


3.6Ref

1000

## 1. External Dimensions (Unit:m/m)



1.7Ref

8.5Ref

3.5Ref

3.0Ref

#### 2. Part Number Code

6.6±0.3

APS07A50

| <u>AP</u><br>A             | <u>s</u>                               | <u>07</u><br>B                        | A<br>C       | <u>50</u><br>D | M<br>F           | <u>330</u><br>F                                                                         |   |
|----------------------------|----------------------------------------|---------------------------------------|--------------|----------------|------------------|-----------------------------------------------------------------------------------------|---|
| A:<br>B:<br>C:<br>D:<br>E: | Serie<br>Dime<br>Mate<br>Thic<br>Toler | es Nan<br>ensions<br>erials<br>kness( | s(mm)<br>mm) | )              | L<br>0<br>5<br>N | F<br>Super Power Inductors<br>7: 6.6x7.7<br>NO use<br>50: 5.0 Max<br>1: ±20%<br>30=33uH | ; |
|                            |                                        |                                       |              |                |                  |                                                                                         |   |

7.7Max

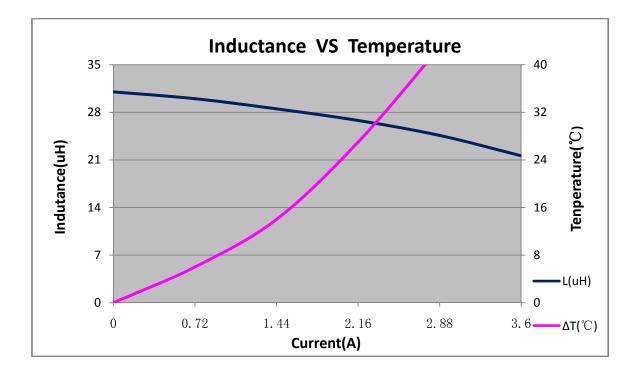
5.0Max

220

### 3. Electrical Characteristics

| Part Number  | Inductance | Test Frequency | DCR mΩ    | Heat Rating Current | Saturation Current |
|--------------|------------|----------------|-----------|---------------------|--------------------|
|              | (uH)       | (KHz)          | Max.@ 25℃ | DC(A) Typical       | DC(A) Typical      |
| APS07A50M330 | 33.0       | 100KHz/1V      | 176.4     | 2.3                 | 3.57               |

#### Notes:


- a. All test data is referenced to 25  $^\circ\!\!\!\mathrm{C}$  ambient.
- b. Operating Temperature Range-40℃ to +125℃.
- c. Irms: DC current(A) that will cause an approximate  $\triangle$ T of 40°C.
- d. lsat: DC current(A) that will cause Lo to drop approximately 40%.
- e. The part temperature(ambient + temp rise)should not exceed 125°C under worst case operating conditions. Circuit design,component placement, PWB trace size and thickness,airflow and other cooling provisions all affect the part temperature, Part temperature should be verified in the end application.



## 4. Test Data

| EL           | ECTRICAL    | CHARCTE      | RISTIC                   | MECHANICAL DIMENSIONS |       |       |       |  |  |
|--------------|-------------|--------------|--------------------------|-----------------------|-------|-------|-------|--|--|
| SPEC         | L(uH)       | DCR(mΩ)      | lsat(uH)                 | A(mm)                 | B(mm) | C(mm) | D(mm) |  |  |
| TOL          | 33.0        | 176.4        | 3.57A                    | 6.6                   | 7.7   | 5.0   | 3.0   |  |  |
| NO           | ±20%        | Max          | (L0A-L3.57A)<br>/L0A≤40% | ±0.3                  | Max   | Max   | Ref   |  |  |
| 1            | 30.56       | 165.3        | 21.38                    | 6.56                  | 7.16  | 4.56  | ОК    |  |  |
| 2            | 31.64       | 163.3        | 21.95                    | 6.59                  | 7.18  | 4.59  | OK    |  |  |
| 3            | 31.48       | 169.8        | 21.83                    | 6.62                  | 7.16  | 4.57  | ОК    |  |  |
| 4            | 30.97       | 171.8        | 21.58                    | 6.61                  | 7.18  | 4.60  | ОК    |  |  |
| 5            | 31.89       | 170.3        | 21.99                    | 6.57                  | 7.19  | 4.59  | OK    |  |  |
| 6            | 30.27       | 166.1        | 21.44                    | 6.58                  | 7.16  | 4.61  | ОК    |  |  |
| 7            | 30.53       | 171.9        | 21.81                    | 6.59                  | 7.18  | 4.56  | OK    |  |  |
| 8            | 30.31       | 162.3        | 21.69                    | 6.63                  | 7.19  | 4.55  | OK    |  |  |
| 9            | 31.26       | 169.1        | 21.25                    | 6.62                  | 7.17  | 4.58  | OK    |  |  |
| 10           | 31.84       | 163.3        | 21.99                    | 6.61                  | 7.17  | 4.61  | OK    |  |  |
| Test Equipme | ets: IM3536 | ,VR126,VR721 | 0,Calipers               |                       | ÷     |       | · · · |  |  |

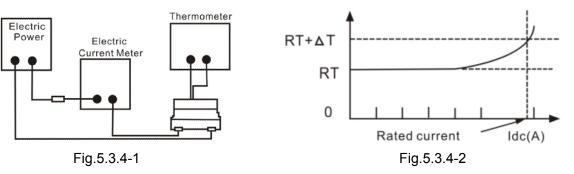
#### Curve:





## 5. Test and Measurement Procedures

#### 5.1 Test Conditions


- 5.1.1 Unless otherwise specified, the standard atmospheric conditions for measurement/test as:
  - a. Ambient Temperature: 20±15°C
  - b. Relative Humidity: 65%±20%
  - c. Air Pressure: 86KPa to 106KPa
- 5.1.2 If any doubt on the results, measurements/tests should be made within the following limits:
  - a. Ambient Temperature: 20±2°C
  - b. Relative Humidity: 65%±5%
  - c. Air Pressure: 86KPa to 106Kpa

#### 5.2 Visual Examination

a. Inspection Equipment: 10X magnifier

#### 5.3 Electrical Test

- 5.3.1 Inductance (L)
  - a. Refer to the third item.
  - b. Test equipment: IM3536 LCR meter or equivalent.
  - c. Test Frequency and Voltage: Refer to the third item
- 5.3.2 Direct Current Resistance (DCR)
  - a. Refer to the third item
  - b. Test equipment: VR126 or equivalent.
- 5.3.3 Saturation Current (Isat)
  - a. Refer to the third item
  - b. Test equipment: Saturation current meter
  - c. Definition of saturation current (Isat): DC current at which the inductance drops approximate 40% from its value without current.
- 5.3.4 Temperature rise current (Irms)
  - a. Refer to the third item.
  - b. Test equipment (see Fig.5.3.4-1): Electric Power, Electric current meter, Thermometer.
  - c. Measurement method (see Fig. 5.3.4-1):
    - 1. Set test current to be 0mA.
    - 2. Measure initial temperature of choke surface.
    - 3. Gradually increase current and measure choke temperature for corresponding current.
    - 4. Definition of Temperature rise current: DC current that causes the temperature rise ( $\triangle T = 40^{\circ}$ C) from 20°C ambient (see Fig. 5.3.4-2).





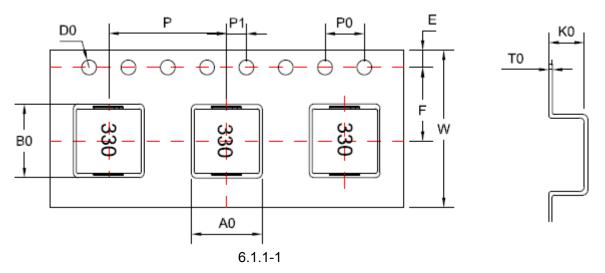
## 5.4 Reliability Test

| Items                                   | Required Characteristics                                                                                                         | Test Method/Condition                                                                                                                                                                                                                                                                        |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 544                                     |                                                                                                                                  | <ol> <li>After fluxing, component shall be<br/>dipped in a melted.</li> <li>② Solder: bath at 235℃±5℃ for 5±0.5<br/>seconds</li> </ol>                                                                                                                                                       |
| 5.4.1<br>Solder Ability Test            | <ol> <li>90% or more of electrode area shall be<br/>Coated by new solder.</li> </ol>                                             | Preheating Dipping Natural cooling<br>235°C<br>150°C<br>second<br>5±0.5<br>second                                                                                                                                                                                                            |
|                                         |                                                                                                                                  | <ol> <li>Preheat:150±5°C 60seconds.</li> <li>Solder temperature: 255±5°C.</li> <li>Flux: rosin.</li> <li>Dip time: 3seconds Max</li> </ol>                                                                                                                                                   |
| 5.4.2<br>Heat endurance of<br>Soldering | <ol> <li>No visible mechanical damage.</li> <li>Inductance change: Within ±10%</li> <li>Impedance change: Within ±10%</li> </ol> | Preheating Dipping Natural cooling                                                                                                                                                                                                                                                           |
| 5.4.3<br>Electrode Strength<br>Test     | <ol> <li>After soldering of X, Y withstanding at<br/>below conditions .The terminal should not<br/>Peel off.</li> </ol>          |                                                                                                                                                                                                                                                                                              |
| 5.4.4<br>Vibration Test                 | <ol> <li>Inductance change: Within ± 10%</li> <li>Without mechanical damage such as<br/>Break</li> </ol>                         | <ol> <li>Vibration frequency:         <ol> <li>Vibration frequency:</li> <li>Hz to 55 Hz to 10Hz) in 60 seconds as a period</li> <li>Vibration time:</li> <li>Period cycled for 2 hours in each of 3 mutual perpendicular directions.</li> <li>Amplitude: 1.5 mm max.</li> </ol> </li> </ol> |
| 5.4.5<br>Drop test                      | <ol> <li>⊥≤±10.0% change from an initial<br/>value</li> </ol>                                                                    | ① Drop specimen three times on concrete floor from a height 0f 1 meter which mounted on test board.                                                                                                                                                                                          |

## **Super Power Inductors**



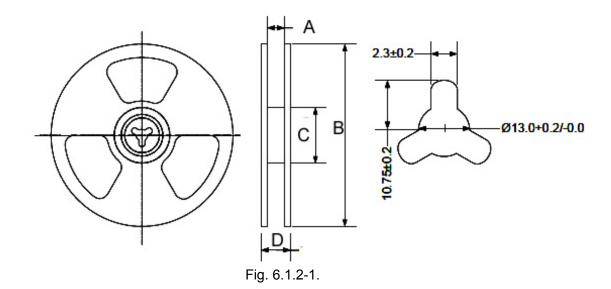
| Items                                    | Required Characteristics                                                                                                       | Test Method/Condition                                                                                                                                                                                                                                               |  |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 5.4.6<br>High Temperature<br>StorageTest | <ol> <li>No case deformation or change<br/>in appearance</li> <li>△L/L≤10%</li> <li>△Q/Q≤30%</li> <li>△DCR/DCR≤10%</li> </ol>  | ① Temperature:125℃±5℃ Time:500±2 hours.<br>② Tested not less than 1 hour, nor more than 2 hours at room.<br>Temp<br>125℃<br>High temperature<br>25℃<br>0℃<br>High temperature<br>500H Test Time                                                                     |  |  |  |
| 5.4.7<br>Low Temperature<br>Storage Test | <ol> <li>No case deformation or change<br/>in appearance</li> <li>△L/L≤10%</li> <li>△Q/Q≤30%</li> <li>△DCR/DCR≤10%</li> </ol>  | <ul> <li>① Temperature:-40°C ±2°C Time:500±2 hours.</li> <li>② Tested not less than 1 hour, nor more than 2 hours at room.</li> <li>25℃ 500H Test</li> <li>0℃ 1H 1H Time</li> <li>-40℃ Temp</li> </ul>                                                              |  |  |  |
| 5.4.8<br>Humidity Resistance<br>Test     | <ol> <li>No case deformation or change<br/>in appearance</li> <li>△L/L≤10%</li> <li>△Q/Q≤30%</li> <li>△DCR/DCR≤10%</li> </ol>  | <ol> <li>Environment condition: 85 ± 2 °C</li> <li>Humidity: 80–85%</li> <li>Applied Current: Rated current</li> <li>Duration: 500 + 4 / -0 hours</li> <li>Tested not less than 1 hour, nor more than 2 hours at room.</li> </ol>                                   |  |  |  |
| 5.4.9<br>Thermal Shock Test              | <ol> <li>No case deformation or change<br/>in appearance.</li> <li>△L/L≤10%</li> <li>△Q/Q≤30%</li> <li>△DCR/DCR≤10%</li> </ol> | ① Repeat 100 cycles as follow:<br>(-40 ± 3 °C; 30 ± 3 min)<br>→ (Room temp; 2 min)<br>→ (+125 ± 2 °C, 30 ± 3 min)<br>→ (Room temp; 2 min)<br>② Recovery: 1-2 hours of recovery under the<br>standard condition after the test.<br>Temp<br>125℃<br>25℃<br>0℃<br>-40℃ |  |  |  |




## 6. Packaging, Storage

#### 6.1 Tape and Reel Packaging Dimensions

6.1 .1 Taping Dimensions (Unit: mm)


Please refer to Fig. 6.1.1-1



| TYPE     | A0      | B0      | W        | Е        | F       | Р        | P0      | P1      | Т0      | K0      |
|----------|---------|---------|----------|----------|---------|----------|---------|---------|---------|---------|
| APS07A50 | 7.2±0.1 | 7.5±0.1 | 16.0±0.3 | 1.75±0.1 | 7.5±0.1 | 12.0±0.1 | 4.0±0.1 | 2.0±0.1 | 0.4±0.1 | 5.6±0.1 |

6.1.2 Reel Dimensions (Unit: mm)

Please refer to Fig. 6.1.2-1.



| TYPE     | А        | В         | С         | D        |
|----------|----------|-----------|-----------|----------|
| APS07A50 | 16.5±2.0 | 330.0±2.0 | 100.0±2.0 | 20.5±2.0 |

# Coilank

## **Super Power Inductors**

#### 6.2 Packaging

6.2.1 The inner box specification: 350\*340\*40MM

Packing quantity: 2000PCS/ box

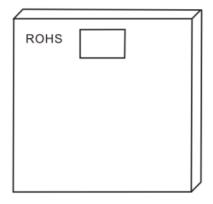
Bubble bag: 37\*45CM

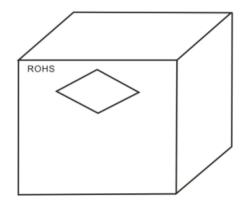
Job description: putting the air bubble bag products placed

inside the box, sealed with scotch tape

6.2.2 The outside box specification: 370\*360\*255MM

Packing quantity: 10000PCS/ box


Job description: will be outside the box bottom

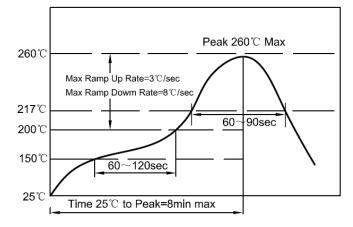

sealed, inner box into the box.

- a. With transparent tape sealed box at the top
- b. The specified location with a box labels in the outer box.
- c. If the mantissa box under a FCL with inner box or filling full

### 6.3 Storage

- a.To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled.
- b. Recommended conditions: -10 °C ~40 °C, 70%RH (Max.)
- c. The ambient temperature must be kept below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used with one year from the time of delivery.
- d. In case of storage over 6 months, solderability shall be checked before actual usage.

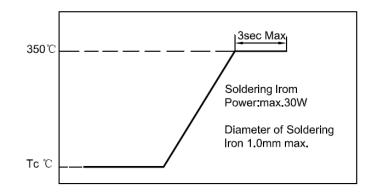





## 7. Recommended Soldering Technologies

7.1 Re-flowing Profile:

Coilank


- $\bigtriangleup$  1~2 °C/sec. Ramp
- $\bigtriangleup$  Pre-heating: 150~190  $^\circ \rm C/90\pm30$  sec.
- $\triangle$  Time above 240°C: 20~40sec
- $\triangle$  Peak temperature: 255°C Max./5sec;
- $\triangle$  Solder paste: Sn/3.0Ag/0.5Cu
- $\bigtriangleup$  Max.2 times for Re-flowing



#### 7.2 Iron Soldering Profile:

- $\bigtriangleup$  Iron soldering power: Max.30W
- $\triangle$  Pre-heating: 150°C/60sec.
- $\bigtriangleup$  Soldering Tip temperature: 350  $^\circ\!\mathrm{C}\,\text{Max}.$
- $\bigtriangleup$  Soldering time: 3sec Max.
- riangle Solder paste: Sn/3.0Ag/0.5Cu
- $\bigtriangleup$  Max.1 times for iron soldering

[Note: Take care not to apply the tip of the soldering iron to the]



## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Fixed Inductors category:

Click to view products by COILANK manufacturer:

Other Similar products are found below :

CR32NP-151KC CR32NP-180KC CR32NP-181KC CR32NP-1R5MC CR32NP-390KC CR32NP-3R9MC CR32NP-680KC CR32NP-820KC CR32NP-8R2MC CR43NP-390KC CR43NP-560KC CR43NP-680KC CR54NP-181KC CR54NP-470LC CR54NP-820KC CR54NP-8R5MC 70F224AI MGDQ4-00004-P MHL1ECTTP18NJ MHQ1005P10NJ MHQ1005P1N0S MHQ1005P2N4S MHQ1005P3N6S MHQ1005P5N1S MHQ1005P8N2J PE-51506NL PE-53601NL PE-53602NL PE-53630NL PE-53824SNLT PE-92100NL PG0434.801NLT PG0936.113NLT 9220-20 9310-16 PM06-2N7 PM06-39NJ A01TK 1206CS-471XJ HC2LP-R47-R HC2-R47-R HC3-2R2-R HCF1305-3R3-R 1206CS-151XG RCH664NP-140L RCH664NP-4R7M RCH8011NP-221L RCP1317NP-332L RCP1317NP-391L RCR1010NP-470M