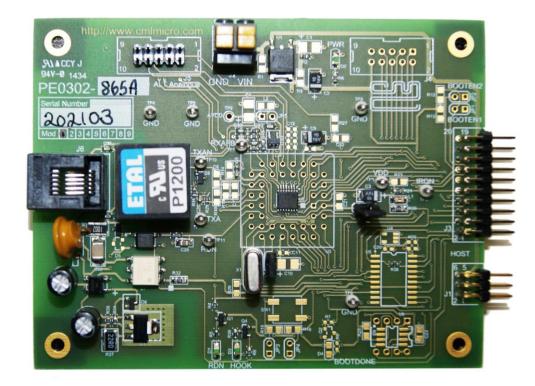


UM0302/2 March 2015

Features


- CMX865A evaluation
- Designed for use with PE0003 Universal Interface Card and PC control software
- On-board supply regulator

PE0302-865A Evaluation Kit User Manual

Provisional Issue

Fully Isolated 2-Wire Line Interface (DAA)

• Operates from single 5V dc power supply

1 Brief Description

The PE0302-865A Evaluation Board features the CMX865A DTMF Codec/FSK Combo. Also included is a line interface.

The board is fitted with a C-BUS connector allowing the PE0302-865A to be operated by connection to either of the two C-BUS ports on a PE0003 Universal Interface Card, and used with the associated PC GUI software. Alternatively, direct connection is possible between the CMX865A C-BUS and the user's μ C development application or emulation system.

The board is operated at 3.3V dc, which is regulated on-board from an external 5 volt supply.

CONTENTS

Saction	Page
Section	
1	Brief Description1
2	Block Diagram 4
3	Preliminary Information53.1Laboratory Equipment3.2Handling Precautions3.2.1Static Protection3.2.2Contents – Unpacking553.3Approvals
4	Quick Start 6 4.1 With PE0003 6 4.1.1 Setting-Up 6 4.1.2 Operation 7 4.2 Without PE0003 7
5	Signal Lists
	-
6	Circuit Schematics and Board Layouts11
6 7	Circuit Schematics and Board Layouts 11 Detailed Description 13 7.1 Hardware Description 13 7.1.1 Power Supplies 13 7.1.2 Clock Options 13 7.1.3 Host Interface 13 7.1.4 Line Interface 13 7.2 Software 14

<u>Table</u>

Table 1 Signal List	8
Table 2 Test Points	
Table 3 Jumpers	
Table 4 LEDs	

Figure

Figure 1	Block Diagram	4
	PE0302-865A used with PE0003	
Figure 3	Evaluation Board Layout - Top	.11
Figure 4	Evaluation Board Layout - Bottom	.12

© 2015 CML Microsystems Plc

UM0302/2

<u>Page</u>

Page

It is always recommended that you check for the latest product datasheet version from the Datasheets page of the CML website: [www.cmlmicro.com].

<u>History</u>

Version	Changes	Date
2	Minor typographical corrections	Mar 2015
1	Original document	Dec 2014

2 Block Diagram

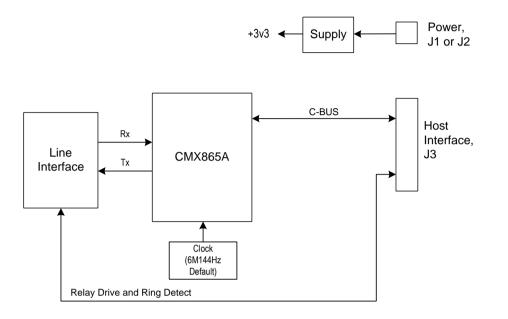


Figure 1 Block Diagram

3 **Preliminary Information**

3.1 Laboratory Equipment

The following laboratory equipment is needed to use this evaluation kit:

A 5.0 volt dc regulated power supply

If the board is being used with the PE0003 Universal Interface Card, the following items will also be required:

An IBM compatible PC with the following specification:

- One of the following Windows operating systems installed: Windows 7 SP1 or Windows XP SP2
- USB port
- Minimum screen resolution 800 x 600. Recommended screen resolution 1024 x 768

A USB type A male to mini B male cable

Software application ES000310.exe, or later version, installed on the PC

3.2 Handling Precautions

Like most evaluation kits, this product is designed for use in office and laboratory environments. The following practices will help ensure its proper operation:

3.2.1 Static Protection

This product uses low-power CMOS circuits that can be damaged by electrostatic discharge. Partially-damaged circuits can function erroneously, leading to misleading results. Observe ESD precautions at all times when handling this product.

3.2.2 Contents – Unpacking

Please ensure that you have received all of the items on the separate Information Sheet (EK0302) and notify CML within seven working days if the delivery is incomplete.

3.3 Approvals

This product is not approved to any EMC or other regulatory standard. Users are advised to observe local statutory requirements, which may apply to this product.

4 Quick Start

This section is divided into two sub-sections. The first is for those users who are using the board with a PE0003 Universal Interface Controller Card and Windows application. The second is for users who are not using the PE0003.

4.1 With PE0003

Note that the C-BUS connector J3 and the power connector J1 are both right-angle headers and are designed to plug directly into sockets J5 (C-BUS1 port) and J9 respectively, or sockets J3 (C-BUS2 port) and J7 respectively, of a PE0003.

4.1.1 Setting-Up

• Refer to the PE0003 User Manual, and follow the instructions given in the quick start section.

The basic arrangement, when used with the PE0003 is shown below:

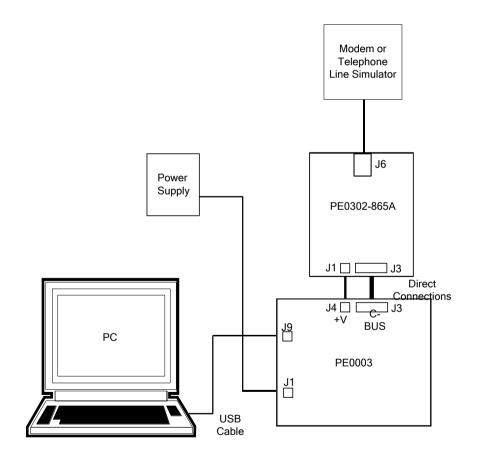


Figure 2 PE0302-865A used with PE0003

4.1.2 Operation

Neither the ring detector output 'RDN' or the hook switch control signal 'RLYDRV' are accessible from the generic PE0003 graphical user interface (GUI). Access can be gained by using PE0003 scripts. RDN and RLYDRV correspond to the signals GPIO2 and GPIO3 respectively, when using C-BUS1 as shown in Figure 2. See also the PE0003 scipt handler reference document.

4.2 Without PE0003

As an alternative to using the PE0003 controller kit, users may control the target device with their own host controller card. As with the PE0003 the C-BUS serial interface connections are made via connector J3.

5 Signal Lists

со	CONNECTOR PINOUT						
Connector Ref.	Connector Pin No.	Signal Name	Signal Type	Description			
J1	1, 2	GND	PWR	Supply ground			
	3 to 6	+V	PWR	External supply voltage – daisy chained from PE0003			
J2		+V	PWR	External supply voltage			
		GND	PWR	Supply ground			
J3	1	N/C	-				
	2	CSN	I/P	Chip select. Connects to host μC			
	3	-	-	Not used			
	4	CDATA	I/P	Serial data input. Connects to host μC			
	5	RDN	O/P	Ring detect, active low			
	6	SCLK	I/P	Serial clock input. Connects to host μ C			
	7	RLYDRV	I/P	Hook switch control, active low			
	8	RDATA	O/P	Serial data output. Connects to host μC			
	9	-	-	Not used			
	10	IRQN	O/P	Interrupt request. Connects to host μC			
	11, 12	GND	PWR	Supply ground			
	13	-	-	Not used			
	14	-	-	Not used			
	15, 16, 17, 18, 19, 20	N/C	-	Do not connect these pins			
J5	1, 3, 5, 6, 7, 8, 9	N/C	-				
	2	RXALT	I/P	Alternative Rx input, bypassing line Interface			
	4, 10	GND	PWR	ground			
J6	1, 2	N/C	-				
	3	RING	BI	RJ11 connector – Ring			
	4	TIP	BI	RJ11 connector – Tip			
	5, 6	N/C	-				

Table 1 Signal List

	TEST POINTS	
Test Point Ref.	Default Measurement	Description
TP1	3.3V	Output from on-board regulator. DC supply voltage rail
TP3	0V	GND, digital ground
TP4	0V	GND, digital ground
TP5	0V	GND, digital ground
TP6	0V	GND, digital ground
TP7	-	RXAFB - The output of the evaluation device Rx input amplifier
TP8	3.3V	IRQN – The interrupt output of the evaluation device
TP9	-	TXA - The non-inverted Tx output of the evaluation device
TP10	-	TXAN - The inverted Tx output of the evaluation device
TP11	3.3V	RDN - Ring detect

Table 2 Test Points

Table 3 Jumpers

	JUMPERS/LINKS		
Link Ref.	Positions	Default Position	Description
JP6	1-2	short	Disconnect to supply external clock source to evaluation device
JP7	1-2	short	Isolates supply rail from CMX865A evaluation device

Table 4 LEDs

LEDs	
LED Ref.	Description
D1	RDN – Indicates ring signal on the line
D2	Indicates that the supply voltage is present
D3	HOOK – Indicates board is off-hook

Notes:
$$I/P = Input$$

 $O/P = Output$
 $BI = Bidirectional$
 $N/C = Not connected$
 $PWR = Power supply connection$

© 2015 CML Microsystems Plc

6 Circuit Schematics and Board Layouts

For clarity, circuit schematics are available as a separate high resolution pdf file. These can be found in the support files from the CML website.

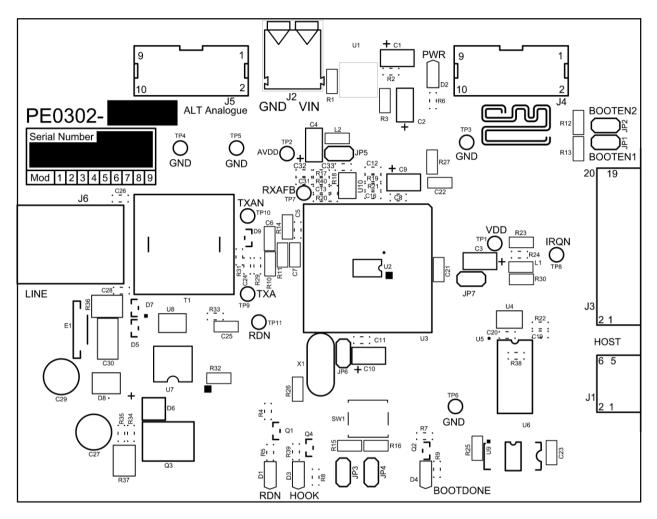
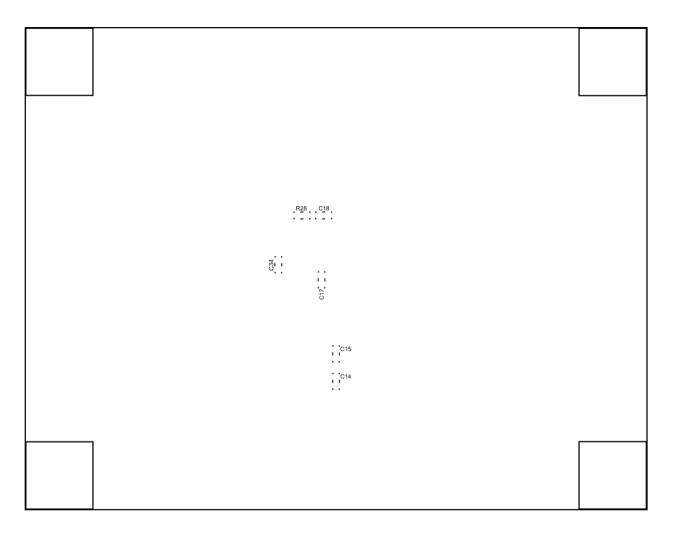



Figure 3 Evaluation Board Layout - Top

© 2015 CML Microsystems Plc

7 Detailed Description

7.1 Hardware Description

7.1.1 Power Supplies

The board is fitted with a 3.3 volt regulator, U1. The input to this regulator is provided by an external, nominally 5.0 volt dc, power supply, which is connected to the board via connector J2, a snap type connector. Alternatively power may be daisy-chained from a PE0003 via connector J1.

The supply voltage to the CMX865A device can be monitored on test point TP1.

LED illumination confirms the on-board presence of the +3.3 volt dc digital voltage supply.

7.1.2 Clock Options

The board uses the fitted 6.144MHz crystal as the default clock source for the evaluation device. Alternatively, jumper JP6 can be removed and using an appropriate lead, an external clock source with a signal level of less than +3V3D, can be applied between pin 2 of JP1 and GND.

7.1.3 Host Interface

The C-BUS, hook and ring signals are brought out on connector J3. This is a right-angle male header designed to plug directly into the PE0003 which has a matching female header.

7.1.4 Line Interface

The board is shipped with a DAA, which presents an ac line termination of 600Ω resistive when off hook. The user may alter the terminating impedance by fitting alternative values for components C3, C5, C6, R6 and R7. For CTR21 complex matching, the values are:

 $C29 = 2.2\mu$ F, C26 = 56nF, C24 = 150nF, $R31 = 220\Omega$, $R29 = 680\Omega$

The board is off-hook when the 'RLYDRV' signal at the host interface, J3, is held low.

There is a direct input receive path that bypasses the line interface at J5 pin 2, 'RXALT'.

On-hook Caller ID

This function provides a high-impedance, on-hook AC path for the routing of Caller ID signals to the CMX865A. Components C28 and R18 provide this signal path. C28 bypasses the optoMOS relay hook switch, allowing AC signals to pass through T1 when the PE0302-865A is in an on-hook state. To compensate for losses incurred in the on-hook state, R18 is switched in circuit by analogue switch U10, thereby increasing the receive path gain. Path gain is set assuming that the TXA output of the CMX865A is set to high impedance.

Ring Detection

The ring detect threshold is approximately 20V rms. The RDN signal at the host interface, J3, will be low when a ring signal is present at the telephone line connector, J6. Additionally, a single pulse low on the RDN line will signal that a line reversal has occurred.

Line Protection

Line protection is provided by an integrated overcurrent/overvoltage protection device, E1.

© 2015 CML Microsystems Plc

7.2 Software

The board can be used with the GUI software supplied with the PE0003. The PE0003 includes a script handler and various example scripts are available from the CML website.

Neither the ring detector output 'RDN' or the hook switch control signal 'RLYDRV' are accessible from the generic PE0003 GUI. Access can be gained by using PE0003 scripts. RDN and RLYDRV correspond to the signals GPIO2 and GPIO3 respectively, when using C-BUS1 as shown in Figure 2. See also the User Manual for PE0003 Scripting Language (available from the CML website).

-

-

8 Performance Specification

8.1 Electrical Performance

8.1.1 Absolute Maximum Ratings

Exceeding these maximum ratings can result in damage to the Evaluation Kit.

	Min.	Max.	Units
Supply (V _{IN} - V _{SS})	-0.3	9.0	V
Voltage on any connector pin to V _{SS}	-0.3	3.6	V
Current into or out of VIN and VSS pins	0	+0.45	А
Current into or out of any other connector pin	-20	+20	mA

8.1.2 Operating Limits

Correct operation of the Evaluation Kit outside these limits is not implied.

	Notes	Min.	Max.	Units
Supply (+V - V _{GND})		4.5	5.5	V

8.1.3 Operating Characteristics

For the following conditions unless otherwise specified:

Evaluation Device Clock Frequency = 6.144MHz, V_{IN} = 5.0V, T_{AMB} = +25°C.

For Function Image[™] parameters, see relevant FI datasheet.

	Notes	Min.	Тур.	Max.	Units
DC Parameters					
I _{DD} (on-hook, CMX865A powersaved)	1	-	10	-	mA
I _{DD} (off-hook, CMX865A operating)	1	-	25	-	mA
+3V3 Regulated Supply		3.15	3.3	3.45	Vdc

Notes: 1. Not including any current drawn from pins by external circuitry.

Operating Characteristics - Timing Diagrams

See relevant FI documentation for C-BUS signal timing information.

8.1.4 Physical Dimensions

	Notes	Min.	Тур.	Max.	Units
Width			111		mm
Height			86		mm

CML does not assume any responsibility for the use of any circuitry described. No IPR or circuit patent licences are implied. CML reserves the right at any time without notice to change the said circuitry and any part of this product specification. Evaluation kits and demonstration boards are supplied for the sole purpose of demonstrating the operation of CML products and are supplied without warranty. They are intended for use in a laboratory environment only and are not for re-sale, end-use or incorporation into other equipments. Operation of these kits and boards outside a laboratory environment is not permitted within the European Community. All software/firmware is supplied "as is" and is without warranty. It forms part of the product supplied and is licensed for use only with this product, for the purpose of demonstrating the operation of CML products. Whilst all reasonable efforts are made to ensure that software/firmware contained in this product is virus free, CML accepts no responsibility whatsoever for any contamination which results from using this product and the onus for checking that the software/firmware is virus free is placed on the purchaser of this evaluation kit or development board.

(UK)Ltd COMMUNICATION SEMICONDUCTORS	(USA) Inc. COMMUNICATION SEMICONDUCTORS	(Singapore) Pte Ltd
Tel:	Tel:	Tel:
+44 (0)1621 875500	+1 336 744 5050	+65 62 888129
Fax:	800 638 5577	Fax:
+44 (0)1621 875600	Fax:	+65 62 888230
Sales:	+1 336 744 5054	Sales:
sales@cmlmicro.com	Sales: us.sales@cmlmicro.com	sg.sales@cmlmicro.com
Tech Support:	Tech Support:	Tech Support:
techsupport@cmlmicro.com	us.techsupport@cmlmicro.com	sg.techsupport@cmlmicro.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface Development Tools category:

Click to view products by CML Microcircuits manufacturer:

Other Similar products are found below :

DP130SSEVM ISO3086TEVM-436 ADP5585CP-EVALZ CHA2066-99F AS8650-DB I2C-CPEV/NOPB ISO35TEVM-434 416100120-3 XR18910ILEVB XR21B1421IL28-0A-EVB EVAL-ADM2491EEBZ MAXREFDES23DB# MAX9286COAXEVKIT# MAX3100EVKIT MAX13235EEVKIT MAX14970EVKIT# XR21B1424IV64-0A-EVB CMOD232+ MAX13042EEVKIT+ MAX14838EVKIT# MAXCAM705OV635AAA# MAX9205EVKIT DS100BR111AEVK/NOPB DC241C MAX9286RCARH3DB# MAX13035EEVKIT+ DC1794A SN65HVS885EVM EVB81112-A1 DFR0257 ZLR964122L ZLR88822L DC196A-B DC196A-A DC327A OM13585UL MAX16972AGEEVKIT# MARS1-DEMO3-ADAPTER-GEVB MAX7315EVKIT+ PIM511 PIM536 PIM517 DEV-17512 STR-FUSB3307MPX-PPS-GEVK MAXREFDES177# EVAL-ADN4654EBZ MAX9275COAXEVKIT# MAX2202XEVKIT# MAX13171EEVKIT+ MAX7322EVKIT+