

SMT Common Mode Chokes for power line applications

- · Solutions for use in a wide array of power line circuits
- Ideal for use in consumer electronics and industrial applications
- Suppression of high frequency common mode noise up to 100 MHz
- Excellent current ratings up to 10 A
- Isolation (hipot) up to 1500 Vrms
- · Surface mount toroids
- Upon request, additional values may be available for particular applications

Part	Common mode	Inducta	nce (mH)	Irms	DCR	Isolation	Length	Width	Height	
number	(kOhms)	nom	min	(A)	(mOhms)	(Vrms)	(mm)	(mm)	(mm)	Page
CE1755-AL	3.32 @ 5.1 MHz	0.88	0.57	1.2	130	1000	13.00	13.00	5.46	2
CR7915-AL	3.10 @ 4.9 MHz	1.12	0.73	2.6	49.5	1500	13.00	13.00	5.60	3
CF3094-AL	7.93 @ 2.5 MHz	1.17	0.76	1.1	200	1000	13.00	13.00	5.46	4
CM6518-AL	4.17 @ 1.9 MHz	1.40	0.91	2.5	60.0	1500	16.38	14.22	8.90	5
CJ5094-CL	28.28 @ 0.26 MHz	10.0	6.5	1.2	180	1000	16.38	14.22	8.90	6
CV9172-AL	70.01 @ 0.21 MHz	22.0	14.3	0.57	850	1000	16.38	14.22	8.90	7
CF2638L	2.59 @ 4.3 MHz	0.22	0.14	2.9	60.0	1000	19.56	17.02	9.91	8
CD1479-AL	4.19 @ 3.0 MHz	0.59	0.38	4.2	20.0	1000	19.56	17.02	9.91	9
CH4659-AL	4.56 @ 2.5 MHz	0.77	0.50	4.7	40.0	1000	19.56	17.02	9.91	10
CD1480-BL	4.53 @ 2.2 MHz	1.32	0.85	3.5	60.0	1000	19.56	17.02	9.91	11
CE2439L	9.42 @ 1.1 MHz	1.47	0.96	2.5	80.0	1000	19.56	17.02	9.91	12
CG3333-AL	2.27 @ 2.9 MHz	0.90	0.59	3.7	50.0	1000	19.56	17.02	9.90	13
CG3528-AL	6.23 @ 0.72 MHz	3.00	1.95	3.1	42.0	1000	19.56	17.02	9.91	14
CE1759-AL	4.82 @ 0.99 MHz	0.81	0.52	6.0	14.0	1000	31.0	26.0	13.0	15
CG3885-AL	3.11 @ 1.8 MHz	0.47	0.30	10.0	8.0	1000	31.0	26.0	12.7	16
CF2805-AL	3.64 @ 1.9 MHz	0.63	0.40	6.8	14.0	1000	31.0	26.0	12.7	17

US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg Document 1194P-1 Revised 09/09/21

Common Mode Choke – CE1755-AL

Part number ¹	Common mode impedance max (kOhms)	Inductanc nom	e (mH)² min		Irms ³ (A)	DCR max⁴ (mOhms)	lsolation⁵ (Vrms)
CE1755-AL_	3.32 @ 5.1 MHz	0.88	0.57		1.2	130	1000
1. When ordering, pleas	se specify packaging code:		$\mathbf{T}_{\mathbf{V}_{1}}$	nical	Attenuatio	n	
	CE1755-ALD		⊥ y]	picar		11	
Packaging: D = 13 tap rei	" machine-ready reel. EIA-481 e be (600 parts per full reel). Quan el available: in tape (not machine ader and trailer (\$25 charge).	mbossed plastic tities less than full ready) or with		5	Differential m	node	
B = Le nu for ch	ss than full reel. In an effort to sim mbering system, Coilcraft is elimi multiple packaging codes. When ange the last letter of your part nu	nplify our part nating the need ordering, simply umber from B to D.	1 (B) u	5			
 Inductance shown for 0 Adc on an Agilent/H 	r each winding, measured at 100 IP 4263B LCR meter or equivale	kHz, 0.1 Vrms, ent.	2 atio	.0			
 Current per winding t information is for refe mum ratings. 	hat causes a 40°C rise from 25°(rence only and does not represe	C ambient. This nt absolute maxi-	Attenu 5	5			
 DCR is specified per Isolation (hipot) measurements 	winaing. Sured for two seconds		3	0			
6. Electrical specificatio	ns at 25°C.		2	5			
Refer to Doc 362 "Solderi	ng Surface Mount Components" be	efore soldering.	4	0			
0.512 CE1755	-AL		-	0.1	1 Fr	requency (MHz)	100
13,0 max 2 2	Y Internal code		$\mathbf{T}\mathbf{y}_{1}$	° ≡	Impedance	e versus Frequ	iency
<u>← 0.512</u> m	nax —						
↓ · · · · ·			(mr				
0.215 5,46 max			Ince (kO				
Ť	[\(\approx [0.00570,13])		npeda				
→ 	0.175 4,45		<u> </u>				
	3						
^{10,41} Land Pa	ttern		0.	1 <u> </u>	1		100
2	4				Fr	equency (MHz)	
	$\begin{array}{c c} & & & \\ \hline \\ \hline$	isions are in <u>inches</u> mm	Core Term Weig Amb Maxi Stora Tape Resis +260 Mois	materia inations ht 0.92 ient tem mum pa age tem and ree stance t °C, parts ture Sei	I Ferrite S RoHS complian g perature -40°C int temperature -40°C perature Compon packaging: -40°C o soldering heat s cooled to room to instituity Level (M	t tin-silver-copper over to +85°C with Irms c +125°C (ambient + te nent: -40°C to +125° C to +80°C Max three 40 secon emperature between SL) 1 (unlimited floo	er copper mp rise) C. d reflows at cycles r life at <30°C /

85% relative humidity) **Packaging** 600/13" reel Plastic tape: 24 mm wide, 0.4 mm thick, 16 mm pocket spacing, 5.5 mm pocket depth

PCB washing Tested to MIL-STD-202 Method 215 plus an additional aqueous wash. See Doc787_PCB_Washing.pdf.

 US
 +1-847-639-6400
 sales@coilcraft.com

 UK
 +44-1236-730595
 sales@coilcraft-europe.com

 Taiwan
 +886-2-2264
 3646
 sales@coilcraft.com.tw

 China
 +86-21-6218
 8074
 sales@coilcraft.com.cn

 Singapore
 + 65-6484
 8412
 sales@coilcraft.com.sg

Document 1194P-2 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Choke – CR7915-AL

.	Common mode impedance	Inductanc	e (mH) ²		Irms ³	DCR max ⁴	Isolation ⁵	
Part number CR7915-AL_ When ordering, p Packaging: D B A Inductance show 0 Adc on an Agila Current per wind information is for mum ratings. DCR is specified I solation (hipot) r Electrical specified I solation (hipot) r Electrical specified DCT is specified I cR7 10,000 a construction Correct and a construction DCT is specified DCT is specified I cR7 10,000 a construction Correct and a construction DCT is specified I cR7 10,000 a construction Correct and a construction DCT is specified I cR7 10,000 a construction DCT is specified I cR7 10,000 a construction Correct and a construction I cR7 I cR7	er max (kOhms)	nom	min		(A)	(mOhms)	(vrms)	
CR7915-AL		1.12	0.73		2.6	49.5	1500	
1. When orderin	ng, please specify packaging code	•	Tv	pical	Attenuatio	n		
	CR7915-ALD		/	0				
Packaging:	D = 13" machine-ready reel. ElA- tape (600 parts per full reel). reel available: in tape (not ma loader and trailor (\$25 charge)	481 embossed plastic Quantities less than full Ichine ready) or with		5	Differential mode			
	 B = Less than full reel. In an effort numbering system, Coilcraft is for multiple packaging codes. 	to simplify our part s eliminating the need When ordering, simply	(dB)	10				
2. Inductance sl 0 Adc on an <i>i</i>	hown for each winding, measured a Agilent/HP 4263B LCR meter or eq	at 10 kHz, 0.1 Vrms, uivalent.	lation	20				
 Current per w information is mum ratings. 	vinding that causes a 40°C rise fror s for reference only and does not re	n 25°C ambient. This present absolute maxi-	Attenu	25				
4. DCR is speci	fied per winding.		:	30				
5. Isolation (hip	ot) measured for two seconds.					Common mode		
Befer to Doc 362	echications at 25 C. 9 "Soldering Surface Mount Compone	nts" before soldering.	:	35				
	e condoning canado mount compone	nio belore coldennig.		40				
	3			0.1	1 F	10 requency (MHz)	100	
0.512 13,0 max	XXXXY		Ту	pical	Impedance	e versus Frequ	iency	
2				10				
_*f6								
-	0.512 max							
	13,0							
Ļ			щ					
0.220 5,6 max			ance (kO					
Ť			bed					
	$\rightarrow \left \frac{0.175}{4.45} \right $		<u></u>					
0.410 Be	commended		ſ	1				
10,41 La	and Pattern			0.1	1	10	100	
2	4				F	requency (MHz)		
	$\begin{array}{c c} \bullet & 0.330 \\ \hline \bullet & 0.060 \\ \hline 0.060 \\ \hline 1,52 \end{array}$	Dimensions are in inches mm	Core Tern Weig Amb	e materi nination ght 1.53	al Ferrite s RoHS compliar 3 g nperature –40°C	t tin-silver-copper over	er copper	
			Max Stor Tape	imum pa age tem and ree	art temperature perature Compo el packaging: -40° to soldering beat	+125°C (ambient + te nent: -40°C to +125° C to +80°C	mp rise) C.	
			+260 Mois)°C, part sture Se	is cooled to room to cooled to c	semperature between ISL) 1 (unlimited floo	cycles r life at <30°C /	
	JUE - UUU - 4		Pacl 16 m PCB aque	kaging (am pocke washin eous was	600/13" reel Plas et spacing, 5.5 mn g Tested to MIL-S h. See Doc787_PC	stic tape: 24 mm wide n pocket depth TD-202 Method 215 pl CB_Washing.pdf.	e, 0.4 mm thick, us an additional	
		+1-847-630-6400	ക്രെവിവ	raft.com		Document 1194P-3	Revised 09/09/2	
Coil	craft UK Taiv	+44-1236-730595 sa van +886-2-2264 3646	les@coilc 6 sales@	raft-euro coilcraf	ope.com t.com.tw	This product may not be	© Coilcraft Inc. 202 used in medical or hig	

www.coilcraft.com

Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Common Mode Chokes – CF3094-AL

Part number	Common mode impedance	Inductanc	e (mH) ²	Irms ³	DCR max ⁴	Isolation ⁵
Part number ¹ CF3094-AL_ When ordering, pleas Packaging: $D = 13'$ tap rec lea $B = Lea num for Current per winding the information is for refermum ratings. DCR is specified per vi- lsolation (hipot) meas Electrical specification efer to Doc 362 "Soldering \frac{512}{13,0} max\frac{1}{1} CF3094-XXXX vi-\frac{0.512}{13,0} max\frac{215}{13,0} max\frac{1}{1} CF3094-XXXX vi-\frac{0.512}{13,0} max\frac{1}{1} CF3094-XXXX vi-\frac{0.512}{13,0} max\frac{1}{1} CF3094-XXXX vi-\frac{0.512}{13,0} max\frac{1}{1} CF3094-XXXX vi-\frac{1}{2} CF3094-\frac{1}{2} CF3094-\frac{1}{2} CF3094-\frac{1}{2} CF3094-\frac{1}{2} CF3094-\frac{1}{2} CF3094-\frac{1}{2} CF3094-\frac{1}{2} CF3094-\frac{1}{3} CF309-\frac{1}{3} CF309-\frac{1}{3}$	7 93 @ 2 5 MHz	1 17	0.76	1 1	200	1000
. When ordering, please	specify packaging code:	1.17	Typi	cal Attenuati	200 1011	1000
Packaging: D = 13" tape reel lead B = Less num for n Inductance shown for e 0 Adc on an Agilent/HF Current per winding tha information is for refere mum ratings. DCR is specified per w Isolation (hipot) measu Electrical specifications efer to Doc 362 "Soldering	CF3094-ALD machine-ready reel. EIA-481 en e (600 parts per full reel). Quanti available: in tape (not machine ler and trailer (\$25 charge). s than full reel. In an effort to simi ibering system, Coilcraft is elimir nultiple packaging codes. When d ge the last letter of your part nur each winding, measured at 10 kl 2 4263B LCR meter or equivaler at causes a 40°C rise from 25°C ence only and does not represent inding. red for two seconds. s at 25°C. g Surface Mount Components" bei	bossed plastic ties less than full ready) or with olify our part lating the need ordering, simply mber from B to D. Hz, 0.1 Vrms, nt. ambient. This it absolute maxi- fore soldering.	Vypr 0 5 10 15 20 25 30 35 40 45 40	Differential m	ode	
			50 L ().1 1	Frequency (MHz)	
2.512 .512 .215 .215 .215 .215 .215 max	AL Internal code		Typi 10 (modauce (kohm)	cal Impedance	e versus Freq	uency
0.410 0.410 0.410	3 aded		0.1		10	
$ \mathbf{-} \mathbf{-} \mathbf{-} \mathbf{-} \mathbf{-} \mathbf{-} \mathbf{-} \mathbf{-}$	ern 4 4 \uparrow 0.060 1,52 Dimens 0 0 0 0 0 0 0 0	sions are in <u>inches</u> mm	Core m Termina Weight Ambier Maximu Storage Tape an Resista +260°C Moistun 85% rel Packag 16 mm PCB wa aqueous	aterial Ferrite ations RoHS complia 1.38 g 1t temperature -40°(um part temperature temperature Comp d reel packaging: -40 unce to soldering he parts cooled to room re Sensitivity Level (ative humidity) ing 600/13" reel PI pocket spacing, 5.5 m ashing Tested to MIL- s wash. See Doc787 t	Frequency (MHz) ant tin-silver-copper ov C to +85°C with Irms (+125°C (ambient + tr >onent: -40°C to +125)°C to +80°C at Max three 40 secol temperature between (MSL) 1 (unlimited flow lastic tape: 24 mm wich nm pocket depth STD-202 Method 215 p PCB Washing odf	ver copper current emp rise) °C. nd reflows at n cycles or life at <30°C / le, 0.4 mm thick plus an additiona

Coilcraft www.coilcraft.com US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

ocument 1194P-4 Revised 09/09/21 © Coilcraft Inc. 2021

Common Mode Choke – CM6518-AL

Part number ¹	Common mode impedance max (kOhms)	Inductanc nom	e (mH) ² min		Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CM6518-AL_	4.17 @ 1.9 MHz	1.40	0.91		2.5	60.0	1500
1. When ordering, pleas	se specify packaging code:		Ty	pical	Attenuati	011	
Packaging: D = 13 tap rei lea B = Le nu	CINDS 18-ALD	bossed plastic ies less than full eady) or with blify our part ating the need		0 5 0	Differential moc	ie	
for ch 2. Inductance shown for 0 Adc on an Agilent/H 3. Current per winding t information is for refe mum ratings. 4. DCR is specified per 5. Isolation (hipot) meas 6. Electrical specificatio Refer to Doc 362 "Solderi	multiple packaging codes. When c ange the last letter of your part nur each winding, measured at 10 kH IP 4263B LCR meter or equivalen hat causes a 40°C rise from 25°C rence only and does not represen winding. sured for two seconds. ns at 25°C. ng Surface Mount Components" bef	ordering, simply nber from B to D. Iz, 0.1 Vrms, t. ambient. This t absolute maxi- ore soldering.	Attenuation (dB	5 20 25 30 35 40 0.1		Common mode	100
0.645 may CM6518	Dot indicates pin 1		Ty	pical]	ا Impedanc	Frequency (MHz) The versus Frequ	iency
16,38 max xxxx 3 0.560 14,22 m	Internal code		(kOhm)	0			
$\begin{array}{c} 0.350\\ \hline 8,90\\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 0.175\\ \hline 4,45\\ \hline \end{array} \\ \hline \end{array}$	1	0.520	Impedance 0	1 0.1	1	10	100
0.530 Recomme	ended				I	Frequency (MHz)	
↓ ← <u>0.340</u> 8,64	$1 \longrightarrow 0 \longrightarrow $	ions are in <u>inches</u> mm	Core Term Weig Amb Stora Tape Resi +260 Mois 85% Pack 20 m PCB aque	material inations ht 2.48 (ient temp mum pal age temp and reel stance to °C, parts ture Sen relative h aging 3: m pocket washing ous wash	I Ferrite RoHS complia g perature -40°C rt temperature packaging: -40 o soldering hea cooled to room sitivity Level (i umidity) 50/13″ reel Pla spacing, 9.1 m Tested to MIL-S . See Doc787_F	Int tin-silver-copper over +125°C (ambient + teonent: -40°C to +125° °C to +80°C at Max three 40 secon temperature between MSL) 1 (unlimited floo astic tape: 24 mm wide m pocket depth STD-202 Method 215 pl PCB_Washing.pdf.	er copper urrent emp rise) C. d reflows at cycles or life at <30°C / e, 0.4 mm thick, lus an additional

 US
 +1-847-639-6400
 sales@coilcraft.com

 UK
 +44-1236-730595
 sales@coilcraft-europe.com

 Taiwan
 +886-2-2264
 3646
 sales@coilcraft.com.tw

 China
 +86-21-6218
 8074
 sales@coilcraft.com.cn

 Singapore
 + 65-6484
 8412
 sales@coilcraft.com.sg

Document 1194P-5 Revised 09/09/21

© Coilcraft Inc. 2021

Colcra

www.coilcraft.com

Common Mode Choke – CJ5094-CL

Part number ¹	Common mode impedance max (kOhms)	Inductance nom	e (mH) ² min		Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CJ5094-CL_	28.28 @ 0.26 MHz	10.0	6.5		1.2	180	1000
1. When ordering, pleas	e specify packaging code:		Tv	nical A	Attenuati	011	
	CJ5094-CLD		ц		Ittenuati		
 Packaging: D = 13 tap red lea B = Le nu for chains Inductance shown for 0 Adc on an Agilent/H Current per winding the information is for reference mum ratings. DCR is specified per Isolation (hipot) meases Electrical specification Refer to Doc 362 "Soldering" 	" machine-ready reel. EIA-481 et be (350 parts per full reel). Quant el available: in tape (not machine ader and trailer (\$25 charge). ss than full reel. In an effort to sim mbering system, Coilcraft is elimii "multiple packaging codes. When ange the last letter of your part nu reach winding, measured at 10 k IP 4263B LCR meter or equivale hat causes a 40°C rise from 25°C rence only and does not represe winding. sured for two seconds. ns at 25°C. ng Surface Mount Components" be	mbossed plastic ities less than full ready) or with applify our part nating the need ordering, simply imber from B to D. cHz, 0.1 Vrms, nt. C ambient. This nt absolute maxi-	Attenuation (dB)	0 5 10 15 20 25 30 35 40 45 50 55 50		Differential mode	
				0.1	1	10 Frequency (MHz)	10
0.645 16,38 0.560 0.560 14,22 0.350 0.350 0.560 14,22 0.350 0.560 14,22 14,22 14,24 14,22 14,24 14,24 14,24 14,24 14,24 14,24 14,24 14,24 14,24 14,24 14,24 14,24 14,24 14,24 14,24 14,24 14,44 14,44 14,44 14,44 14,44 14,44 14,44 14,44 14,44 14,44 14,444 1	CL Y Internal code	0.520	Ty 10 (muce (kohm)	pical I	mpedanc	e versus Frequ	uency
→ 0.175 4,45 0.530 Recomme	1 ended	13,21	0.0	0.1	1	10 Frequency (MHz)	10
13,46 Land Pat	ttern \downarrow Dimen	isions are in <u>inches</u>	Core Term Weig Amb Stor Tape Resi +260 Mois 85% Pack 24 m PCB aque	e material ninations ght 2.9 g bient temp imum part age temp and reel p stance to o'C, parts of sture Sens relative hu caging 35 im pocket a washing bous wash.	Ferrite RoHS complia perature –40°(t temperature erature Comp backaging: –40 soldering he cooled to room sitivity Level (umidity) 0/13″ reel PI spacing, 8.6 m Tested to MIL See Doc787_F	ant tin-silver-copper ov C to +85°C with Irms of +125°C (ambient + te bonent: -40°C to +125° 0°C to +80°C at Max three 40 secon themperature between MSL) 1 (unlimited floor astic tape: 24 mm wid procket depth STD-202 Method 215 p PCB_Washing.pdf.	er copper surrent emp rise) °C. nd reflows at o cycles or life at <30°C / e, 0.4 mm thick, lus an additional
Quilar	US +1-8- UK +44-	47-639-6400 sale 1236-730595 sale	es@coilcr es@coilc	aft.com raft-europ	e.com	Document 1194P-6	Revised 09/09/ © Coilcraft Inc. 20

Taiwan +886-2-2264 3646 sales@coilcraft.com.tw **China** +86-21-6218 8074 sales@coilcraft.com.cn

Singapore + 65-6484 8412 sales@coilcraft.com.sg

Common Mode Choke – CV9172-AL

	Part numbe	Common r impedar er ¹ max (kOh	node ice ims)	Inductanc nom	e (mH) min	2	I	rms³ (A)	D((m	CR max⁴ ነOhms)		Isolati (Vrms	on⁵ s)
_	CV9172-AL	70.01 @ 0.2	1 MHz	22.0	14.3			0.57		850		1000	
1.	. When orderir	ng, please specify packagi ⊥	ng code:		Т	ypical	At	tenua	tion				
	Packaging:	CV9172-ALD D = 13" machine-ready re tape (350 parts per fu reel available: in tape leader and trailer (\$2	eel. EIA-481 em ull reel). Quantiti (not machine ro 5 charge).	bossed plastic ies less than full eady) or with		0 5 10 15			Differer	itial mode			7
2	Inductance el	B = Less than full reel. In a numbering system, C for multiple packaging change the last letter hown for each winding, me	an effort to simp oilcraft is elimina codes. When o of your part nun	lify our part ating the need rdering, simply nber from B to D.	on (dB)	20 25 30							
3.	0 Adc on an A Current per w information is	Agilent/HP 4263B LCR me vinding that causes a 40°C s for reference only and doe	rise from 25°C rise not represent	t. ambient. This absolute maxi-	vttenuati	35 40 45			Comm	ion mode			
4. 5.	DCR is speci Isolation (hipo Electrical app	fied per winding. ot) measured for two secor	ıds.		4	50 55 60							
o. R	efer to Doc 362	"Soldering Surface Mount C	components" befo	ore soldering.		65 70							
_						0.1			¹ Frequer	ncy (MHz)	10		100
0 1	.645 6.38 max	Dot indicate pin 1	S		Т	ypical	Im	peda	nce ver	sus Fre	equer	ıcy	
		Internal	code			Z	N						
	3	$-\frac{0.560}{14,22} \max \longrightarrow$			(kOhm)	10							
0	.350 3,90 max				Impedance (0.1							
		75 5 - 1		0.520 13,21		0.01			1		10		100
	0.530 Re	commended							Frequer	ncy (MHz))		
	13,46 La	and Pattern $\begin{array}{c c} \bullet & 0.340 \\ \hline \bullet & 0.060 \\ \hline 0.060 \\ \hline 1,52 \\ \hline 1 & \bullet & 0 \\ \hline 4 & \bullet & 0 \\ \hline \end{array}$	Dimensi	ions are in <u>inches</u> mm	Co Te We An Ma Sto Ta Re +22 Mc 855 Pa 200 P0 aq	re materi rmination eight 2.4 (nbient ter aximum p orage tem pe and rea sistance 60°C, part bisture Se % relative ckaging 3 m pock CB washin ueous was	al Fe s Ro g npera art te npera el pacto so co msiti humi 350/1 et spa g Tes h. Se	ature –4 mperatu ture –4 mperatu ture Coi kaging: – Idering I ldering I ldering V dity) 3″ reel acing, 9.1 sted to M e Doc787	oliant tin-sil 0°C to +85° Ire +125°C mponent: – -40°C to +8 heat Max t om tempera- el (MSL) 1 Plastic tap- l mp pocke L-STD-202 7_PCB_Wat	ver-copper °C with Irm > (ambient 40°C to +1 90°C hree 40 se ature betw (unlimited e: 24 mm v et depth 2 Method 21 shing.pdf.	r over co ns curre + temp 25°C. cond re een cyc floor life wide, 0. 5 plus a	opper int rise) flows at les e at <30° 4 mm th an additio	°C / nick,

Coilcraft www.coilcraft.com US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-7 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Choke – CF2638L

Part number ¹	Common mode impedance max (kOhms)	Inductanc nom	e (mH)² min	Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CF2638LD	2.59 @ 4.3 MHz	0.22	0.14	2.9	60.0	1000
1. When ordering, pleas	se specify packaging code:		Typic	al Attenuati	on	
 Packaging: D = 13 ta re le. B = Le nut fo characteristic constraints of the second second	CF2638LD 3" machine-ready reel. EIA-481 en pe (250 parts per full reel). Quanti el available: in tape (not machine i ader and trailer (\$25 charge). ess than full reel. In an effort to sim imbering system, Coilcraft is elimin r multiple packaging codes. When of hange the last letter of your part nuil r each winding, measured at 10 kl HP 4263B LCR meter or equivaler that causes a 40°C rise from 25°C rence only and does not represer winding. sured for two seconds. ons at 25°C.	nbossed plastic ties less than full ready) or with plify our part tating the need ordering, simply mber from B to D. Hz, 1.0 Vrms, nt. ambient. This t absolute maxi-	Attennation (dB)	Differential n	Common mode	
Refer to Doc 362 "Solder	ing Surface Mount Components" be	fore soldering.	40		10	100
0.770 max 19,56 max 2 0.390 9,91 max 1 1 1 1	$38L$ $Y \leftarrow Internal code$ $nax \rightarrow$ $0.0005/0.13$ \downarrow 0.175 $-$		Typic 10 10 10 10 10 10 10 10 10 10	ral Impedance	requency (MHz)	lency
0.660 16,76 Recomm Land Pa	$1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$	sions are in <u>inches</u> mm	Core mat Terminat Weight 3 Ambient Maximum Storage 1 Tape and Resistan +260°C, µ Moisture 85% relat Packagir 24 mm po PCB was aqueous 1	terial Ferrite ions RoHS complia 3.2 g temperature -40°C n part temperature temperature Comp reel packaging: -40 ice to soldering hea parts cooled to room Sensitivity Level (I tive humidity) ng 250/13" reel Pla packet spacing, 10.1 r hing Tested to MIL-S wash. See Doc787 F	nt tin-silver-copper ov C to +85°C with Irms of +125°C (ambient + te onent: -40°C to +125° °C to +80°C at Max three 40 secon temperature between MSL) 1 (unlimited floc astic tape: 32 mm wid nm pocket depth STD-202 Method 215 p CB Washing off	er copper urrent emp rise) C. Ind reflows at cycles or life at <30°C / e, 0.5 mm thick, lus an additional

 US
 +1-847-639-6400
 sales@coilcraft.com

 UK
 +44-1236-730595
 sales@coilcraft-europe.com

 Taiwan
 +886-2-2264
 3646
 sales@coilcraft.com.tw

 China
 +86-21-6218
 8074
 sales@coilcraft.com.cn

 Singapore
 + 65-6484
 8412
 sales@coilcraft.com.sg

Document 1194P-8 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Choke – CD1479-AL

Part number ¹	Common mode impedance max (kOhms)	Inductance nom	e (mH)² min	Irms³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CD1479-AL_	4.19 @ 3.0 MHz	0.59	0.38	4.2	20.0	1000
1. When ordering, plea	ase specify packaging code: ⊥		Typi	cal Attenuation	0 n	
	CD1479-ALD		[°]	Differential n	node	
Packaging: D = 1 t r	ape (250 parts per full reel). Quantil eel available: in tape (not machine r eader and trailer (\$25 charge).	ibossed plastic ies less than full eady) or with	5 -			
B = L r f	Less than full reel. In an effort to simp numbering system, Coilcraft is elimin or multiple packaging codes. When o change the last letter of your part nur	blify our part ating the need ordering, simply nber from B to D.	10 - (8 p) 15 -			
 Inductance shown f Adc on an Agilent 	for each winding, measured at 10 kł t/HP 4263B LCR meter or equivalen	Hz, 0.1 Vrms, t.	20 E			
 Current per winding information is for re- mum ratings.) that causes a 40°C rise from 25°C ference only and does not represen	ambient. This t absolute maxi-	Attenu 25			
4. DCR is specified pe	er winding.		30 -			
5. Isolation (hipot) me	asured for two seconds.		35		- Common mode	
Refer to Doc 362 "Solde	ering Surface Mount Components" bef	ore soldering.				
4			40 L 0	.1 1	10	100
	n k A			F	Frequency (MHz)	
0.770 10.56 max Coilc	79-AL raft			cal Impedanc	e versus Frequ	lency
	X Y Internal code		-			
2 <u> 0.670</u> 17,02	$\frac{4}{2}$ max \rightarrow		(mho			
			ר ב (k			
0.390 9,91 max			pedaı			
			<u> </u>			N
		0.660 ►	-			
1	→ <u>0.175</u> 4,45		0.1			
1	_		U	.1 1 F	Frequency (MHz)	100
0.660 Recom r 16,76 Land F	mended Pattern		Core ma Termina	aterial Ferrite ations RoHS complia	nt tin-silver-copper ove	er copper
	0.060 1,52 ↓		Weight Ambien	4.9 g t temperature -40°C	C to +85°C with Irms cu	urrent
← <u>0.4</u> ← <u>0.4</u>	$145 \rightarrow 0$ Dimens	ions are in $\frac{inches}{mm}$	Storage Tape an Resista +260°C,	temperature Comp d reel packaging: -40 nce to soldering hea parts cooled to room	+125 C (ambient + tel onent: -40° C to $+125^{\circ}$ ($^{\circ}$ C to $+80^{\circ}$ C at Max three 40 secon- temperature between	d reflows at cycles
	10-02 30-000-02		Moistur 85% rela 24 mm p PCB wa aqueous	e sensitivity Level (I ative humidity) ing 250/13" reel Pla pocket spacing, 10.1 r shing Tested to MIL-S wash, See Doc787 P	astic tape: 32 mm wide nm pocket depth STD-202 Method 215 pli CB Washing.odf.	r nre at <30°C / e, 0.5 mm thick, us an additional
			1		- 01	

US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-9 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Choke – CH4659-AL

Part number ¹	Common mode impedance max (kOhms)	Inductanc nom	e (mH) min	2	Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CH4659-AL_	4.56 @ 2.5 MHz	0.77	0.50		4.7	40.0	1000
1. When ordering, plea	ase specify packaging code:		T	vnical	Attenuatio	n	
	CH4659-ALD		T	y pical	memuan		
Packaging: D = 1 ta r le	3" machine-ready reel. EIA-481 en ape (250 parts per full reel). Quanti eel available: in tape (not machine r eader and trailer (\$25 charge).	nbossed plastic ties less than full ready) or with		5	Differential n	node	
B = L r fr 2. Inductance shown fr	Less than full reel. In an effort to simp numbering system, Coilcraft is elimin or multiple packaging codes. When c shange the last letter of your part nur or each winding, measured at 10 kl	blify our part ating the need ordering, simply mber from B to D.	ion (dB)	10			
0 Adc on an Agilent	/HP 4263B LCR meter or equivaler	nt.	uat	20			
 Current per winding information is for ref mum ratings. 	that causes a 40°C rise from 25°C ference only and does not represen	ambient. This t absolute maxi-	Atten	25			
4. DCR is specified pe	er winding.			30			
 Isolation (nipot) mea Electrical specificati 	ions at 25°C.			35		Common mode	
Refer to Doc 362 "Solde	ering Surface Mount Components" bef	ore soldering.		40			
				0.1	1 F	10 requency (MHz)	100
			Т	vnical	Impedance	versus Frequ	iencv
0.770 max CH465	59-AL		-	10			——————————————————————————————————————
			Ê				
	max 🗕		hn			N	
,,.			(K				
			ance	1			
0.390 9 91 max		111	beda				
			<u>n</u>				<u> </u>
	□ <u>0.005/0,13</u>	0.660					
		16,76					
1	\rightarrow $-\frac{0.175}{4.45}$			0.1			
				0.1	1	10	100
					F	requency (MHz)	
0.660 16,76 Recomr Land P ↓ ↓ ↓ ↓ ↓ ↓ ↓	$\begin{array}{c} \begin{array}{c} 0.060\\ \hline 1,52\\ \hline 45\\ \hline 30 \end{array} \end{array} \xrightarrow{0} \\ \end{array} \\ \begin{array}{c} 0.060\\ \hline 1,52\\ \hline \\ \hline \\ \end{array} \\ Dimens$	ions are in <u>inches</u> mm	Co Tei We An Ma Sto Tap Pe +20 Mo 855 Pa 24 PC aqu	re materia rmination sight 4.8 g bient ten ximum pa orage tem be and ree sistance t 60°C, part sisture Se % relative ckaging 2 mm pocke B washing Jeous was	al Ferrite s RoHS complian perature -40°C art temperature perature Compo l packaging: -40° to soldering heat s cooled to room i nsitivity Level (N humidity) 50/13″ reel Pla. t spacing, 10.1 m g Tested to MIL-S h. See Doc787_P(tt in-silver-copper over to +85°C with Irms ct +125°C (ambient + te nent: -40°C to +125°C C to +80°C t Max three 40 secon temperature between ISL) 1 (unlimited floo stic tape: 32 mm wide im pocket depth TD-202 Method 215 pl CB_Washing.pdf.	er copper mp rise) C. d reflows at cycles r life at <30°C / e, 0.5 mm thick, us an additional

US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-10 Revised 09/09/21 © Coilcraft Inc. 2021

Common Mode Choke – CD1480-BL

Part number ¹	Common mode impedance max (kOhms)	Inductance nom	e (mH) min	2	Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CD1480-BL_	4.53 @ 2.2 MHz	1.32	0.85		3.5	60.0	1000
1. When ordering, pleas	se specify packaging code:		T	ypical	Attenuatio)n	
	CD1480-BLD			0			
Packaging: D = 13 tap rea lea	machine-ready reel. EIA-481 en pe (250 parts per full reel). Quanti el available: in tape (not machine n ader and trailer (\$25 charge).	nbossed plastic ties less than full ready) or with		5	Differential mode		
B = Le nu for ch	ess than full reel. In an effort to simp imbering system, Coilcraft is elimin r multiple packaging codes. When a ange the last letter of your part nur	blify our part ating the need ordering, simply mber from B to D.	n (dB)	15 20			
2. Inductance shown for 0 Adc on an Agilent/H	r each winding, measured at 1 kH HP 4263B LCR meter or equivaler	z, 0.1 Vrms, nt.	uatio	25			
 Current per winding t information is for refe mum ratings. 	hat causes a 40°C rise from 25°C rence only and does not represen	ambient. This it absolute maxi-	Atten	30			
4. DCR is specified per	winding.			10			
5. Isolation (hipot) meas	sured for two seconds.			40	C	ommon mode	
Refer to Doc 362 "Solderi	ng Surface Mount Components" bef	fore soldering.		45			
1	3			0.1	1	10	100
CD1480	-BL		T	ypical	Impedanc	e versus Frequ	ency
19,56 max Coilcr	aftInternal code			10			
2 2 2 			kOhm)				
			l) eor				
0.390		TIT.	edar				
9,91 max			lmp				
	0 175	16,76		0.1			
1	→ <u>4,45</u>			0.1	1	10	100
Î			60	ro motori	r N Forrito		
$ \begin{array}{cccc} $	ended ittern $ \begin{array}{c} 0.060\\ 1,52\\ \hline \\ 5\\ \hline \\ \hline \\$	sions are in <u>inches</u> mm	Ter We An Ma Sto Tap Re +20	mination ight 4.5 g bient ten ximum pa prage tem be and ree sistance t 50°C, part	s RoHS complian perature -40°C art temperature perature Compo el packaging: -40° to soldering hea s cooled to room	nt tin-silver-copper ove to +85°C with Irms cu +125°C (ambient + ter onent: $-40°C$ to +125°C 'C to +80°C t Max three 40 second temperature between	r copper urrent mp rise) C. d reflows at cvcles
		nsitivity Level (I humidity) 250/13″ reel Pla et spacing, 10.1 n g Tested to MIL-S h. See Doc787 P	ISL) 1 (unlimited floor stic tape: 32 mm wide nm pocket depth TD-202 Method 215 plu CB Washing.pdf.	life at <30°C / ., 0.5 mm thick, us an additional			
		7 000 0400			-	0.000 mont 1104D 11	Deviced 00/00/01

Coilcraft www.coilcraft.com US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-11 Revised 09/09/21 © Coilcraft Inc. 2021

Common Mode Choke – CE2439L

 US
 +1-847-639-6400
 sales@coilcraft.com

 UK
 +44-1236-730595
 sales@coilcraft-europe.com

 Taiwan
 +886-2-2264
 3646
 sales@coilcraft.com.tw

 China
 +86-21-6218
 8074
 sales@coilcraft.com.cn

 Singapore
 + 65-6484
 8412
 sales@coilcraft.com.sg

Document 1194P-12 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Chokes – CG3333-AL

Part number ¹	Common mode impedance max (kOhms)	Inductanc nom	e (mH) min	2		Irms [:] (A)	3	DCR max ⁴ (mOhms)	Isolatic (Vrms	on⁵ s)
CG3333-AL_	2.27 @ 2.9 MHz	0.90	0.59			3.7		50.0	1000	
1. When ordering, plea	ase specify packaging code: ⊥		Т	ypica	al	Atten	uatio	m		
Declaration D (CG3333-ALD			0				Differential mode		
Packaging: D = 1 ta re	3" machine-ready reel. EIA-481 en ape (250 parts per full reel). Quanti eel available: in tape (not machine eader and trailer (\$25 charge).	nbossed plastic ities less than full ready) or with		5 —						
B = L n fc c	ess than full reel. In an effort to sim umbering system, Coilcraft is elimir or multiple packaging codes. When hange the last letter of your part nu	plify our part nating the need ordering, simply mber from B to D.	ion (dB)	10 — 15 —						
 Inductance shown for 0 Adc on an Agilent/ 	or each winding, measured at 10 kl /HP 4263B LCR meter or equivaler	Hz, 0.1 Vrms, nt.	nuat	20			+++++-			
3. Current per winding information is for refuming mum ratings.	that causes a 40°C rise from 25°C erence only and does not represer	ambient. This absolute maxi-	Atter	25				Common mode		
4. DCR is specified pe	r winding.			30				┝┥┥		
5. Isolation (hipot) mea	asured for two seconds.									
6. Electrical specification	ons at 25°C. ring Surface Mount Components" be	fore soldering		35						
		lere cerdering.		40						
				0.1			F	requency (MHz)		100
<u></u>	115/		Т	vpica	al	Impe	dance	e versus Fre	auencv	
0.770 CG333 19,56 max XXX	3-AL			10 E						
³ <u>0.670</u>	4 max →		(mhC							
17,02	I		se (kí	1						
			dano	' =	/					
0.390 9,91 max		Ĩ	upec							
			<u> </u>							
	[△]0.005/0,13]	$-\frac{0.660}{16.76}$								
0.175	I	10,70								
4,45	1			0.1			1		10	100
	_						F	requency (MHz)		
0.660 Recomn 16,76 Land P	nended attern 1,52		Co Te We An Ma	re mate rminati eight 4 nbient 1 ximum	eria on: 2 g en: pa	al Ferrite s RoHS perature art tempe	compliar -40°C	nt tin-silver-copper to +85°C with Irm +125°C (ambient -	over copper is current + temp rise)	
 ← 0.4- 11,5	$45 \rightarrow 0$ Dimension	sions are in inches mm	Sto Taj Re +2	brage to be and sistand 60°C, p	em ree ce t arts	perature packagi o solder s cooled t	Compo ng: -40° ng hea o room	onent: -40°C to +1 C to +80°C t Max three 40 se temperature betwee ISI) 1 (unlimited	25°C. cond reflows at een cycles floor life at <30°	C/
	10-02 40-000-03		85 Pa 24 PC action	% relati ckaging mm po B wash	ve g 2 cke ning	humidity) 250/13" rest t spacing g Tested f h. See Do	el Pla , 10.1 m o MIL-S c787 P0	stic tape: 32 mm v im pocket depth TD-202 Method 21 CB Washing.pdf	vide, 0.5 mm thi 5 plus an additio	ick, onal
			ad		~0					

Coilcraft www.coilcraft.com US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-13 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Chokes – CG3528-AL

Part number ¹	Common mode impedance max (kOhms)	Inductanc nom	e (mH)² min	Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)	
CG3528-AL_	6.23 @ 0.72 MHz	3.00	1.95	3.1	42.0	1000	
1. When ordering, pleas	se specify packaging code:		Typ	oical Attenua	ation		
	CG3528-ALD		(
Packaging: D = 13 tap rea lea B = Le nu for ch	" machine-ready reel. EIA-481 en be (250 parts per full reel). Quanti el available: in tape (not machine i ader and trailer (\$25 charge). ss than full reel. In an effort to simp mbering system, Coilcraft is elimin multiple packaging codes. When c ange the last letter of your part nur	bossed plastic ties less than full ready) or with blify our part ating the need ordering, simply nber from B to D.	10 ((B) 20	Differential			
 Inductance shown for 0 Adc on an Agilent/H Current per winding the 	r each winding, measured at 10 kH IP 4263B LCR meter or equivaler hat causes a 40°C rise from 25°C	Hz, 1.0 Vrms, ht. ambient This	25 Duratio	j _ _ _ _ _ _ _ _			
information is for refe mum ratings.	rence only and does not represen	t absolute maxi-	Attel 30				
4. DCR is specified per	winding.			Com	mon mode		
5. Isolation (hipot) meas	sured for two seconds.		40	' 			
6. Electrical specification	ns at 25° C.		45	;			
Refer to Doc 362 "Solderi	ng Surface Mount Components" bet	ore soldering.	50				
2	1			0.1	Frequency (MHz)	100	
0.770 19,56 max 0.670 9,91 max 0.390 9,91 max	AL 26t y Internal code		Type 10 10 10	pical Impeda	nce versus Frequ		
	<u>- 0.00070,10</u>	<u>0.660</u> 16,76 ►					
<u>0.175</u> <u>4,45</u> ←	1		0.1	0.1	1 10	100	
1					Frequency (MHz)		
0.660 16,76 Recomm Land Pa	ended ittern $\begin{array}{c} 0.060\\ 1,52\\ \hline \bullet \\ \hline \bullet \\ \hline \bullet \\ 1 \\ \hline \bullet \\ \hline \bullet \\ 0 \\ \hline \hline \bullet \\ 0 \\ \hline \hline \bullet \\ 0 \\ \hline \bullet \\ 0 \\ \hline \hline \hline \bullet \\ 0 \\ \hline \hline \hline \bullet \\ 0 \\ \hline \hline \hline \hline \bullet \\ 0 \\ \hline \hline \hline \hline \bullet \\ 0 \\ \hline \hline \hline \hline \hline \bullet \\ 0 \\ \hline \hline$	ions are in <u>inches</u> mm	Core material Ferrite Terminations RoHS compliant tin-silver-copper over copper Weight 5.1 g Ambient temperature -40°C to +85°C with Irms current Maximum part temperature +125°C (ambient + temp rise) Storage temperature Component: -40°C to +125°C. Tape and reel packaging: -40°C to +80°C Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity) Packaging 250/13" reel Plastic tape: 32 mm wide, 0.5 mm thick, 24 mm pocket spacing, 10.1 mm pocket depth PCB washing Tested to MIL-STD-202 Method 215 plus an additional accurate the sensitivity of the sensitive profile and the sensitive				

 US
 +1-847-639-6400
 sales@coilcraft.com

 UK
 +44-1236-730595
 sales@coilcraft-europe.com

 Taiwan
 +886-2-2264
 3646
 sales@coilcraft.com.tw

 China
 +86-21-6218
 8074
 sales@coilcraft.com.cn

 Singapore
 + 65-6484
 8412
 sales@coilcraft.com.sg

Document 1194P-14 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Choke – CE1759-AL

Part number ¹	Common mode impedance max (kOhms)	Inductance nom	e (mH)² min	Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CE1759-AL_	4.82 @ 0.99 MHz	0.81	0.52	6.0	14.0	1000
1. When ordering, please	e specify packaging code: ⊥		Typ	ical Attenuation	n	
 Packaging: D = 13" tape reel lead B = Less num for r chai Inductance shown for e 0 Adc on an Agilent/HF Current per winding the information is for refere mum ratings. DCR is specified per w Isolation (hipot) measu Electrical specifications Refer to Doc 362 "Soldering 	machine-ready reel. EIA-481 em e (120 parts per full reel). Quantit available: in tape (not machine r ler and trailer (\$25 charge). s than full reel. In an effort to simp bering system, Coilcraft is elimina nultiple packaging codes. When c nge the last letter of your part num each winding, measured at 10 kl- 2 4263B LCR meter or equivalen at causes a 40°C rise from 25°C ence only and does not represent vinding. Irred for two seconds. s at 25°C. g Surface Mount Components" before	bossed plastic ies less than full eady) or with lify our part ating the need ordering, simply nber from B to D Iz, 0.1 Vrms, t. ambient. This t absolute maxi- pore soldering.	0 5 10 20 25 35 40 45 50	Differential mode	Common mode	
	ot indicates pin 1		Tvr	^{0.1} Free Free Free Free Free Free Free Fre	equency (MHz)	100 uencv
1.02 26,0 max CE1759 22,0 max 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	P-AL Internal code		10			
<u>1.22</u> 31,0 n		0.598 ← 0.598 15,2 →	Impedance (kOhm)			
\rightarrow $\left \begin{array}{c} -0.155\\ 3,94 \end{array} \right $						
0.598 15,2 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	ended $\underbrace{\frac{0.40}{10,16}}_{4}$	inches	0.1 Core I Termi	0.1 1 material Ferrite nations RoHS compliant	10 equency (MHz) tin-silver-copper ov	100
< <u>1.10</u> 27,80	5 → Dimens	ions are in $\frac{1000}{\text{mm}}$	Weigh Ambie Maxin Storag	nt 12.9 g ent temperature -40°C t num part temperature + ge temperature Compon	o +85°C with Irms of 125°C (ambient + te lent: -40°C to +125°	current emp rise) °C.

Tape and reel packaging: -40°C to +80°C

Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)

Packaging 120/13" reel Plastic tape: 44 mm wide, 0.5 mm thick, 32 mm pocket spacing, 12.4 mm pocket depth

PCB washing Tested to MIL-STD-202 Method 215 plus an additional aqueous wash. See Doc787_PCB_Washing.pdf.

-<u>•000</u> -•000

₩___°2

US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-15 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Choke – CG3885-AL

Part number ¹	Common mode impedance max (kOhms)	Inductance nom	e (mH)² min	Irms ³ (A)	DCR max⁴ (mOhms)	lsolation⁵ (Vrms)
CG3885-AL_	3.11 @ 1.8 MHz	0.47	0.30	10.0	8.0	1000
1. When ordering, pleas	e specify packaging code: ⊥		Туріса	l Attenuatio	n	
Packaging: D = 13 tag red lea B = Le nu for ch 2. Inductance s 0.1 Vrms, 0 Adc on a 3. Current per winding t	CG3885-ALD " machine-ready reel. EIA-481 em be (120 parts per full reel). Quantit el available: in tape (not machine r ader and trailer (\$25 charge). ss than full reel. In an effort to simp mbering system, Coilcraft is elimina multiple packaging codes. When c ange the last letter of your part num hown for each winding, measured n Agilent/HP 4263B LCR meter or hat causes a 40°C rise from 25°C	bossed plastic ies less than full eady) or with blify our part ating the need ordering, simply nber from B to D. at 10 kHz, equivalent. ambient. This	0 5 10 (G) 15 20	Differential mo		
 information is for reference mum ratings. DCR is specified per Isolation (hipot) meas Electrical specification Refer to Doc 362 "Soldering" 	winding. sured for two seconds. ns at 25°C. ng Surface Mount Components" befo	ore soldering.	B 25 30 35 40 0.1	Con 1 F	10 requency (MHz)	100
$\begin{array}{c} 1.02\\ 26,0\\ \hline \\ \\ 26,0\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	nended	0.598 ← 0.598	Typica 10 10 10 10 10 10 10 10 10 10	l Impedance	e versus Frequ	lency
<u>↓</u> <u>↓</u> <u>1.1</u> 27,	Frequency (MHz) Frequency (MHz) Core material Ferrite Terminations RoHS compliant tin-silver-copper over copper Weight 15.3 g Ambient temperature -40°C to +85°C with Irms current Maximum part temperature +125°C (ambient + temp rise) Storage temperature Component: -40°C to +125°C. Tape and reel packaging: -40°C to +80°C Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)					

 US
 +1-847-639-6400
 sales@coilcraft.com

 UK
 +44-1236-730595
 sales@coilcraft-europe.com

 Taiwan
 +886-2-2264
 3646
 sales@coilcraft.com.tw

 China
 +86-21-6218
 8074
 sales@coilcraft.com.cn

 Singapore
 + 65-6484
 8412
 sales@coilcraft.com.sg

Document 1194P-16 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Choke – CF2805-AL

Part number ¹	Common mode impedance max (kOhms)	Inductance nom	e (mH)² min	Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)	
CF2805-AL_	3.64 @ 1.9 MHz	0.63	0.40	6.8	14.0	1000	
1. When ordering, pleas	e specify packaging code:		Tvi	nical Attenuatio	m		
	CF2805-ALD		± y j		//I		
1. When ordering, pleas Packaging: $D = 13''_{tap}$ rec lea $B = Lea num_{for}$ 2. Inductance shown for 0 Adc on an Agilent/H 3. Current per winding th information is for refermum ratings. 4. DCR is specified per vision 5. Isolation (hipot) meas 6. Electrical specification Refer to Doc 362 "Solderin 1.02 max 2. CF280 Coilor XXX: 1.02 max 1.02 m	e specify packaging code: CF2805-ALD "machine-ready reel. EIA-481 em be (120 parts per full reel). Quantit el available: in tape (not machine r ider and trailer (\$25 charge). ss than full reel. In an effort to simp multiple packaging codes. When c ange the last letter of your part nur each winding, measured at 10 kH IP 4263B LCR meter or equivalen hat causes a 40°C rise from 25°C rence only and does not represen winding. ured for two seconds. hs at 25°C. Ing Surface Mount Components" bef Dimense Age to the seconds. hended attern 0.40 10,16 0.40 10,16 0.40 Dimense	bossed plastic ies less than full eady) or with blify our part ating the need ordering, simply nber from B to D. t_2 , 0.1 Vrms, t. ambient. This t absolute maxi- ore soldering.	Provide the seried of the ser				
	10- <u>•</u> • <u>00</u> -02 30		Maxir Stora Tape Resis +260° Moist 85%	num part temperature ige temperature Compo and reel packaging: -40° stance to soldering hea °C, parts cooled to room ture Sensitivity Level (N relative humidity)	+125°C (ambient + te onent: -40°C to +125° C to +80°C t Max three 40 secor temperature between ISL) 1 (unlimited floc	emp rise) C. d reflows at cycles or life at <30°C /	
			85% I Packa 32 mr PCB aqueo	relative numidity) aging 120/13″ reel Pla n pocket spacing, 12.4 n washing Tested to MIL-S bus wash. See Doc787_Pr	stic tape: 44 mm wide im pocket depth TD-202 Method 215 p CB_Washing.pdf.	e, 0.5 mm thick, lus an additional	

US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-17 Revised 09/09/21 © Coilcraft Inc. 2021

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Common Mode Chokes / Filters category:

Click to view products by Coilcraft manufacturer:

Other Similar products are found below :

 74279408
 PE-62911NL
 PE-64683
 ST6118T-R
 T8114NLT
 RD5122-10-6M0
 TCM0806G-350-2P-T
 TCM0806G-650-2P-T
 IND-0110

 UAL21V07012500
 UAL24VR06500CH
 UALSC023000000
 UALSC1020JH000
 UALSC1520JH000
 UALSU16VD30030

 UALSU16VD40010
 UALSU9H0305000
 UALSU9HF060300
 UALSU9VD070100
 36-00037
 5701610000
 UALW21HS072450

 UALSU9VD070400
 UALSU9HF050500
 UALSU9H0208000
 UALSCF25081300
 UAL24VK06450CH
 PLT10HH501100PNB

 PLT10HH401100PNB
 PLT10HH1026R0PNB
 PE-67531
 EXC-X4CH120X
 TLH10UB
 113 0R5
 2752041447
 2752045447
 CMS3-11-R

 7351V
 CMF16-153131
 744252510
 T8116NLT
 FE2X10-4-2NL
 744253200
 744253101
 744252220
 TX8111NLT
 UAL30VR3500470

 CTX01-19077-R
 T8003NLT
 CTX01-13663
 CTX66-19521-R

 <