

CDB42L55

Evaluation Board for CS42L55

Features

- Line-level Analog Inputs
 - 4 RCA Input Jacks
- ♦ Line-Level & HP Analog Output
 - Stereo Headphone Out Jack
 - RCA Audio Jacks for Headphone and Line Outputs
- ♦ S/PDIF Interface
 - CS8416 Digital Audio Receiver
 - CS8406 Digital Audio Transmitter
- I/O Stake Headers and SMA Connectors
 - External I²C[™] Control Port Accessibility
 - External DSP Serial Audio I/O Accessibility
 - Direct DSP Serial Audio I/O accessibility with CS42L55 through SMA connectors
- Multiple Power Supply options via USB, Battery or External Power Supplies
- 1.65 V to 3.3 V Logic Interface
- ◆ FlexGUI S/W Control Windows[®] Compatible
 - Pre-defined & User-configurable Scripts

Description

The CDB42L55 is the ideal evaluation platform solution to test and evaluate the CS42L55.The CS42L55 is a highly integrated, 24-bit, ultra-low-power stereo CODEC based on multi-bit Delta-Sigma modulation suitable for low-power portable system applications. Use of the board requires an analog or digital signal source, an analyzer, and power supplies. A Windows PC-compatible computer is also needed in order to configure the CS42L55 and the board.

System timing can be provided by the CS8416 S/PDIF Receiver, by the CS42L55 supplied with a master clock, or via an I/O stake header with a DSP connected.

RCA connectors are provided for CS42L55 analog inputs and HP/Line outputs. A 1/8 inch audio jack is provided for headphone stereo out. Digital I/O connections are available via RCA phono or optical connectors to the CS8416 and CS8406 (S/PDIF Rx and Tx).

The CDB42L55 is programmed via the PC's USB using Cirrus Logic's Microsoft[®] Windows[®]-based FlexGUI software. The evaluation board may also be configured to accept external timing and data signals for operation in a user application during system development.

Ordering Information

CDB42L55

Evaluation Board

Copyright © Cirrus Logic, Inc. 2008 (All Rights Reserved)

TABLE OF CONTENTS

1. QUICK START GUIDE	4
2. SYSTEM OVERVIEW	5
2.1 Control Port and Board Configuration	5
2.2 Power	5
2.3 Digital Input	5
2.3.1 CS8416 S/PDIF Digital Audio Receiver	5
2.3.2 CS8421 Sample Rate Converter (Tx SRC to CS42L55)	6
2.4 Digital Output	6
2.4.1 CS8406 S/PDIF Digital Audio Transmitter	6
2.4.2 CS8421 Sample Rate Converter (Rx SRC from CS42L55)	6
2.5 FPGA	6
2.6 Oscillator	7
2.7 CS42L55 Audio CODEC	7
3. CONFIGURATION OPTIONS	8
3.1 S/PDIF or PSIA In to Analog Out	8
3.2 Analog In to S/PDIF or PSIA Out	9
4. SOFTWARE MODE CONTROL	10
4.1 Board Configuration Tab	11
4.2 CODEC Configuration Tab	12
4.3 Analog Input Volume Tab	13
4.4 DSP Engine Tab	14
4.5 Analog Output Volume Tab	15
4.6 Register Maps Tab	16
5. SYSTEM CONNECTIONS AND JUMPERS	17
6. PERFORMANCE PLOTS	19
7. CDB42L55 BLOCK DIAGRAM	24
8. CDB42L55 SCHEMATICS	25
9. CDB42L55 LAYOUT	30
10. REVISION HISTORY	35

LIST OF FIGURES

Figure 1.Quick Start Board Layout	4
Figure 2.S/PDIF or PSIA In to Analog Out	8
Figure 3.Analog In to S/PDIF or PSIA Out	9
Figure 4.Board Configuration Tab	11
Figure 5.CODEC Configuration Tab	
Figure 6.ADC Input Channel Volume Tab	
Figure 7.DSP Engine Tab	
Figure 8.Analog Output Volume Tab	
Figure 9.Register Maps Tab - CS42L55	
Figure 10.THD+N vs Freq Analog In to Digital Out	
Figure 11.THD+N vs Amplitude - Analog In to Digital Out	
Figure 12.FFT - Analog In to Digital Out @ -1 dBFS	
Figure 13.FFT - Analog In to Digital Out @ -60 dBFS	
Figure 14.FFT - Analog In to Digital Out - no input	
Figure 15.FFT Crosstalk - Analog In to Digital Out @ -1 dBFS	
Figure 16.Freq. Response - Analog In to Digital Out	
Figure 17.Fade-to-Noise Linearity - Analog In to Digital Out	
Figure 18.THD+N vs Freq Digital In to HP Out	
Figure 19.THD+N vs Amplitude - Digital In to HP Out	
Figure 20.THD+N vs Volume - Digital In to HP Out	
Figure 21.FFT - Digital In to HP Out @ 0 dBFS	21
Figure 22.FFT - Digital In to HP Out @ -60 dBFS	
Figure 23.FFT - Digital In to HP Out - no input	
Figure 24.Freq. Response - Digital In to HP Out	
Figure 25.Fade-to-Noise Linearity- Digital In to HP Out	
Figure 26.FFT Crosstalk - Digital In to HP Out @ 0 dBFS	
Figure 27.THD+N vs Freq Digital In to Line Out	
Figure 28.THD+N vs Amplitude - Digital In to Line Out	
Figure 29.THD+N vs Volume - Digital In to Line Out	
Figure 30.FFT - Digital In to Line Out @ 0 dBFS	
Figure 31.FFT - Digital In to Line Out @ -60 dBFS	
Figure 32.FFT - Digital In to Line Out - no input	
Figure 33.FFT Crosstalk - Digital In to Line Out @ 0 dBFS	
Figure 34.Freq. Response - Digital In to Line Out	
Figure 35.Fade-to-Noise Linearity- Digital In to Line Out	
Figure 36.Block Diagram	24
Figure 37.CS42L55 & Analog I/O (Schematic Sheet 1)	
Figure 38.S/PDIF & Digital Interface (Schematic Sheet 2)	
Figure 39.PLL, oscillator and external I/O connections (Schematic Sheet 3)	
Figure 40.Microcontroller and FPGA (Schematic Sheet 4)	
Figure 41.Power (Schematic Sheet 5)	
Figure 42.Silk Screen	30
Figure 43.Top-Side Layer	
Figure 44.GND (Layer 2)	
Figure 45.Power (Layer 3)	33
Figure 46.Bottom Side Layer	

LIST OF TABLES

Table 1. System Connections	17
Table 2. Jumper Settings	18

1 QUICK START GUIDE

The following figure is a simplified quick-start guide made for user convenience. The guide configures the board with a 1.8 V power supply to VLDO, VA and VCP and a 3.3 V power supply to VL. The user may choose from steps 7 through 10 depending on the desired measurement. Refer to Section 3 on page 8 for details on how the various components on the board interface with each other in different board configuration modes. Refer to Section 4 on page 10 for descriptions on control settings in the Cirrus FlexGUI software.

Figure 1. Quick Start Board Layout

2 SYSTEM OVERVIEW

The CDB42L55 evaluation platform provides analog and digital interfaces to the CS42L55 and allows for external DSP and I²C interconnects to the board. On-board peripherals are powered either from the USB connection or from an external +5 V supply. On-board voltage regulators provide power to the digital and analog cores of the CS42L55. The CDB42L55 is configured using Cirrus Logic's Windows-compatible FlexGUI software to read/write to device registers.

This section describes the various components on the CDB42L55 and how they are used with the CS42L55. Section 1 on page 4 is a simplified quick connect guide provided for user convenience and may be used to quickly configure the CS42L55. Section 3 on page 8 describes some of the configurations available for transmitting and receiving audio signals. Section 4 on page 10 provides software configuration details. Section 5 on page 17 provides a description of all stake headers and connectors, including the default factory settings of all jumpers. Section 6 on page 19 provides typical performance plots. The CDB42L55 schematic and layout set is shown in Figures 36 through 46.

2.1 Control Port and Board Configuration

The CDB42L55 evaluation board must be programmed using the Windows compatible software (Cirrus Logic FlexGUI) provided. This software allows the user to program the registers of all the programmable components on the board using an I²C interface.

The GUI interfaces with an on-board micro controller through either the USB or the serial port connector. For a detailed explanation on software controls, refer to Section 4 on page 10.

Alternatively, the I²C interface to the CS42L55 can be directly accessed through an I/O header (J109) to accept external timing and data signals in a user application during system development.

2.2 Power

Power is supplied to the evaluation board through either the +5.0 V test points or the VBUS supply from the USB. NOTE: The minimum current required for board operation is approximately 300 mA. It may therefore be necessary to connect the CDB42L55 directly to the USB port on the PC as opposed to a hub or keyboard port where the current might be limited.

Jumpers connect the CS42L55's supplies to a low dropout regulated voltage of +1.8 V, +2.5 V or +3.3 V for VL and +1.8 V or +2.5 V for VLDO, VA and VCP. A selection for a 1.8 V supply from a buck regulator is also available, providing a more efficient means of evaluating the CS42L55's performance when powered from batteries (3 AAA battery connectors are available on the bottom side of the CDB).

For current measurement purposes only, a 1 Ω ohm series resistor is connected to each supply. The current is easily calculated by measuring the voltage drop across this resistor. NOTE: The stake headers connected in parallel with these resistors must be shunted with the supplied jumper during normal operation.

WARNING: Please refer to the CS42L55 data sheet for allowable voltage levels.

2.3 Digital Input

2.3.1 CS8416 S/PDIF Digital Audio Receiver

The CS8416 S/PDIF receiver converts an incoming S/PDIF data input stream into PCM data for the CS42L55 (through the "Transmit" (Tx) Sample Rate Converter (SRC)).

A complete description of the CS8416 (Figure 38 on page 26) and a discussion of the digital audio interface can be found in the CS8416 data sheet.

Configuration of the CS8416 is made using controls in the "Board Configuration" tab of the Cirrus FlexGUI software. Section 3 "Configuration Options" on page 8 and Section 4 "Software Mode Control" on page 10 provide configuration examples and software details.

2.3.2 CS8421 Sample Rate Converter (Tx SRC to CS42L55)

The CS8421 Tx SRC receives PCM digital audio data from either the CS8416 S/PDIF receiver or the AP PSIA header and synchronizes this data with the CS42L55, regardless of the CS42L55's master and audio clocks.

A complete description of the CS8421 (Figure 38 on page 26) and a discussion of the digital audio interface can be found in the CS8421 data sheet.

Configuration and routing selections for the CS8421 are made using controls in the "Board Configuration" tab of the Cirrus FlexGUI software. Section 3 "Configuration Options" on page 8 and Section 4 "Software Mode Control" on page 10 provide configuration examples and software details.

2.4 Digital Output

2.4.1 CS8406 S/PDIF Digital Audio Transmitter

The CS8406 converts the PCM data generated from the CS42L55 (through the "Receive" (Rx) SRC) to the standard S/PDIF data stream.

A complete description of the CS8406 (Figure 38 on page 26) and a discussion of the digital audio interface can be found in the CS8406 data sheet.

Configuration of the CS8406 is made using controls in the "Board Configuration" tab of the Cirrus FlexGUI software. Section 3 "Configuration Options" on page 8 and Section 4 "Software Mode Control" on page 10 provide configuration examples and software details.

2.4.2 CS8421 Sample Rate Converter (Rx SRC from CS42L55)

The CS8421 Rx SRC receives PCM digital audio data from the CS42L55 and synchronizes this data with either the CS8406 S/PDIF transmitter or the AP PSIA headers, regardless of the CS42L55's master and audio clocks.

A complete description of the CS8421 (Figure 38 on page 26) and a discussion of the digital audio interface can be found in the CS8421 data sheet.

Configuration and routing selections for the CS8421 are made using controls in the "Board Configuration" tab of the Cirrus FlexGUI software.Section 3 "Configuration Options" on page 8 and Section 4 "Software Mode Control" on page 10 provide configuration examples and software details.

2.5 FPGA

The FPGA controls the digital signal routing between the CS42L55, CS8406, CS8416, CS8421 (Tx SRC and Rx SRC), PLL and the I/O stake header.

Configuration and routing selections for the FPGA are made using controls in the "Board Configuration" tab of the Cirrus FlexGUI software. Section 4 on page 10 provides software configuration details.

2.6 Oscillator

The socketed on-board oscillator can be selected as the system master clock source by using the selections on the "Board Configuration" tab of the Cirrus FlexGUI. 'Software Mode Control" on page 10 provides configuration details.

The oscillator is mounted in pin sockets, allowing easy removal or replacement. The device footprint on the board will accommodate full- or half-can-sized oscillators.

2.7 CS42L55 Audio CODEC

A complete description of the CS42L55(U1) can be found in the CS42L55 product data sheet.

The CS42L55 is configured using the Cirrus FlexGUI. The device configuration registers are accessible via the "Register Maps" tab of the Cirrus FlexGUI software. This tab provides low-level control of each bit. For easier configuration, additional tabs provide high-level control. Software Mode Control" on page 10 provides configuration details.

3 CONFIGURATION OPTIONS

This section highlights two common configurations for the CDB42L55. It provides a basic understanding of how the various components on the board work together.

3.1 S/PDIF or PSIA In to Analog Out

The CS42L55 analog back-end performance can be tested by selecting the "SPDIF In to Analog Out --Analog In to S/PDIF Out" or "PSIA In to Analog Out -- Analog In to PSIA Out" quick setup file provided with the software package. Note: The Control Port Compensation script for the associated VA supply must also be selected. The script configures the digital clock and data signal routing on the board as shown in Figure 2. The quick setup scripts provided in the software assume that a 24.000 MHz on-board oscillator is populated in Y1.

A S/PDIF input must be provided as the S/PDIF Tx (CS8406) uses the RMCK signal from the S/PDIF Rx (CS8416) for synchronization in this configuration.

Figure 2. S/PDIF or PSIA In to Analog Out

3.2 Analog In to S/PDIF or PSIA Out

The CS42L55 analog front-end performance can be tested by selecting the "SPDIF In to Analog Out --Analog In to S/PDIF Out" or "PSIA In to Analog Out -- Analog In to PSIA Out" quick setup file provided with the software package. Note: The Control Port Compensation script for the associated VA supply must also be selected. The script configures the digital clock and data signal routing on the board as shown in Figure 3. The quick setup scripts provided in the software assume that a 24.000 MHz on-board oscillator is populated in Y1.

A S/PDIF input must be provided as the S/PDIF Tx (CS8406) uses the RMCK signal from the S/PDIF Rx (CS8416) for synchronization in this configuration.

Figure 3. Analog In to S/PDIF or PSIA Out

4 SOFTWARE MODE CONTROL

The CDB42L55 may be used with the Microsoft Windows[®]-based FlexGUI graphical user interface, allowing software control of the CS42L55, FPGA, CS8421, CS8416 and CS8406 registers. The latest control software may be downloaded from www.cirrus.com/msasoftware. Step-by-step instructions for setting up the FlexGUI are provided as follows:

- 1. Download and install the FlexGUI software as instructed on the Website.
- 2. Connect the CDB to the host PC using a USB cable.
- 3. Launch the Cirrus FlexGUI. Once the GUI is launched successfully, all registers are set to their default reset state.
- 4. Refresh the GUI by clicking on the "Update" button. The default state of all registers are now visible.

For standard set-up:

- 5. Set up the signal routing in the "Board Configuration" tab as desired.
- 6. Set up the CS42L55 in the "CODEC..." tabs as desired.
- 7. Begin evaluating the CS42L55.

For quick set-up, the CDB42L55 may, alternatively, be configured by loading a predefined sample script file:

Cirr	Cirrus FlexGUI System DEMO MODE							
<u>F</u> ile	Options <u>H</u> elp							
Si	ave Board Registers	,						
R	estore Board Registers 0	nfiguration CC						
E:	×it							
	- Quick-Setups							

- 8. On the File menu, click "Restore Board Registers..."
- 9. Browse to Boards\CDB42L55\Scripts\.
- 10. Choose any one of the provided scripts to begin evaluation.

To create personal scripts files:

- 11. On the File menu, click "Save Board Registers..."
- 12. Enter any name that sufficiently describes the created setup.
- 13. Choose the desired location and save the script.
- 14. To load this script, follow the instructions from step 8 above.

4.1 Board Configuration Tab

The "Board Configuration" tab provides high-level control of signal routing on the CDB42L55. The controls in this tab are used to setup the CS8416, CS8406, TxSRC, RxSRC and the FPGA Routing and are divided into separate sections or control groups for each of these individual components. A description of each control group is outlined below. The software loads a predefined configuration when the selection is made from the Quick-Setups section

FPGA Routing - Includes controls to setup the FPGA for using the S/PDIF or the PSIA test interface and for setting up clock and signal routing for CS42L55 master/slave mode.

CS8416 S/PDIF Receiver Control - Register controls for setting up the CS8416.

CS8406 S/PDIF Transmitter Control - Register controls for setting up the CS8406.

CS8421 SRC Control - Register controls for the receive and transmit SRC's. To configure, select the desired SRC from the first drop down box and click update.

Update - Reads all registers in all devices and reflects the current values in the GUI.

Reset - Resets all devices to default configuration.

Quick-Setups	CS8416 S/PDIF Receiver Control (to Tx SRC In)
Make Selection	Master/Slave Select: Slave Mode
	Interface Format: Left Justified 24-bit
	RMCK Frequency: 256 x Fs
FPGA Routing	Lock Status: Locked
Test Interface: From PLL Osc.(Y1)->Derive SCLK and LRCK(Fs): PSIA IRCK (Fs): LRCK (Fs): 48.0000 kHz	CS8406 S/PDIF Transmitter Control (to Rx SRC Out)
	Master/Slave Select: Slave Mode
Setup CS42L53 Routing for:	Interface Format: Left Justified 24-bit
MCLK to CODEC divide: +2 Slave Mode - Use PLL Clocks	OMCK Frequency: 256 x Fs
	CS8421 SRC Control
	SRC: Rx Tx/Rx SRC change.
	SRC In/SRC Out: INVALID
Bypass FPGA - Use SMA Connectors	Input Format: INVALID
MLLK: SLLK, LHLK: SMA Slave	Output Format: Left-Justified 32-bit
· · · · · · · · · · · · · · · · · · ·	

Figure 4. Board Configuration Tab

4.2 CODEC Configuration Tab

The "CODEC Configuration" tab provides high-level control of the CS42L55 register settings. Status text detailing the CODEC's specific configuration appears directly below the associated control. This text will change depending on the setting of the associated control. A description of each control group is outlined below. See the CS42L55 data sheet for complete register descriptions.

Power Control - Register controls for powering down each device within the CODEC.

ADC Configuration - Controls for the input MUXs, PGA MUX's, and high-pass filter settings.

Serial Port Configuration - Controls for all settings related to the serial I/O data and clocks on the board.

Update - Reads all registers in the CS42L55 and reflects the current values in the GUI.

Reset - Resets the CS42L55.

Options Help						
ard Configuration CODE	C Configuration	ODEC Analog Input Volume COD	EC DSP Engine CODEC A	nalog Output Volume R	egister Maps	
□I.D. CS42L55 Rev. A0	Power Control Power Down Disable Mast	CODEC 🔽 Power Down A er Clock 🔽 Power Down A DSP Engine	DC A Headphone Ch. A Always DN DC B Headphone Ch. I Always DN	A is Line Ch. A is Always OFF B is Line Ch. B is Always OFF	The HP switch	DETECT pin 29, is HI
All register changes ta ADC Input Configura ADC A Input MUX: PGA HPF Finable DC Offset Fr Measuring DC	Ake effect immediate PGA MUX: AIN1 1.8 Hz eeze subtracting	ADC B Input MUX: PGA HPF F Enable DC Offset Freeze Measuring DCsubtra	PGA MUX: AIN1 I.8 Hz acting	v/Swap ADC Output Char ett-(A) Right-(B) Digital Mix C routed to ADC serial po	nnels: 	
Serial Port Configura Clock Status: Valid Quick-Setup (Input 	NCLK, Fs): tion	SCLK Re-timed (min-speed) Invert SCLK Serial Port Master LRCK and SCLK are inputs	Speed (Allowed Sam Single (4 kHz - 50 kJ Internal MCLK/LRCK 125 Fs = 8 kHz, 16 kJ F Master Clock +2	ple Rates): Hz) V Ratio: V Hz or 32 kHz	 Softly ramp all digital vor, Change all analog voluzero crossing Update 	olume ime on every Reset

Figure 5. CODEC Configuration Tab

4.3 Analog Input Volume Tab

The "Analog Input Volume" tab provides high-level control of all volume settings in the ADC of the CS42L55. Status text detailing the CODEC's specific configuration is shown inside the control group of the affected control. This text will change depending on the setting of the associated control. A description of each control group is outlined below (a description of each register is included in the CS42L55 data sheet):

Digital Volume Control - Digital volume controls and adjustments (ADC output).

ALC Configuration - Configuration settings for the Automatic Level Control (ALC).

Analog Volume Control - Analog volume controls and adjustments (PGA and MIC amps).

Noise Gate Configuration - All configuration settings for the noise gate.

Update - Reads all registers in the CS42L55 and reflects the current values in the GUI.

Reset - Resets the CS42L55.

Cirrus FlexGUI System DEMO MODE				
<u>File Options H</u> elp				
Board Configuration CODEC Configuration Anal	og Input Volume DSP Engine Analog Channel B	Output Volume Register Maps Ch. A Status: No Clipping	ALC Configuration (Digital and Analo	g) ALC B Min 0 dB
		No Clipping	ALC B No Soft-Ramp No Soft-Ramp No Zero-Cross Attack Rate: (Slow) Release Rate: (Slow)	Fast)
- Apalog Volume Control	Noi	e Gate Configuration		
Channel A PGA Gain 0.0 dB 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	Gang channel B to A	 Here connected on the second connected c	enuation nd MIC gain nels hreshold Update	Reset

Figure 6. ADC Input Channel Volume Tab

4.4 DSP Engine Tab

The "DSP Engine" tab provides high-level control functions to modify the SDIN (PCM) data volume level, the ADC output/SDIN mix volume level, Tone Control and Beep Generator. Status text detailing the CO-DEC's specific configuration is shown inside the control group of the affected control. This text will change depending on the setting of the associated control. A description of each control group is outlined below (a description of each register is included in the CS42L55 data sheet):

Digital Volume Control - Configures the volume/gain of the ADC mix or the PCM data from the serial data input (SDIN) in the DSP.

Tone Control - Sets the corner frequencies and the volume/gain of the treble and bass shelving filters in the DSP engine.

Beep Generator - Controls for setting the various beep parameters.

Update - Reads all registers in the CS42L55 and reflects the current values in the GUI.

Reset - Resets the CS42L55.

Cirrus FlexGUI System DEMO MODE	
<u>Eile Options H</u> elp	
Board Configuration CODEC Configuration Analog Input Volume DSP Engine Analog C	Dutput Volume Register Maps
Digital Volume Control PCM A Mix 0.0 dB 1 1 1 1 1 1 1 1 1 1 1 1 1	Mix Status DSP Status Ch. A: Ch. B: No Clipping No Clipping Gang all playback channels B to A 44.1 kHz De-Emphasis
Tone Control Bass 12.0 dB <	1 1 Update Reset

Figure 7. DSP Engine Tab

4.5 Analog Output Volume Tab

The "Analog Output Volume" tab provides high-level control of the CS42L55 Class H output amplifier, HP/Line output volume levels, charge pump frequency and overall master volume level. This tab also provides control functions for the DAC channel limiter. Status text detailing the CODEC's specific configuration is shown in read-only edit boxes. This text will change depending on the setting of the associated control. A description of each control group is outlined below (register descriptions are in the CS42L55 data sheet).

Class H Controls - Controls for defining the digital and analog advisory volume, charge pump frequency and adaptive power supply mode for the Class H amplifier.

Headphone/Line Amplifiers - Controls for configuring mutes and for setting the volume of the signal out of the headphone/line amplifier. Also allows one to configure the HP/Line mux to choose if the input signal to the HP/Line amplifiers comes from the DAC or the PGA.

Limiter - Configuration settings for the peak detect and limiter in the codec

Master Volume Control - Sets the volume of the signal out of the DSP.

Cirrus FlexGUI System DEMO MODE	
Eile Options Help	
Cirrus FlexGUI System DEMO MODE Ele Options Help Board Configuration CODEC Configuration Analog Input Volume DSP Engine Analog Output Volume Regi Class H Controls Adaptive Power Supply: Adaptive Power Supply: Adaptive Power Supply: Adaptive Power Supply: Digital Input Analog Input On dB Imput Charge Pump Frequency: Imput Imput Frequency: Imput HP A HP B Input Input DAC Imput Imput Imput Imput DAC Imput Imput Imput Imput Imput Imput Imput Imput Imput Imput Imput Imput	ister Maps Limiter Limit A and B Individually No Soft-Ramp Attack Rate: (Slow) Release Rate: (Slow) (Fast) Max (Fast) Cushion 0 dB 0 dB 1 0 dB 1 0 dB 1 1 1 (Slow) (Fast) Max (Fast) Cushion 1 1 (Slow) (Fast) Cushion 1 1 (Slow) (Fast) Cushion (Cushion (Cush
	Update Reset

Figure 8. Analog Output Volume Tab

4.6 Register Maps Tab

The Register Maps tabs provide low-level control of the CS42L55, CS8416, CS8406, CS8421, FPGA and GPIO register settings. Register values can be modified bit-wise or byte-wise. "Left-clicking" on a particular register accesses that register and shows its contents at the bottom. The user can change the register contents by using the push-buttons, by selecting a particular bit and typing in the new bit value or by selecting the register in the map and typing in a new hex value.

1- 1	<u>H</u> elp	1							1			Decis	tor Mane	.1			
d Cont	iguration	1 CODE	C Config	uration	Analog	Input Vo	lume D	SP Engin	ie Anali	og Outpu	ut Volume	3 Regis	ter maps				
CS42	155 lr	FPGA	6584	16 - 9	PDIE I	av l rs	8406 ·	- sipni		GPIO	1 058	421 - S	BC				
			02	02			0400	07			0.00	421 0		00	05		
00	00	01	02	00	04	00	00	07	01	09	00	00	00	00	00	00	
10	00	00	00	00	00	00	00	00	19	00	00	00	00	00	00	00	
20	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
30	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
40	00	00	00	00	00	00											
Reg	g: 00 A reg07		regD6		reg05		reg0	14	reg	03	re	;g02		reg01	00	T	
Reg Grid L 00	g: 00 A reg07 Read/W	Access	ster 0	0 Read	reg05 Only Re	gister	reg0	14	reg	03]re nm Mode I²⊂	;g02 Select;	 	reg01 Reset I	00 t All Device	reg00 Update Register Update Device	
Reg Grid L	g: 00 A reg07 egend — Read/W	Access	ster 0	0 Read	reg05 Only Re	gister	reg0)4] defined I	reg Register	03	∫re mm Mode I²⊂	sg02 Select;		reg01 Reset I Released	00 t All Jevice I Reset	▼ reg00 Update Register Update Device	

Figure 9. Register Maps Tab - CS42L55

5 SYSTEM CONNECTIONS AND JUMPERS

CONNECTOR	REF	INPUT/OUTPUT	SIGNAL PRESENT
EXT. +5V	TP9	Input	+5V power supply
GND	TP10	Input	GND reference
Ext. Input	TP6	Input	+4.5V external power supply for U4 buck regulator
GND	TP7	Input	GND reference
AAA	BT1	Input	Socket for +1.5 V AAA batteries
	BT2	Input	
	BT3	Input	
RS232	J95	Input/Output	RS232 serial port connection to PC
USB I/O	J94	Input/Output	USB connection to PC for I ² C control port signals
SPDIF Optical IN	OPT3	Input	CS8416 digital audio input via optical cable
SPDIF Optical OUT	OPT2	Output	CS8406 digital audio output via optical cable
SPDIF COAX IN	J61	Input	CS8416 digital audio input via coaxial cable
SPDIF COAX OUT	J68	Output	CS8406 digital audio input via coaxial cable
MICRO RESET	S4	Input	Reset for microcontroller (U84)
CS42L55 RESET	S1	Input	Reset for CS42L55 (U1)
FPGA Program	S2	Input	Reload Xilinx program into the FPGA from Flash (U14)
FPGA JTAG	J75	Input/Output	I/O for programming the FPGA (U5)
MICRO JTAG	J110	Input/Output	I/O for programming the microcontroller (U84)
AP PSIA Transmitter	J78	Input	Digital Outputs to CS42L55 (typically derived from an Audio Precision Pro- grammable Serial Interface Adapter)
AP PSIA Receiver	J40	Output	Digital I/O from CS42L55 (typically derived from an Audio Precision Pro- grammable Serial Interface Adapter)
MCLK	J77	Input/Output	Buffered Digital I/O Interface to CS42L55
SCLK	J42	Input/Output	
	J45	Input/Output	
DAC.SDIN	J40 J47	Input	
AIN1B		Input	RCA connectors for analog inputs to CS42L55
AIN1A	J6	Input	
AIN2B	J14	Input	
AIN2A	J10	Input	
HP Channel A	J38	Output	RCA connector for headphone analog output from CS42L55
HP Channel B	J37	Output	
Line Channel A	J15	Output	RCA connector for line analog output from CS42L55
Line Channel B	J17	Output	
HP Stereo Connection	J1	Output	Stereo jack for headphone stereo output from CS42L55
Oscillator	Y1	Input	Oscillator for providing master clock for system timing
I/O Header	J104	Input/Output	Unbuffered Digital I/O Interface to CS42L55
S/W CONTROL	J109	Intput/Output	I/O bus for external I ² C control port signals

Table 1. System Connections

JMP	LABEL	PURPOSE	POSITION	FUNCTION SELECTED
			*+1.8V	Voltage source is +1.8 V regulator.
104	2/1	Selects source of voltage for the	+2.5V	Voltage source is +2.5 V regulator.
J31	VL	VL supply	+3.3V	Voltage source is +3.3 V regulator.
			+1.8VB	Voltage source is +1.8V from battery.
			*+1.8V	Voltage source is +1.8 V regulator.
J36	VCP	Selects source of voltage for the VCP supply	+2.5V	Voltage source is +2.5 V regulator
			+1.8VB	Voltage source is +1.8V from battery.
			*+1.8V	Voltage source is +1.8 V regulator.
J25	VA	Selects source of voltage for the VA supply	+2.5V	Voltage source is +2.5 V regulator
		in cappiy	+1.8VB	Voltage source is +1.8V from battery.
			*+1.8V	Voltage source is +1.8 V regulator.
J28	VLDO	Selects source of voltage for the VLDO supply	+2.5V	Voltage source is +2.5 V regulator
			+1.8VB	Voltage source is +1.8V from battery.
J52	VLDO		*SHUNTED	1 Ω series resistor is shorted.
J74 J53 J48	VA VL VCP	Current Measurement	OPEN	1 Ω series resistor in power supply path.
J11	Shunt to RCA	Provides RCA reference to GND	*SHUNTED	AIN2B and AIN2A RCAs are given a ground reference.
J7	Shunt to RCA	Provides RCA reference to GND	*SHUNTED	AIN1B and AIN1A RCAs are given a ground reference.
		Selects how the HP. Detect nin on	1 - 2	HPDETECT is driven by FPGA/GUI.
J22	HP Detect	CS42L55is driven	*2 - 3	HPDETECT is driven by HP Jack line when a stereo connection is inserted in J1.
15	1.8\/ Buck Ipput	Selects power supply source for	1 - 2	1.8VB is derived from external input.
55		+1.8VB	*2 - 3	1.8VB is derived from AAA batteries.
112		Selects test load from HPOLITA	1 - 2	32 Ω load selected for HPOUTA.
512	TIFOUTA	Selects test load nonn nr OOTA	2 - 3	16 Ω load selected for HPOUTA.
14		Solocts tast load from HPOLITE	1 - 2	32 Ω load selected for HPOUTB.
54	TFOOTB	Selects test load nom ne OOTB	2 - 3	16 Ω load selected for HPOUTB.
12	HPOUTA	Connects or removes LPF for	1 - 2	No filtered output selected for HPOUTA.
52	HPOUTA(LPF)	HPOUTA	*2 - 3	RC filtered output selected for HPOUTA.
21	HPOUTB	Connects or removes LPF for	1 - 2	No filtered output selected for HPOUTB.
33	HPOUTB(LPF)	HPOUTB	*2 - 3	RC filtered output selected for HPOUTB.
J34	Board Power	Selects source of Board Power	1 - 2	Board powered from external +5V source con- nected to TP9/TP10.
			*2 - 3	Board powered from USB.

*Default factory settings

Table 2. Jumper Settings

6 PERFORMANCE PLOTS

Test conditions (unless otherwise specified): $T_A = 25^{\circ}C$; VA=VCP=VLDO=VL=1.8 V; input test signal is a full-scale 997 Hz sine wave; dB values relative to full-scale output; measurement bandwidth 20 Hz to 20 kHz (un-weighted); sample frequency = 48 kHz; +2 dB analog gain for Line Output path; -4 dB analog gain for Headphone Output path; headphone test load: $R_L = 16 \Omega$; no LPF option for Headphone Output path.

Figure 10. THD+N vs Freq. - Analog In to Digital Out

Figure 11. THD+N vs Amplitude - Analog In to Digital Out

Figure 12. FFT - Analog In to Digital Out @ -1 dBFS

500 1k 2k

Hz

Note: The total harmonic distortion + noise (THD+N) performance of the ADC in the CS42L55 is determined by the value of the capacitor on the FILT+ pin. Larger capacitor values yield significant improvement in THD+N at low frequencies. Fig. 10 shows the THD+N vs. frequency performance measured with a 2.2 μF capacitor.

Ap

5k

10k 20k

+0

-20

-40

-60

-80

-100

-120

-140^上 20

50 100 200

d

В

F

s

Figure 14. FFT - Analog In to Digital Out - no input

Figure 16. Freq. Response - Analog In to Digital Out

Figure 18. THD+N vs. Freq. - Digital In to HP Out

Figure 15. FFT Crosstalk - Analog In to Digital Out @ -1 dBFS

Figure 17. Fade-to-Noise Linearity - Analog In to Digital Out

Figure 19. THD+N vs. Amplitude - Digital In to HP Out

CDB42L55

Figure 20. THD+N vs. Volume - Digital In to HP Out

Figure 22. FFT - Digital In to HP Out @ -60 dBFS

Figure 24. Freq. Response - Digital In to HP Out

Figure 21. FFT - Digital In to HP Out @ 0 dBFS

Figure 23. FFT - Digital In to HP Out - no input

Figure 25. Fade-to-Noise Linearity- Digital In to HP Out

Figure 26. FFT Crosstalk - Digital In to HP Out @ 0 dBFS

Figure 28. THD+N vs. Amplitude - Digital In to Line Out

Figure 30. FFT - Digital In to Line Out @ 0 dBFS

Figure 27. THD+N vs. Freq. - Digital In to Line Out

Figure 29. THD+N vs. Volume - Digital In to Line Out

Figure 31. FFT - Digital In to Line Out @ -60 dBFS

Figure 32. FFT - Digital In to Line Out - no input

Figure 34. Freq. Response - Digital In to Line Out

Figure 33. FFT Crosstalk - Digital In to Line Out @ 0 dBFS

Figure 35. Fade-to-Noise Linearity- Digital In to Line Out

CDB42L55 BLOCK DIAGRAM 7

DS773DB1

Figure 36. Block Diagram

Figure 37. CS42L55 & Analog I/O (Schematic Sheet 1)

26

DS773DB1

Figure 38. S/PDIF & Digital Interface (Schematic Sheet 2)

Figure 39. PLL, oscillator and external I/O connections (Schematic Sheet 3)

Figure 40. Microcontroller and FPGA (Schematic Sheet 4)

28

Figure 41. Power (Schematic Sheet 5)

Figure 43. Top-Side Layer

Figure 44. GND (Layer 2)

Figure 45. Power (Layer 3)

Figure 46. Bottom Side Layer

10 REVISION HISTORY

Revision	Changes
DB1	Initial Release

Contacting Cirrus Logic Support

For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com.

IMPORTANT NOTICE

Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent to copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT-ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIR-RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER. IF THE CUSTOMER OR CUSTOM-ER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING AT-TORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.

I²C is a registered trademark of Philips Semiconductor.

Microsoft and Windows are registed trademarks of Microsoft Corporation.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio IC Development Tools category:

Click to view products by Cirrus manufacturer:

Other Similar products are found below :

PCM2903EVM-U EVAL-AD1871EBZ PGA4311EVM 1580/5171-DEMO LM4906MMBD LM4935RLEVAL LME49710NABD LME49740MABD LME49740NABD LME49860MABD LME49870MABD EV1740EC-00A EVAL-AD1939AZ EVAL-AD1940AZ EVAL-ADAU1401AEBZ EVAL-SSM2529Z EVAL-SSM2537Z SRC4382EVM-PDK ADZS-SHAUDIO-EZEXT STEVAL-CCA037V1 TLV320AIC3110EVM-U TLV320AIC36EVM-K TLV320DAC3120EVM-U TPA5052EVM TPA6136A2YFFEVM LM4562HABD LM4906LDBD LM4923LQBD LM4992SDBD LME49710MABD LME49713MABD LME49860NABD CDB47L90-M-1 STEVAL-CCA053V1 TPA2038D1YFFEVM STEVAL-CCA049V1 EVAL-AD1974AZ EVAL-SSM2518Z MAX9892EVKIT+ MAX98089EVKIT#TQFN MAX9724AEVKIT+ MAX4411EVKIT STEVAL-MKI139V1 MAX98502EVKIT# MAX98089EVKIT#WLP MAX98300EVKIT+WLP MAX9867EVKIT+ MAX9738EVKIT+ MAX98358EVSYS#WLP MAX9723DEVKIT+