

Application Note V13 July 2016

ISOLATED DC-DC Converter EC2SA SERIES APPLICATION NOTE

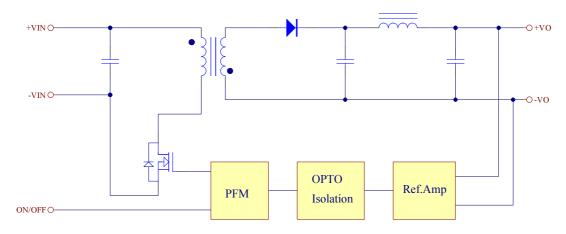
Approved By:

Department	Approved By	Checked By	Reported By
Research and Development Department	Enoch	Danny	Joyce
Quality Assurance Department	Jack	Benny	

Application Note V13 July 2016

<u>Content</u>

1. INTRODUCTION	3
2. DC-DC CONVERTER FEATURES	3
3. ELECTRICAL BLOCK DIAGRAM	3
4. TECHNICAL SPECIFICATIONS	4
5. MAIN FEATURES AND FUNCTIONS	7
5.1 Operating Temperature Range	7
5.2 Over Current Protection	7
5.3 Remote On/Off	7
6. APPLICATIONS	7
6.1 Recommended Layout PCB Footprints and Soldering Information	7
6.2 Power De-Rating Curves for EC2SA Series	8
6.3 Efficiency vs. Load Curves	9
6.4 Input Capacitance at the Power Module	14
6.5 Test Set-Up	14
6.6 Output Ripple and Noise Measurement	14
6.7 Output Capacitance	14
7. SAFETY & EMC	15
7.1 Input Fusing and Safety Considerations.	15
7.2 EMC Considerations	15
8. PART NUMBER	18
9. MECHANICAL OUTLINE DIAGRAMS	18
9.1 Mechanical Outline Diagrams	18
9.2 Packaging Details	19


Application Note V13 July 2016

1. Introduction

The EC2SA series offer 2 watts of output power in a $0.86 \times 0.36 \times 0.44$ inches SIL-8 plastic packages. The EC2SA series has a 2:1 wide input voltage range of 4.5-9, 9-18, 18-36 and 36-75VDC and provides a precisely regulated output. This series has features such as high efficiency, 1500VDC of isolation and allows an ambient operating temperature range of -40° C to 85° C without de-rating. The features include short circuit protection and remote on/off control. All models are very suitable for distributed power architectures, telecommunications, battery operated equipment and industrial applications.

2. DC-DC Converter Features

- * 2W Isolated Output
- * Compact SIP-8 Package
- * Efficiency to 84%
- * 2:1 Input Range
- * Regulated Outputs
- * Remote On/Off Control
- * 1500VDC Isolation
- * Continuous Short Circuit Protection

3. Electrical Block Diagram

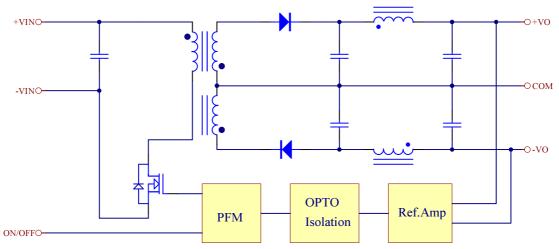


Figure2 Electrical Block Diagram of dual output module

Application Note V13 July 2016

4. Technical Specifications

(All specifications are typical at nominal input, full load at 25° C unless otherwise noted.)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input Voltage		-				
		5Vin	0		9	
Continuous		12Vin	0		18	Vdc
Continuous		24Vin	0		36	vuo
		48Vin	0		75	
		5Vin			15	
Transient	100ms	12Vin			25	Vdc
		24Vin			50	
		48Vin	10		100	20
Operating Ambient Temperature		All	-40		+85	°C
Case Temperature		All			100	°C
Storage Temperature		All	-55		+125	°C
Input/Output Isolation Voltage	1 minute	All	1500			Vdc
INPUT CHARACTERISTICS	S					
		5Vin	4.5	5	9	
		12Vin	9	12	18	Vala
Operating Input Voltage		24Vin	18	24	36	Vdc
		48Vin	36	48	75	
Input Under-Voltage Protection O	nly For Suffix "N" Model					
				1		
		5Vin	3.3		4.2	
Turn-On Voltage Threshold		12Vin	6.8		7.3	V_{dc}
6		24Vin	13		15.5	üü
		48Vin	26		31	
		5Vin	3		3.9	V _{dc}
Turn-Off Voltage Threshold		12Vin 24Vin	5.8 12		6.3 14.5	
		48Vin	24		29	
		5Vin	24	0.3	23	
		12Vin		0.5		
Lockout Hysteresis Voltage		24Vin		1		V _{dc}
		48Vin		2		
	100% Load, Vin=4.5V	5Vin		580		
	100% Load, Vin=9V	12Vin		280		
Maximum Input Current	100% Load, Vin=18V	24Vin		140		mA
	100% Load, Vin=36V	48Vin		70		
	,	5Vin		60		
		12Vin		30		
No-Load Input Current	Vin=Nominal input	24Vin		18		mA
		48Vin		9		
Off Converter Input Current	Shutdown input idle current	All			1	mA
Inrush Current (I ² t)		All			0.01	A ² s
Input Reflected-Ripple Current	P-P thru 12uH inductor, 5Hz to 20MHz	All		30	0.01	mA
OUTPUT CHARACTERIST	L	7.11				
		Vo=3.3V	3.250	3.3	3.349	
		V0=3.3V Vo=5.0V		5.0	5.075	
		V0=5.0V Vo=12V		5.0 12	5.075 12.18	
Output Valtage Set Deint	Vin nominal lotto Tat 25°C	V0=12V Vo=15V		12	15.23	
Output Voltage Set Point	Vin nominal, Io=Io _{max} , Tc=25℃	Vo=15V Vo=±5V		±5.0	±5.08	Vdc
		Vo=±12V		±3.0 ±12	±12.18	
		Vo=±15V	±14.//	±15	±15.23	

Application Note V13 July 2016

Output Voltage Balance	Vin=nominal, Io=Io _{max} , Tc=25℃	Dual			±1.0	%
Output Voltage Regulation		Duai			±1.0	70
	Io=Full Load to 10% Load	Single			±0.5	%
Load Regulation	lo=Full Load to 10% Load	Dual			±0.5 ±1.0	%
Line Regulation	Vin=High line to Low line Full Load	All			±0.5	%
Cross Regulation	Asymmetrical Load 25%/100%	Dual			±5	%
Temperature Coefficient	Ta=-40℃ to 85℃	All			±0.03	%/°C
Output Voltage Ripple and Noise		7.01			10.00	707 ()
Peak-to-Peak	Full Load, 20MHz bandwidth	All			75	mV
		Vo=3.3V	0		500	
		V0=5.0V	0 0		400	
		Vo=12V	0		167	
Operating Output Current Range		Vo=15V	0		134	mA
operating output outront range		Vo=±5V	õ		±200	
		Vo=±12V	0		±83	
		Vo=±15V	0		±67	
Output DC Current-Limit Inception	Output Voltage =90% Vo _{nominal}		120			%
· · ·		Vo=3.3V	0		500	
		Vo=5.0V	0		400	
		Vo=12V	0		167	
Maximum Output Capacitance	Full load, Resistance	Vo=15V	0		134	uF
		Vo=±5V	0		200	
		Vo=±12V	0		83	
		Vo=±15V	0		67	
DYNAMIC CHARACTERIST	CS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Output Voltage Current Transient				•		
Step Change in Output Current	75% to 100% lo_max , di/dt=0.1A/us	All			±6	%
Setting Time (within 1% Vo _{nominal})	di/dt=0.1A/us	All			500	us
Turn-On Delay and Rise Time						•
Turn-On Delay Time, From Input Vin _{min} to 10% Vo _{nominal}				1		ms
Turn-On Delay Time, From On/of		All		1		ms
Output Voltage Rise Time	10% to 90%Vo _{nominal}	All		2.5		ms

Output Voltage Rise Time EFFICIENCY

		05S33	73	
		05S05	76	
		05S12	80	
100% Load	Vin=Nominal Vin, Io=Io _{max} , Tc=25℃	05S15	80	%
		05D05	77	
		05D12	79	
		05D15	80	
		12S33	76	
		12S05	79	
		12S12	82	
		12S15	83	
		12D05	79	
		12D12	82	
		12D15	83	
		24S33	76	
		24S05	79	
		24S12	82	
		24S15	83	
		24D05	79	
		24D12	81	
		24D15	84	

					1	
		48S33		74		
		48S05		79		
		48S12		82		
		48S15		84		
		48D05		78		
		48D12		82		
		48D15		84		
ISOLATION CHARACTER	RISTICS					
Isolation Voltage	Input to Output 1 minute	All			1500	Vdc
Isolation Resistance	Input to Output	All			1000	MΩ
Isolation Capacitance	Input to Output	All		500		pF
FEATURE CHARACTERIS	STICS					
Switching Frequency		All	100			KHz
On/Off Control						
Madula On	Onen high impedance or (1.2)/	A 11	0		1.2 or	V
Module On	Open ,high impedance or <1.2V	All	0		Open Circuit	v
Module Off	Voltage of V _{on/off} pin	All	5.5		15	V
On/Off Control Only For Suffix "					-	1
,					0.8 or	
Module On	Open ,high impedance or <0.8V	All	0		Open	V
					Circuit	
Module Off	Voltage of V _{on/off} pin	All	4		15	V
Off Converter Input Current	Shutdown input idle current	All			1	mΑ
GENERAL SPECIFICATIO	DNS					
MIDE	lo=100%of lo _{max,} Ta=25℃	%of Io _{max} Ta=25°C		М		
MTBF	per MIL-HDBK-217F	All		2.5		hours
Weight		All		4.8		g

Application Note V13 July 2016

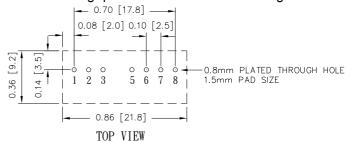
5. Main Features and Functions

5.1 Operating Temperature Range

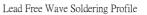
The EC2SA series converters can be operated by a wide ambient temperature range from -40 $^\circ C$ to 85 $^\circ C$ without de-rating. The standard model has a plastic case and case temperature can not over 100 $^\circ C$ at normal operating.

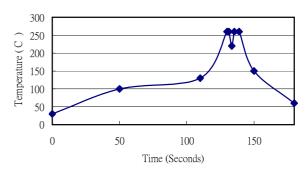
5.2 Over Current Protection

All different voltage models have full continuous short-circuit protection. To provide protection in a fault condition, the unit is equipped with internal over-current protection. The unit operates normally once the fault condition is removed. At the point of current-limit inception, the converter will go into over current protection.


5.3 Remote On/Off

The remote on/off input feature of the converter allows external circuitry to turn the converter on or off. Active-high remote on/off is available as standard. The converter is turned on if the remote on/off pin is high impedance or open circuit. Suffix "N" to the Model Number with the remote ON/OFF pin at 4 to 15Vdc will turn the converter off, other models at 5.5 to 15Vdc. The signal level of the on/off pin is defined with respect to ground. If not using the on/off pin, leave the pin open (module will be on).


6. Applications


6.1 Recommended Layout PCB Footprints and Soldering Information

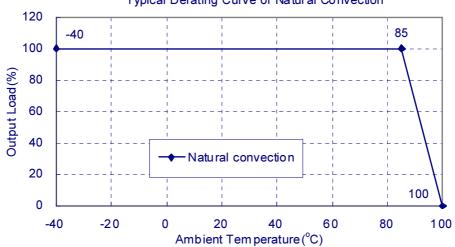
The system designer or the end user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown as Figure 3.

Note: Dimensions are in inches (millimeters)

Note :

- 1. Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheat: 1.4 °C/Sec (From 50°C to 100°C)
- 3. Soaking temperature: 0.5 $^\circ \mathbb{C}$ /Sec (From 100 $^\circ \mathbb{C}$ to 130 $^\circ \mathbb{C}$), 60±20 seconds
- 4. Peak temperature: 260°C, above 250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0 $^\circ \!\! \mathbb{C}$ /Sec (From 260 $^\circ \!\! \mathbb{C}$ to 150 $^\circ \!\! \mathbb{C}$)

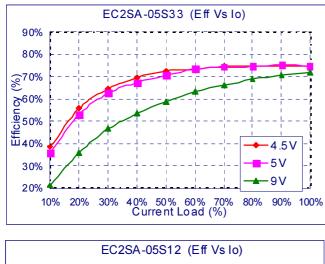
Figure3 Recommended PCB Layout Footprints and Wave Soldering Profiles for SIL packages

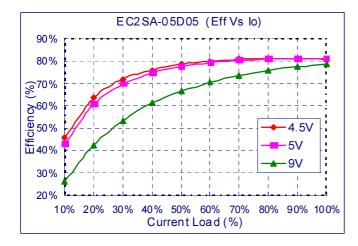


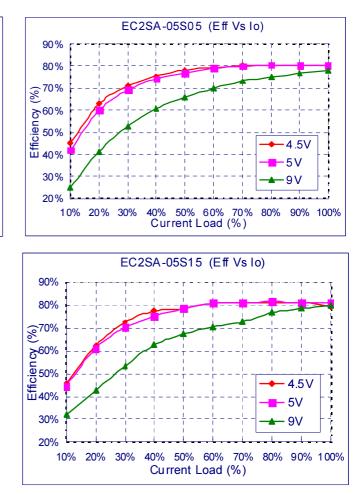
Application Note V13 July 2016

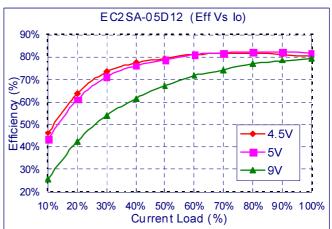
6.2 Power De-Rating Curves for EC2SA Series

Operating Ambient temperature Range: -40 $^\circ\!\mathrm{C}$ ~ 85 $^\circ\!\mathrm{C}$ without de-rating.

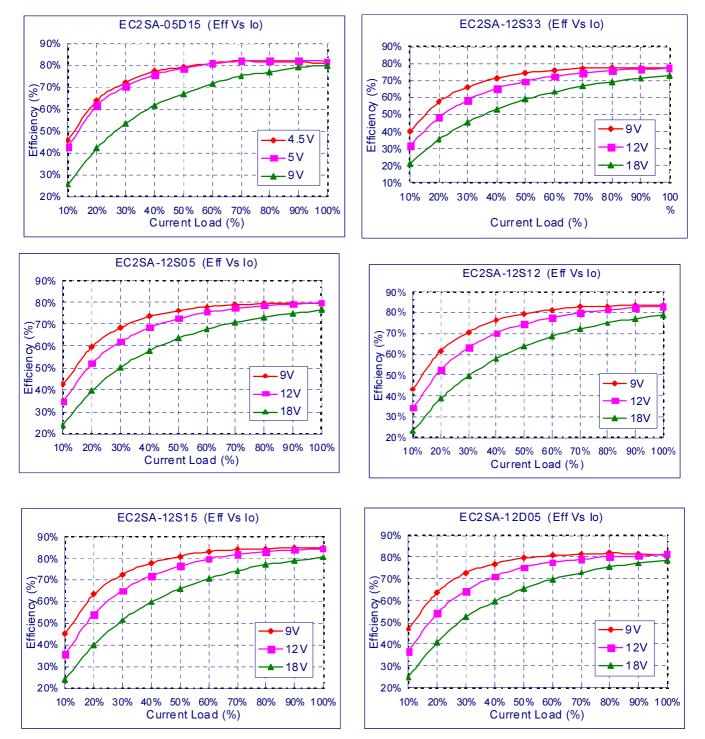

Maximum case temperature under any operating condition should not exceed 100°C.


Typical Derating Curve of Natural Convection




Application Note V13 July 2016

EC2SA-05S12 (Eff Vs Io) 90% 80% 570% 560% 550% 550% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Current Load (%)



6.3 Efficiency vs. Load Curves

Application Note V13 July 2016

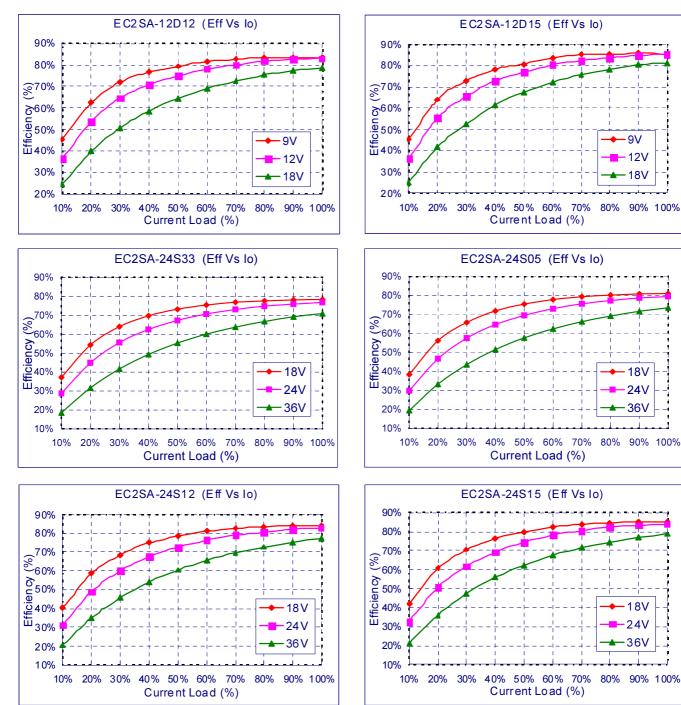
-9V

12V

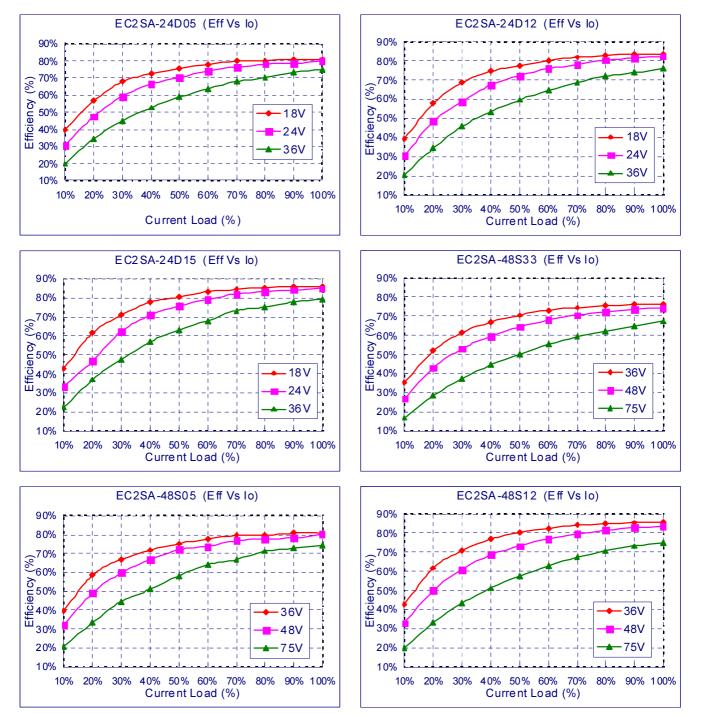
18V

18V

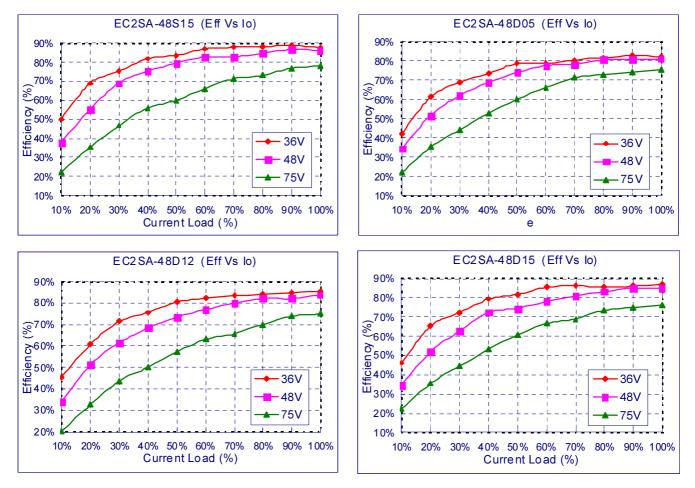
24V

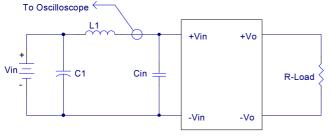

36V

18V


24V

36V


90% 100%



Application Note V13 July 2016

6.4 Input Capacitance at the Power Module The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. Low ESR capacitors are good choice. Circuit as shown in Figure4 represents typical measurement methods for reflected ripple current. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated source Inductance (L1).

L1: 12uH C1: None Cin: 33uF ESR<0.7ohm @100KHz Figure4 Input Reflected-Ripple Test Setup

6.5 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure5. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the • Efficiency

• Load regulation and line regulation.

The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{Vin \times Iin} \times 100\%$$

Where

Vo is output voltage, lo is output current, Vin is input voltage, lin is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

Where

 V_{FL} is the output voltage at full load V_{NL} is the output voltage at 10% load

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

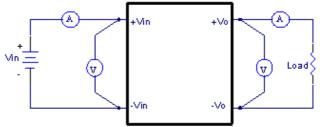
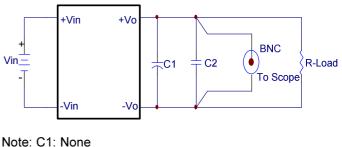



Figure5 EC2SA Series Test Setup

6.6 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure6. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/noise specifications are from D.C. to 20MHz Band Width.

C2: None Figure6 Output Voltage Ripple and Noise Measurement Set-Up

6.7 Output Capacitance

The EC2SA series converters provide unconditional stability with or without external capacitors. For good transient response low ESR output capacitors should be located close to the point of load. These series converters are designed to work with load capacitance to see technical specifications.

Application Note V13 July 2016

7. Safety & EMC

7.1 Input Fusing and Safety Considerations.

The EC2SA series converters have not an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a time delay fuse 1A for 5Vin models, 500mA for 12Vin models and 250mA for 24Vin and 48Vin modules. Figure7 circuit is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

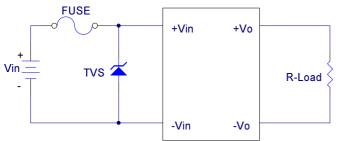


Figure7 Input Protection

7.2 EMC Considerations

EMI Test standard: EN55022 Class A and Class B Conducted Emission Test Condition: Input Voltage: Nominal, Output Load: Full Load

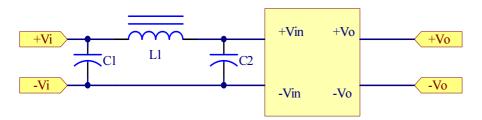
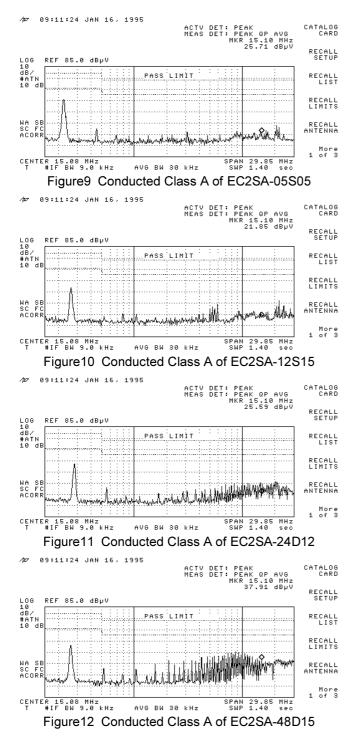
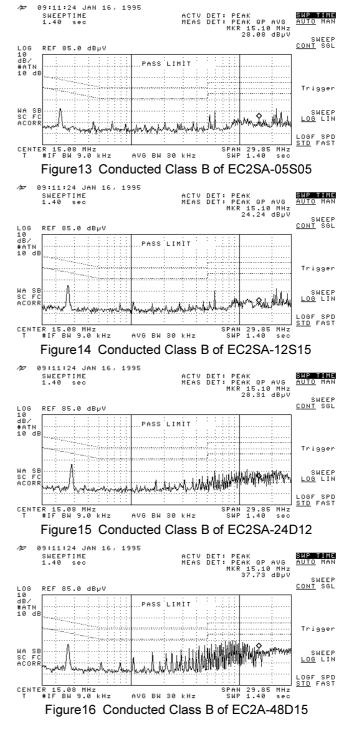


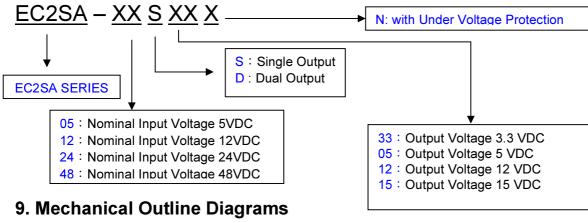
Figure8 Connection circuit for conducted EMI testing

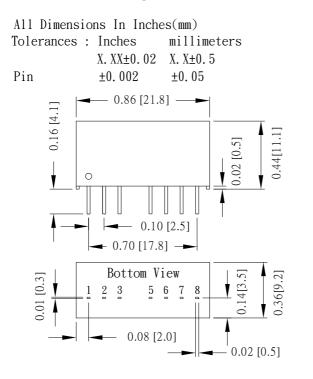



Application Note V13 July 2016

	EN55022 class A		EN55022 class B			
Model No.	C1	C2	L1	C1	C2	L1
EC2SA-05S33	10uF/16V 1206	NC	2.2uH	10uF/25V 1210	NC	10uH
EC2SA-05S05	10uF/16V 1206	NC	2.2uH	10uF/25V 1210	NC	10uH
EC2SA-05S12	10uF/16V 1206	NC	2.2uH	10uF/25V 1210	NC	10uH
EC2SA-05S15	10uF/16V 1206	NC	2.2uH	10uF/25V 1210	NC	10uH
EC2SA-05D05	10uF/16V 1206	NC	2.2uH	10uF/25V 1210	NC	10uH
EC2SA-05D12	10uF/16V 1206	NC	2.2uH	10uF/25V 1210	NC	10uH
EC2SA-05D15	10uF/16V 1206	NC	2.2uH	10uF/25V 1210	NC	10uH
EC2SA-12S33	2.2uF/25V 1206	NC	12uH	2.2uF/25V 1210	NC	33uH
EC2SA-12S05	2.2uF/25V 1206	NC	12uH	2.2uF/25V 1210	NC	33uH
EC2SA-12S12	2.2uF/25V 1206	NC	12uH	2.2uF/25V 1210	NC	33uH
EC2SA-12S15	2.2uF/25V 1206	NC	12uH	2.2uF/25V 1210	NC	33uH
EC2SA-12D05	2.2uF/25V 1206	NC	12uH	2.2uF/25V 1210	NC	33uH
EC2SA-12D12	2.2uF/25V 1206	NC	12uH	2.2uF/25V 1210	NC	33uH
EC2SA-12D15	2.2uF/25V 1206	NC	12uH	2.2uF/25V 1210	NC	33uH
EC2SA-24S33	4.7uF/50V 1812	NC	12uH	6.8uF/50V 1812	NC	33uH
EC2SA-24S05	4.7uF/50V 1812	NC	12uH	6.8uF/50V 1812	NC	33uH
EC2SA-24S12	4.7uF/50V 1812	NC	12uH	6.8uF/50V 1812	NC	33uH
EC2SA-24S15	4.7uF/50V 1812	NC	12uH	6.8uF/50V 1812	NC	33uH
EC2SA-24D05	4.7uF/50V 1812	NC	12uH	6.8uF/50V 1812	NC	33uH
EC2SA-24D12	4.7uF/50V 1812	NC	12uH	6.8uF/50V 1812	NC	33uH
EC2SA-24D15	4.7uF/50V 1812	NC	12uH	6.8uF/50V 1812	NC	33uH
EC2SA-48S33	1uF/100V 1812	NC	68uH	2.2uF/100V 1812	NC	150uH
EC2SA-48S05	1uF/100V 1812	NC	68uH	2.2uF/100V 1812	NC	150uH
EC2SA-48S12	1uF/100V 1812	NC	68uH	2.2uF/100V 1812	NC	150uH
EC2SA-48S15	1uF/100V 1812	NC	68uH	2.2uF/100V 1812	NC	150uH
EC2SA-48D05	1uF/100V 1812	NC	68uH	2.2uF/100V 1812	NC	150uH
EC2SA-48D12	1uF/100V 1812	NC	68uH	2.2uF/100V 1812	NC	150uH
EC2SA-48D15	1uF/100V 1812	NC	68uH	2.2uF/100V 1812	NC	150uH

Note: All of capacitors are ceramic capacitors.





Application Note V13 July 2016

8. Part Number

9.1 Mechanical Outline Diagrams

PIN CONNECTION					
Pin	Single	Dual			
1	-Vin	-Vin			
2	+Vin	+Vin			
3	CTRL	CTRL			
5	NC	NC			
6	+Vo	+Vo			
7	-Vo	Common			
8	NC	-Vo			

Application Note V13 July 2016

9.2 Packaging Details

The EC2SA series SIL version are supplied in tube(11x20x330mm). Modules are shipped in quantities of 14 modules per Tube. Details of tube dimensions are shown below.

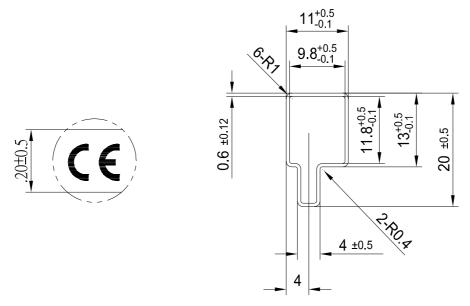


Figure17 SIL Packages Tube for EC2SA

Headquarter Office:

14F, No.306, Sec.4, Hsin Yi Rd., Taipei, Taiwan Tel: 886-2-27086210 Fax: 886-2-27029852 E-mail: <u>sales@cincon.com.tw</u> Web Site: http://www.cincon.com

CINCON ELECTRONICS CO., LTD. Factory: Cinco

No. 8-1, Fu Kong Rd., Fu Hsing Industrial Park Fu Hsing Hsiang, ChangHua Hsien, Taiwan Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon American Office:

1655 Mesa Verde Ave, Ste 180, Ventura, CA 93003 Tel: 805-639-3350 Fax: 805-639-4101 E-mail: info@cincon.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters category:

Click to view products by Cincon manufacturer:

Other Similar products are found below :

ESM6D044440C05AAQ FMD15.24G PSL486-7LR Q48T30020-NBB0 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 GQ2541-7R RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS-2415 XKS-1215 06322 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033-PGB0 XKS-2415 XKS-2412 XKS-1212 XKS-1205 XKS-0515 XKS-0505 XGS-2405 XGS-1215 XGS-0515 PS9Z-6RM4 73-551-5038I AK1601-9RT VI-N61-CM VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH VI-M5F-CQ VI-LN2-EW VI-PJW01-CZY