PERFORMANCE MEDICAL SWITCHERS

FEATURES:

- Wide-range ac input 85-264 Vac
- 2-year warranty
- Conducted EMI exceeds FCC Class B and CISPR 22 Class B (Commercial models) and CISPR 11 Class B (Medical models)
- Commercial Approved to UL1950, IEC950, EN60950 and CSA22.2-234 L3
- Medical Approved to UL2601-1, IEC601-1 and CSA22.2 No. 601.1
- Complies with EN61000-3-2 Class A
- RoHS Compliant Model Available (G suffix)

SPECIFICATIONS

Ac Input

85-264 Vac, $47-63 \mathrm{~Hz}$ single phase.
Input Current
Maximum input current at $120 \mathrm{Vac}, 60 \mathrm{~Hz}$ with full rated output load: 2.3 A
Hold-Up Time
20 ms minimum from loss of ac input at full load, nominal line (115 Vac).

Output Power

80 W continuous, 110 W with air flow. Peak ratings are for 60 s maximum duration, 10% duty cycle. During peak load condition, output regulation may exceed total regulation limits.

Overload Protection
Fully protected against short circuit and output overload. Short circuit protection is cycling type power limit on outputs $1 \& 2$; foldback type on outputs 3 \& 4. Recovery after fault is automatic. Factory set to begin power limiting at 120 W . See output ratings chart for additional notes or conditions.
Overvoltage Protection
Main outputs: $124 \% \pm 12 \%$ typical.

Efficiency

70% at full rated load, nominal input voltage, depending on model and load distribution.
Input Protection
Internal ac fuse provided. Designed to blow only if a catastrophic failure occurs in the unit.

Inrush Current

Inrush is limited by internal thermistors. Inrush at 240 Vac under cold start conditions will not exceed 34 A .

Temperature Coefficient $0.03 \% /{ }^{\circ} \mathrm{C}$ typical on all outputs.

Environmental

Designed for 0 to $50^{\circ} \mathrm{C}$ operation at full rated output power; derate output current and total output power by 2.5% per ${ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$. See Environmental and Packaging Specifications on next page.

Power Fail (optional)

TTL- or CMOS-compatible output goes low ($<0.5 \mathrm{~V}$) 5 ms before output voltage drops more than 4% below nominal voltage upon loss of ac power. The signal is factory set to trip on 84 to 94 Vac brown-out depending upon incoming line impedance and distortion. Other settings are available to the user through adjustment of built-in potentiometer (consult factory for assistance). For Power fail option, add -PF after model number.

Output Noise

$0.5 \% \mathrm{rms}, 1 \% \mathrm{pk}-\mathrm{pk}, 20 \mathrm{MHz}$ bandwidth, differential mode. Measured with noise probe directly across output terminals of the power supply.

Transient Response
Main output-500 μ s typical response time for return to within 0.5% of final value for a 50% load step change. $\Delta \mathrm{i} / \Delta \mathrm{t}<0.2 \mathrm{~A} / \mu \mathrm{s}$. Maximum voltage deviation is 3.5%. Startup/shutdown overshoot less than 3\%.

Remote Sense
Provided as a standard feature on single-output models.
Voltage Adjustment
Built-in potentiometer adjusts voltage $\pm 5 \%$ on outputs $1 \& 2$.
EMI/EMC Compliance
All models include built-in EMI filtering to meet the following emissions requirements:

EMI SPECIFICATIONS

Conducted Emissions GPC80
Conducted Emissions GPM80
Static Discharge
RF Field Susceptibility
Fast Transients/Bursts
Surge Susceptibility
Line Frequency Harmonics
Commercial Leakage Current
0.7 mA 254 Vac @ 60 Hz input.

Commercial Safety

Approved to UL1950, CSA22.2 No. 234 Level 3, IEC950 and EN60950. UL file \#E135803 commercial; CSA \#LR46516 all. The output(s) are intended for safety earthed Signal Output and Intermediate Circuits only. All dc outputs are SELV under normal and single fault conditions.

Medical Leakage Current
$35 \mu \mathrm{~A} 254 \mathrm{Vac}$ @ 60 Hz input.
Medical Commercial Safety
Approved to UL2601-1, CSA-C22.2 No. 601.1 Level 3 and IEC601.1. UL file E116994; CSA \#LR46516. The output(s) are intended for safety earthed Signal Output and Intermediate Circuits only. The output(s) are not acceptable for patient connection without additional isolation. All dc outputs are SELV under normal and single fault conditions.

Commercial Model	Medical Model	RoHS Suffix*	Output No.	Output	Output Minimum	Output Maximum (B)	Output Maximum (C)	Output Peak	Noise P-P	Total Regulation (A)
GPC80A	GPM80A	G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 1.0 \mathrm{~A} \\ 0 \mathrm{~A} \\ 0 \mathrm{~A} \\ 0 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 12 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \mathrm{~A} \\ & 4 \mathrm{~A} \\ & 1.2 \mathrm{~A} \\ & 1.2 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 16 \mathrm{~A} \\ 5 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ \hline \end{gathered}$	50 mV 120 mV 120 mV 120 mV	$\begin{aligned} & 2 \% \\ & 2 \% \\ & 3 \% \\ & 3 \% \end{aligned}$
GPC80B	GPM80B	G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 12 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \mathrm{~A} \\ & 4 \mathrm{~A} \\ & 1.2 \mathrm{~A} \\ & 1.2 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{array}{r} 16 \mathrm{~A} \\ 5 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ \hline \end{array}$	50 mV 120 mV 120 mV 50 mV	$\begin{aligned} & 2 \% \\ & 2 \% \\ & 3 \% \\ & 3 \% \end{aligned}$
GPC80C	GPM80C	G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & +15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \end{aligned}$	$\begin{gathered} 12 \mathrm{~A} \\ 3 \mathrm{~A} \\ 1 \mathrm{~A} \\ 1 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 12 \mathrm{~A} \\ & 4 \mathrm{~A} \\ & 1.2 \mathrm{~A} \\ & 1.2 \mathrm{~A} \end{aligned}$	$\begin{gathered} 16 \mathrm{~A} \\ 5 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 1.2 \mathrm{~A} \end{gathered}$	50 mV 120 mV 150 mV 150 mV 150 mV	$\begin{aligned} & 2 \% \\ & 2 \% \\ & 3 \% \\ & 3 \% \end{aligned}$
GPC80D	GPM80D	G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \\ & +24 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$	$\begin{gathered} 12 \mathrm{~A} \\ 3 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 16 \mathrm{~A} \\ 4 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ \hline \end{gathered}$	50 mV 240 mV 120 mV 120 mV	$\begin{aligned} & 2 \% \\ & 2 \% \\ & 3 \% \\ & 3 \% \\ & \hline \end{aligned}$
GPC80 E	GPM80E	G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \\ & +24 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & +15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 12 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$	$\begin{gathered} 12 \mathrm{~A} \\ 3 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 1.2 \mathrm{~A} \end{gathered}$	$\begin{gathered} 16 \mathrm{~A} \\ 4 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 1.2 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 50 \mathrm{mV} \\ & 240 \mathrm{mV} \\ & 150 \mathrm{mV} \\ & 150 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 2 \% \\ & 2 \% \\ & 3 \% \\ & 3 \% \end{aligned}$
GPC80P	GPM80P	G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \\ & +24 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & +12 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 0 \mathrm{~A} \\ 0 \mathrm{~A} \end{gathered}$	$\begin{gathered} 12 \mathrm{~A} \\ 3.5 \mathrm{~A} \\ 1 \mathrm{~A} \\ 2 \mathrm{~A} \end{gathered}$	$\begin{gathered} 12 \mathrm{~A} \\ 4.5 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 2 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 16 \mathrm{~A} \\ & 4.5 \mathrm{~A} \\ & 1.2 \mathrm{~A} \\ & 2.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 50 \mathrm{mV} \\ & 400 \mathrm{mV} \\ & 120 \mathrm{mV} \\ & 120 \mathrm{mV} \end{aligned}$	$\begin{gathered} 2 \% \\ +10 \% /-5 \% \mathrm{D} \\ 3 \% \\ 3 \% \end{gathered}$
GPC80-5	GPM80-5	G	1	5 V	0 A	16 A	20 A	22 A	50 mV	2\%
GPC80-12	GPM80-12	G	1	12 V	0 A	6.7 A	9.2 A	9.2 A	120 mV	2\%
GPC80-15	GPM80-15	G	1	15 V	0 A	5.3 A	7.3 A	7.3 A	150 mV	2\%
GPC80-24	GPM80-24	G	1	24 V	0 A	3.4 A	4.6 A	4.6 A	240 mV	2\%
GPC80-28	GPM80-28	G	1	28 V	0 A	2.9 A	3.9 A	3.9 A	280 mV	2\%
GPC80-48	GPM80-48	G	1	48 V	0 A	1.7 A	2.3 A	2.3 A	480 mV	2\%

* Add "G" suffix to part number for RoHS compliant model. Contact factory for availability.
A. Total regulation is defined as the maximum deviation from the nominal voltage for all steady-state conditions of initial voltage setting, input line voltage and output load.
B. Ratings for unrestricted natural convection cooling; output $1 \& 2$ combined load not to exceed 14 A continuous; total power $=80 \mathrm{~W}$.
C. Ratings with 26 cfm forced air cooling; output $1 \& 2$ combined load not to exceed 16A continuous; total power = 110W.
D. To maintain these regulation conditions, the +5 V current must be at least $1 / 4$ of V 2 and not greater than 5 times the V 2 current. Requires +5 V to be adjusted within $\pm 1 \%$ with at least a 1 A load to maintain regulation on this input.
E. For Power Fail option, add -PF after the model number.

GPC80/GPM80 MECHANICAL SPECIFICATIONS

INPUT: J1
AMP P/N $640445-50.156[3.96 \mathrm{~mm}]$ CTR HEADER

AMP P/N 640445-5 0.156 [3.96mm] CTR HEADER PIN 1) AC GROUND
PIN 2) N/C
PIN 3) AC NEUTRAL
PIN 4) N/C
PIN 5) AC LINE
OUTPUT: J2
MATING CONNECTORS AMP P/N

AMP P/N $1-640445-30.156[3.96 \mathrm{~mm}]$ CTR HEADER

	HOUSING	CONTACT
INPUT	640250-5	$770476-1$
OUTPUT	$1-640250-3$	$770476-1$

J2	MULTI OUTPUT MODELS	SINGLE OUTPUT MODELS	$\begin{gathered} \mathrm{J} 2 \\ \mathrm{CONT} . \end{gathered}$	$\begin{aligned} & \text { MULT } \\ & \text { OUTPUT } \end{aligned}$ MODELS	SINGLE MODELS
PIN 1)	OUTPUT\#1	OUTPUT\#1	PIN 8)	OUTPUT \#2	COMMON
PIN 2)	OUTPUT\#1	OUTPUT\#1	PIN 9)	OUTPUT \#2	COMMON
PIN 3)	OUTPUT \#1	OUTPUT \#1	PIN 10)	POWER FAIL	POWER FAII
PIN 4)	COMMON	UTPUT	PIN 11)	OUTPUT	+ SENSE
PIN 5)	COMMON	COMMON	PIN 12)	KEY	KEY
PIN 6)	COMMON	COMMON	PIN 13)	OUTPUT \#4	- SENSE

TOLERANCES:
$X . X X= \pm 0.030$ (0.76 MM)
$X . X X X= \pm 0.010(0.25 \mathrm{MM})$
NOTE: 5A MAXIMUM RECOMMENDED CURRENT PER CONNECTOR PIN OPTIONAL ENCLOSURE AVALABLE, ORDER PN 08-30466-1180 WEIGHT 1.8 LBS MAX. [0.82 kg MAX.]

ENVIRONMENTAL SPECIFICATIONS	OPERATING	NON-OPERATING
Temperature (A)	See individual specs	-40 to $+85^{\circ} \mathrm{C}$
Humidity (A)	0 to $95 \% \mathrm{RH}$	0 to $95 \% \mathrm{RH}$
Shock (B)	$20 \mathrm{~g}_{\mathrm{pk}}$	$40 \mathrm{~g}_{\mathrm{pk}}$
Altitude	-500 to $10,000 \mathrm{ft}$	-500 to $40,000 \mathrm{ft}$
Vibration (C)	$1.5 \mathrm{~g}_{\mathrm{rms}^{2}} 0.003 \mathrm{~g}^{2} / \mathrm{Hz}$	$5 \mathrm{~g}_{\mathrm{rms}} 0.026 \mathrm{~g}^{2} / \mathrm{Hz}$

A. Units should be allowed to warm up/operate under non-condensing conditions before application of power.
B. Shock testing-half-sinusoidal, $10 \pm 3 \mathrm{~ms}$ duration, \pm direction, 3 orthogonal axes, total 6 shocks.
C. Random vibration-10 to $2000 \mathrm{~Hz}, 6 \mathrm{~dB} /$ octave roll-off from 350 to $2000 \mathrm{~Hz}, 3$ orthogonal axes. Tested for 10 min ./axis operating and 1 hr ./axis non-operating.

SL Power Electronics, Inc. 6050 King Drive, Bldg. A, Ventura, CA, 93003, USA. Phone: (805) 4864565 Fax: (805) 4878911 Email: sl@slpower.com Rev. $12 / 06$.
Data Sheet © 2006 SL Power Electronics, Inc. The information and specifications contained in this data sheet are believed to be correct at time of publication.
However, SL Power accepts no responsibility for consequences arising from reproduction errors or inaccuracies. Specifications are subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Power Supplies category:
Click to view products by Condor manufacturer:
Other Similar products are found below :
70841011 73-551-0005 AAD600S-4-OP R22095 HWS50A-5/RA KD0204 9021 S-15F-12 LDIN100150 LPM000-BBAR-01 LPX17S-C EVS57-10R6/R FDC40-24S12 FP80 FRV7000G 2292940370121900 VI-PU22-EXX 40370121910 LDIN5075 432703037161 WRB01XU LPX140-C 08-30466-1040G 09-160CFG 70841004 70841025 VPX3000-CBL-DC LPM000-BBAR-05 LPM000-BBAR-08 LPM124-OUTA1-48 LPM000-BBAR-07 LPM109-OUTA1-10 LPM616-CHAS 08-30466-1055G 08-30466-2175G DMB-EWG TVQF-1219-18S 6504-226-2101 XPFM201A+ MAP80-4000G LFP300F-24-TY SMP21-L20-DC24V-5A VI-MUL-ES 08-30466-0065G CME240P-24 VI-RU031-EWWX 08-30466-0028G S82Y-TS01 LFP300F-24-SNTY

