.4	Ω
On-Resistance Match Between Channels (Notes 4, 5)	ANON	V+ = 2.7V, I _{COM} _ = 10mA; V _{NO} _ or V _{NC} _ = 1.5V	T _{MIN} to			0.5	52
On Desistance Flatness	R _{FLAT(ON)}	\\\ = 2.7\\ = = 10m\\\ \\\\\	+25°C		0.6	1.2	Ω
On-Resistance Flatness (Note 6)	TELAT(ON)	V+ = 2.7V, I _{COM} _ = 10mA; V _{NO} _ or V _{NC} _ = 1.0V, 1.5V, 2.0V	T _{MIN} to			1.5	52
NO NC Off Lockage Current	I _{NO_(OFF),}	\\	+25°C	-0.5	+0.01	+0.5	
NO_, NC_Off-Leakage Current (Note 7)	I _{NC_(OFF)}	V+ = 3.6V, V _{COM} = 0.3V, 3.3V; V _{NO} or V _{NC} = 3.3V, 0.3V	T _{MIN} to	-1		+1	nA
COM On Lockers Coment	loon (on)	V+ = 3.6V, V _{COM} _ = 0.3V, 3.3V;	+25°C	-1	+0.01	+1	^
COM_On-Leakage Current (Note 7)	I _{COM_(ON)}	VNO_ or VNC_ = 0.3V, 3.3V, or floating	T _{MIN} to	-2		+2	nA
DYNAMIC CHARACTERISTICS			'				!
Turn On Time	t _{ON}	V _{NO_} , V _{NC_} = 1.5V;	+25°C		40	80	
Turn-On Time	ON	R_L = 300 Ω , C_L = 35pF, Figure 1; V_{IH} = 1.5V, V_{IL} = 0V	T _{MIN} to T _{MAX}			100	ns
Turn Off Time	^t OFF	V _{NO_} , V _{NC_} = 1.5V; R _L = 300Ω, C _L = 35pF, Figure 1; V _{IH} = 1.5V, V _{IL} = 0V	+25°C		20	40	ns
Turn-Off Time			T _{MIN} to			50	
Dunals Dafava Malsa Tima Dalay (Nicha	[‡] BBM	t_{BBM} $V_{NO_}$, $V_{NC_}$ = 1.5V; R_L = 300 Ω , C_L = 35pF, Figure 2	+25°C		8		
Break-Before-Make Time Delay (Note 7)			T _{MIN} to	1			ns
Skew (Note 7)	t _{SKEW}	$R_S = 39\Omega$, $C_L = 50$ pF, Figure 3	T _{MIN} to		0.15	2	ns
Charge Injection	Q	V_{GEN} = 1.5V, R_{GEN} = 0Ω , C_L = 1.0nF, Figure 4	+25°C		5		pC
	V	$f = 10MHz; V_{NO}, V_{NC} = 1V_{P-P};$ R _L = 50Ω , C _L = 5pF, Figure 5			-55		
Off-Isolation	V _{ISO}	$f = 1MHz$; V_{NO} , V_{NC} = $1V_{P-P}$; $R_L = 50\Omega$, $C_L = 5pF$, Figure 5	+25°C		-80		dB
	V	$f = 10MHz$; V_{NO} , $V_{NC} = 1V_{P-P}$; $R_L = 50\Omega$, $C_L = 5pF$, Figure 5			-80		
Crosstalk (Note 8)	V _{CT}	$f = 1MHz$; V_{NO} , V_{NC} = $1V_{P-P}$; $R_L = 50\Omega$, $C_L = 5pF$, Figure 5	+25°C		-110		dB
On-Channel -3dB Bandwidth	BW	Signal = 0dBm, R_L = 50Ω , C_L = $5pF$, Figure 5	+25°C		>300		MHz
Total Harmonic Distortion	THD	V _{COM} _ = 2V _{P-P} , R _L = 600Ω	+25°C		0.03		%
NO_, NC_ Off-Capacitance	C _{NO_(OFF)}	f = 1MHz, Figure 6	+25°C		9		pF
	, C _{NC_(OFF)}						

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V+ = +2.7V \text{ to } +3.6V, V_{IH} = +1.4V, V_{IL} = +0.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at V+ = +3.0V, $T_A = +25^{\circ}C$, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Switch On-Capacitance	C _(ON)	f = 1MHz, Figure 6	+25°C		15		pF
DIGITAL I/O							
Input Logic High Voltage	V _{IH}		T _{MIN} to	1.4			V
Input Logic Low Voltage	V _{IL}		T _{MIN} to T _{MAX}			0.5	V
Input Leakage Current	I _{IN}	V+ = +3.6V, V _{IN} _ = 0 or 5.5V	T _{MIN} to	-100		+100	nA
POWER SUPPLY							
Power-Supply Range	V+		T _{MIN} to	1.8		5.5	V
Supply Current	l+	V+ = +5.5V, V _{IN} _ = 0V or V+	T _{MIN} to			1	μA

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V+ = +4.2V \text{ to } +5.5V, V_{IH} = +2.0V, V_{IL} = +0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at V+ = +5.0V, $T_A = +25^{\circ}C$, unless otherwise noted.) (Notes 2, 3)

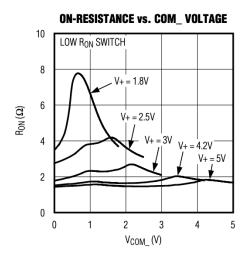
PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS	
Chiplon Signal Range	V _{COM_} , V _{NO_} , V _{NC_}		T _{MIN} to	0		V+	V	
Chiplon SWITCH (Low RON—CLM	4717 SPDT 1)							
On Desistance (Nate 4)	Rou	\(\(\) = 4.0\(\) \(\) = \(\) = 4.0\(\) \(\) \(\)	+25°C		1.7	3	Ω	
On-Resistance (Note 4)	TON	R _{ON} V+ = 4.2V, I _{COM} _ = 10mA; V _{NO} _ or V _{NC} _ = 3.5V	T _{MIN} to			3.5	52	
On Desistance Match Detuces	ΔRON	10 A 01/1 A 01/1	+25°C		0.1	0.3	Ω	
On-Resistance Match Between Channels (Notes 4, 5)	ΔΙΛΟΙΝ	V+ = 4.2V, I _{COM} _ = 10mA; V _{NO} _ or V _{NC} _ = 3.5V	T _{MIN} to			0.4		
On Decistance Flatness	RELATION)	\(\(\) = 4.2\(\) \(\) = 40 \(\) \(\)	+25°C		0.4	1.2	Ω	
On-Resistance Flatness (Note 6)	R _{FLAT} (ON)	V+ = 4.2V, I _{COM} _ = 10mA; V _{NO} _ or V _{NC} _ = 1.0V, 2.0V, 3.5V	T _{MIN} to			1.5	52	
NO NO OF Lastras Comment	lue (OFF)	\(\(\begin{array}{cccccccccccccccccccccccccccccccccccc	+25°C	-0.5	+0.01	+0.5	4	
NO_, NC_ Off-Leakage Current (Note 7)	INO_(OFF), INC_(OFF)	V+ = 5.5V; V _{COM} = 1.0V, 4.5V; V _{NO} or V _{NC} = 1.0V, 4.5V	T _{MIN} to	-1		+1	nA	
COM_On-Leakage Current (Note 7)	loou (c::)	$V+ = 5.5V; V_{COM} = 1.0V, 4.5V;$ V_{NO} or $V_{NC} = 1.0V, 4.5V,$ or floating	+25°C	-1	+0.01	+1		
	COM_(ON)		T _{MIN} to	-2		+2	nA	

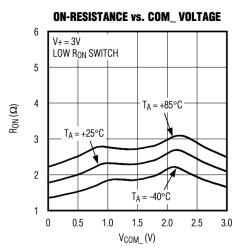
ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

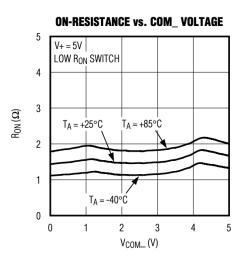
(V+ = +4.2V to +5.5V, V_{IH} = +2.0V, V_{IL} = +0.8V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at V+ = +5.0V, T_A = +25°C, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Chiplon SWITCH (High RON—CLM47	717 SPDT 2)		'				'
0. 5. 11. 41.1.0	Pa	V: 40VI 40 A V	+25°C		12	20	
On-Resistance (Note 4)	R _{ON}	$V+ = 4.2V$, $I_{COM} = 10mA$; V_{NO} or $V_{NC} = 3.5V$	T _{MIN} to			25	Ω
On Desirtance Matak Datum	ΔRON	V(40)(1 40 - 40 - 4 - 1)	+25°C		0.15	0.4	Ω
On-Resistance Match Between Channels (Notes 4, 5)	ΔIΛΟΝ	$V+ = 4.2V$, $I_{COM} = 10mA$; V_{NO} or $V_{NC} = 3.5V$	T _{MIN} to			0.5	52
On Desistance Flatness	RELATION)	VI = 4.0V I = = 40 m A . V	+25°C		0.4	1.2	Ω
On-Resistance Flatness (Note 6)	R _{FLAT(ON)}	V+ = 4.2V, I _{COM} _ = 10mA; V _{NO} _ or V _{NC} _ = 1.0V, 2.0V, 4.5V	T _{MIN} to			1.5	52
NO NC Off Lookage Current	luo (OFF)	\\\ = 5 5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+25°C	-0.5	+0.01	+0.5	
NO_, NC_ Off-Leakage Current (Note 7)	I _{NO_(OFF)} , I _{NC_(OFF)}	V+ = 5.5V; V _{COM} _ = 1.0V, 4.5V; V _{NO} _ or V _{NC} _ = 1.0V, 4.5V	T _{MIN} to	-1		+1	— nA
OOM Oo Leekees Owner	1	$V+ = 5.5V, V_{COM} = 1.0V, 4.5V; V_{NO} \text{ or } V_{NC} = 1.0V, 4.5V, \text{ or } floating$	+25°C	-1	+0.01	+1	^
COM_On-Leakage Current (Note 7)	I _{COM_(ON)}		T _{MIN} to	-2		+2	- nA
DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	V _{NO} _, V _{NC} _ = 3.0V; R _L = 300Ω, C _L = 35pF, Figure 1	+25°C		30	80	ns
Turn-Oil Time	-ON		T _{MIN} to			100	113
Turn-Off Time	t _{OFF}	Vara Vara = 2.0V:	+25°C		20	40	no
Turr-Oil Time	*OFF	V_{NO} , V_{NC} = 3.0V; R_L = 300 Ω , C_L = 35pF, Figure 1	T _{MIN} to			50	- ns
Break-Before-Make Time Delay (Note	t _{BBM}	Vara Vara = 2.0V/	+25°C		8		no
7)	PDIVI	V_{NO} , V_{NC} = 3.0V; R_L = 300 Ω , C_L = 35pF, Figure 2	T _{MIN} to	1			- ns
Skew (Note 7)	t _{SKEW}	$R_S = 39\Omega$, $C_L = 50$ pF, Figure 3	T _{MIN} to		0.15	2	ns
DIGITAL I/O			-				
Input Logic High Voltage	V _{IH}		T _{MIN} to	2.0			V
Input Logic Low Voltage	V _{IL}		T _{MIN} to			0.8	V
Input Leakage Current	I _{IN}	V+ = 5.5V, V _{IN} _ = 0V or V+	T _{MIN} to	-100		+100	nA

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

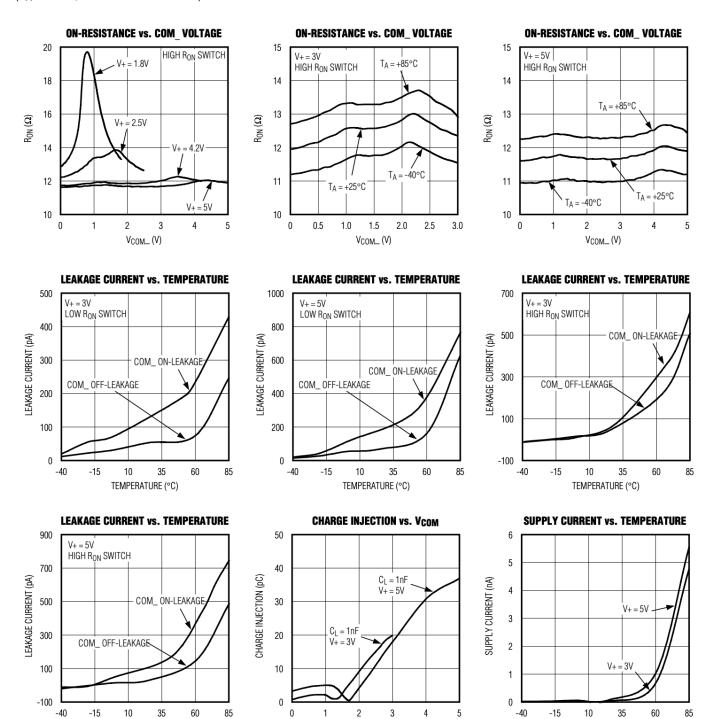

 $(V+ = +4.2V \text{ to } +5.5V, V_{IH} = +2.0V, V_{IL} = +0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V+ = +5.0V, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ (Notes 2, 3)


PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
POWER SUPPLY							
Power-Supply Range	V+		T _{MIN} to T _{MAX}	1.8		5.5	V
Supply Current	l+	V+ = 5.5V, V _{IN} _ = 0V or V+	T _{MIN} to			1	μА


- Note 2: UCSP and TDFN parts are 100% tested at +25°C only, and guaranteed by design over the specified temperature range. μMAX parts are 100% tested at T_{MAX} and guaranteed by design over the specified temperature range.
- **Note 3:** The algebraic convention used in this data sheet is where the most negative value is a minimum and the most positive value is a Chiplon.
- Note 4: Guaranteed by design for UCSP and TDFN parts.
- Note 5: $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 6:** Flatness is defined as the difference between the Chiplon and minimum value of on-resistance as measured over the specified Chiplon signal ranges.
- Note 7: Guaranteed by design.
- Note 8: Between any two switches.

Typical Operating Characteristics

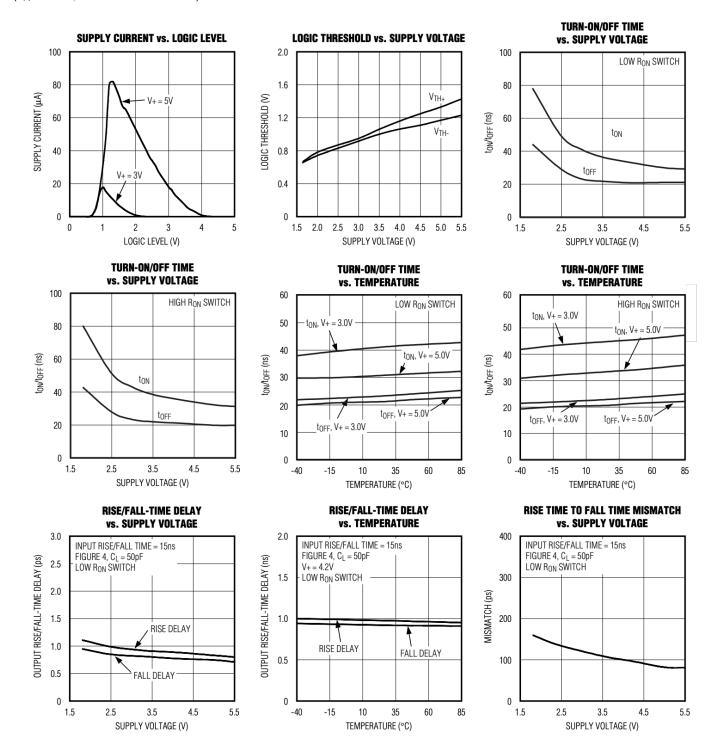
(T_A = +25°C, unless otherwise noted.)



Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

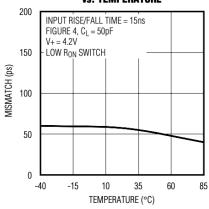
V_{COM}_ (V)

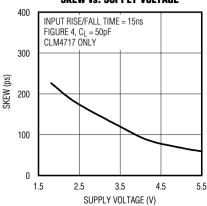

TEMPERATURE (°C)

TEMPERATURE (°C)

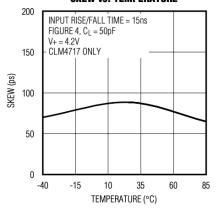
Typical Operating Characteristics (continued)

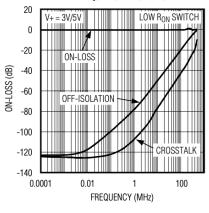
 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

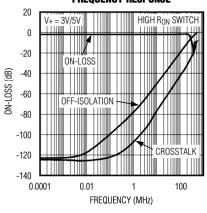


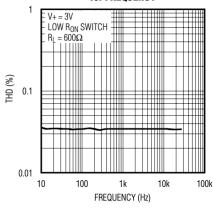

Typical Operating Characteristics (continued)

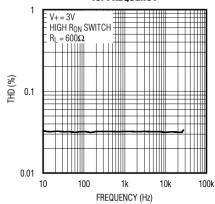
 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$




SKEW vs. SUPPLY VOLTAGE


SKEW vs. TEMPERATURE


FREQUENCY RESPONSE


FREQUENCY RESPONSE

TOTAL HARMONIC DISTORTION vs. FREQUENCY

TOTAL HARMONIC DISTORTION vs. FREQUENCY

Pin Description

Р	PIN		PIN		
UCSP	μMAX/ TDFN	NAME	FUNCTION		
A1	7	NC2	Chiplon Switch 2—Normally Closed Terminal		
A2	8	IN2	Chiplon Switch 2—Digital Control Input		
A3	9	COM2	Chiplon Switch 2—Common Terminal		
A4	10	NO2	Chiplon Switch 2—Normally Open Terminal		
B1	6	GND	Ground. Connection.		
B4	1	V+	Positive-Supply Voltage		
C1	5	NC1	Chiplon Switch 1—Normally Closed Terminal		
C2	4	IN1	Chiplon Switch 1—Digital Control Input		
C3	3	COM1	Chiplon Switch 1—Common Terminal		
C4	2	NO1	Chiplon Switch 1—Normally Open Terminal		
_	_	EP	Exposed Pad (for TDFN package only). Connect to ground.		

Detailed Description

The CLM4717 high-speed, low-voltage, low on- resistance (RON), dual SPDT Chiplon switches operate from a single +1.8V to +5.5V supply. The switches feature break-before-make switching operation and fast switch- ing speeds (toN = 80ns (max), toFF = 40ns (max)).

These switches have low 15pF on-channel capacitance, which allows for 12Mbps switching of the data signals for USB 1.0/1.1 applications. The CLM4717 is designed to switch D+ and D- USB signals with a guar- anteed skew of less than 2ns (see Figure 4) as mea- sured from 50% of the input signal to 50% of the output signal.

Applications Information

Digital Control Inputs

The CLM4717 logic inputs accept up to +5.5V regardless of supply voltage. For example, with a +3.3V supply, IN_ can be driven low to GND and high to +5.5V allowing for mixing of logic levels in a system. Driving the control logic inputs rail-to-rail minimizes power consumption. For a +3V supply voltage, the logic thresholds are 0.5V (low) and 1.4V (high); for a +5V supply voltage, the logic thresholds are 0.8V (low) and 2.0V (high).

Chiplon Signal Levels

The on-resistance of the CLM4717 changes very little for Chiplon input signals across the entire supply voltage range (see the *Typical Operating Characteristics*). The switches are bidirectional, so the NO_, NC_, and COM_ pins can be either inputs or outputs.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute Chiplon rat- ings because stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying Chiplon signals, especially if the Chiplon signal is not current-limited.

UCSP Application Information

For the latest application details on UCSP construction, dimensions, tape carrier information, printed circuit board techniques, bump-pad layout, and recommend- ed reflow temperature profile as well as the latest infor- mation on reliability testing results, go to the Maxim web site at www.maxim-ic.com/ucsp to find the Application Note: USCP—A Wafer-Level Chip-Scale Package.

Chip Information

TRANSISTOR COUNT: 235

PROCESS: BICMOS

Test Circuits/Timing Diagrams

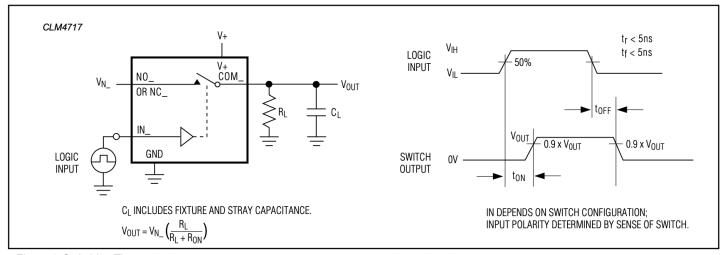


Figure 1. Switching Time

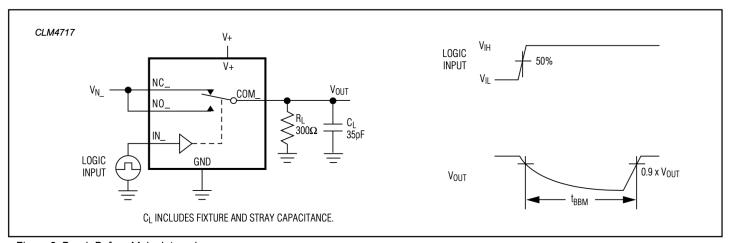


Figure 2. Break-Before-Make Interval

Test Circuits/Timing Diagrams (continued)

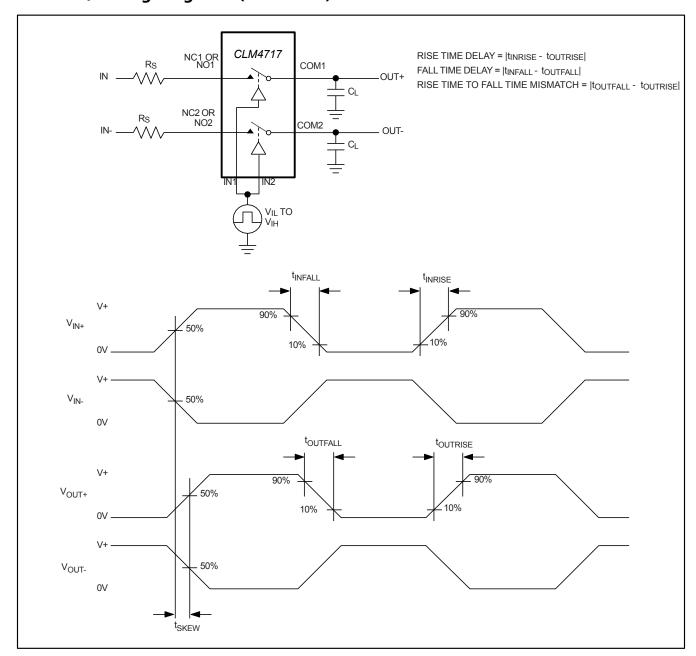


Figure 3. Output Signal Skew

Test Circuits/Timing Diagrams (continued)

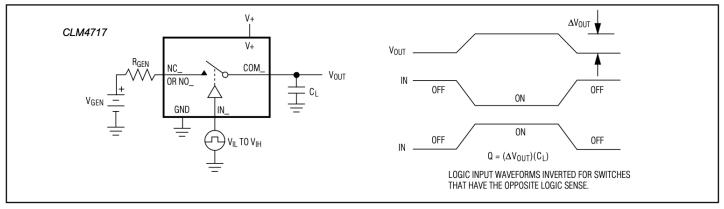


Figure 4. Charge Injection

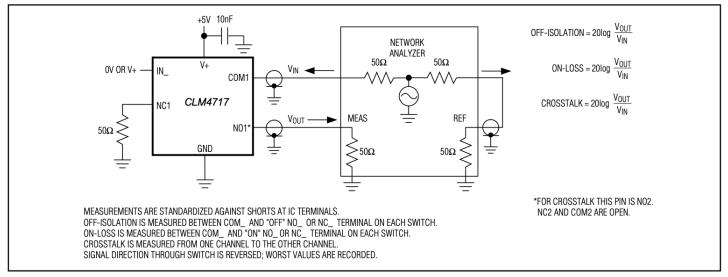


Figure 5. On-Loss, Off-Isolation, and Crosstalk

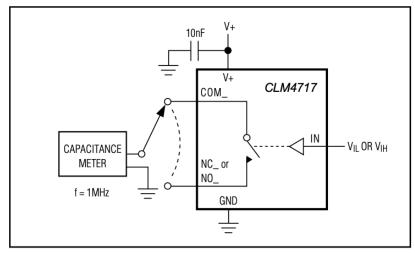
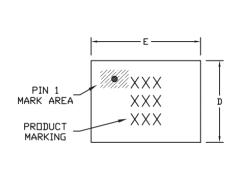
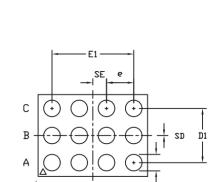



Figure 6. Channel Off/On-Capacitance

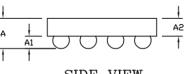


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.chiplon.com.)

TOP VIEW

BOTTOM VIEW

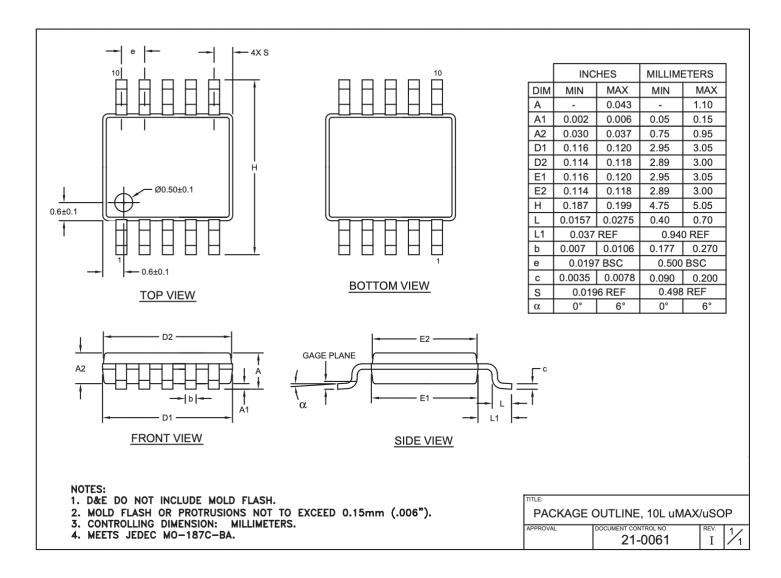

PIN A1 INDICATOR

I	COMMON DIMENSIONS					
Α	0.62+0.05-0.08					
A1	0.29±0.02					
A2	0.33 REF.					
b	Ø0.35±0.03					
D1	1.00 BASIC					
E1	1.50 BASIC					
е	0.50 BASIC					
SD	0.00 BASIC					
SE	0.25 BASIC					

PKG.			DEPOPULATED
CODE	D	E	SOLDER BALLS
B12-1	1.54±0.05	2.02±0.05	NDNE
B12-2	1.54±0.05	2.02±0.05	B3
B12-3	1.54±0.05	2.12±0.05	NONE
B12-4	1.54±0.05	2.02±0.05	B2, B3
B12-5	1.64±0.05	2.12±0.05	B2
B12-6	1.64±0.05	2.12±0.05	B3
B12-7	1.54±0.05	2.02±0.05	B1, B3
B12-8	1.54±0.05	2.02±0.05	B2
B12-9	1.54±0.05	2.12±0.05	B2, B3
B12-10	1.54±0.05	2.02±0.05	B1, B2, B3, B4
B12-11	1.54±0.05	2.02±0.05	A2, C3

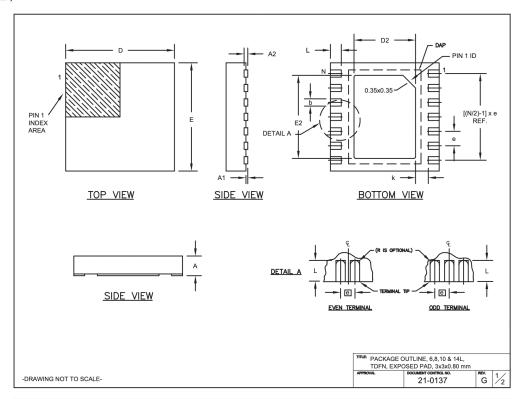
NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
 2. PRODUCT MARKING: NUMBER OF CHARACTERS AND LINES VARY PER PRODUCT.


SIDE VIEW

TITLE						
PACKAGE OUTLINE, 4x3 UCSP						
APPROVAL .	DOCUMENT CONTROL NO.	REV.	1 /			
	21-0104	F	1/1			

Package Information (continued)


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.chiplon.com**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.chiplon.com.)

COMMON DIMENSIONS				
SYMBOL	MIN.	MAX.		
Α	0.70	0.80		
D	2.90	3.10		
E	2.90	3.10		
A1	0.00	0.05		
L	0.20	0.40		
k	0.25 MIN.			
A2	0.20 REF.			

PACKAGE VARIATIONS								
PKG. CODE	N	D2	E2	е	JEDEC SPEC	b	[(N/2)-1] x e	DOWNBONDS ALLOWED
T633-1	6	1.50±0.10	2.30±0.10	0.95 BSC	MO229 / WEEA	0.40±0.05	1.90 REF	NO
T633-2	6	1.50±0.10	2.30±0.10	0.95 BSC	MO229 / WEEA	0.40±0.05	1.90 REF	NO
T833-1	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF	NO
T833-2	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF	NO
T833-3	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF	YES
T1033-1	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229 / WEED-3	0.25±0.05	2.00 REF	NO
T1433-1	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF	YES
T1433-2	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF	NO

- NOTES:

 1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
 2. COPLANARITY SHALL NOT EXCEED 0.08 mm.
 3. WARPAGE SHALL NOT EXCEED 0.10 mm.
 4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
 5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 & T1433-2.
 6. "N" IS THE TOTAL NUMBER OF LEADS.
 7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.

-DRAWING NOT TO SCALE-

PACKAGE C			
APPROVAL	21-0137	G REV.	2/2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by CHIPLON manufacturer:

Other Similar products are found below:

FSA3051TMX NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB DG403DY 099044FB MAX4762ETB+ NLAS3799BMNR2G

NLAS5123MNR2G ISL84684IR PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE

DG333ALDW-T1-E3 ISL43113IB ISL43140IB ISL43140IBZ-T ISL43143IR ISL43L120IR ISL43L121IR ISL43L122IR ISL43L220IR

ISL43L410IR ISL43L420IR ISL43L710IR ISL43L711IR ISL43L712IR ISL84053IA ISL84514IB ISL84516IB ISL84684IUZ-T

LNLASB3157DFT2G NLAS324US NLASTV4599DFT2G TPW4053-SR WAS4642Q-24/TR ADG842YKSZ-REEL7 WAS4766C-9/TR

WAS7227Q-10/TR WAS4646C-36/TR WAS4735Q-16/TR BL1532TQFN RS2233YS16 CH483M TMUX1248DCKR TMUX7236RUMR

ADG836YRMZ-REEL