FEATURES

－ $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}$ ，and Adjustable Output Versions
－Adjustable version output voltage range， 1.23 V
－to 57 V 土 4% max over line and load conditions
－Output load current：3A
－Input voltage range up to 60 V
－Requires only 4 external components
－ 52 kHz fixed frequency internal oscillator
－TTL shutdown capability，low power standby mode
－High efficiency
－Thermal shutdown and current limit protection
－Built－in switching transistor on chip
－5－lead T0－220 package

APPLICATIONS

－Simple High－Efficiency Step－Down（Buck） Regulator
－Efficient Pre－Regulator for Linear Regulators
－On－Ca「d Switching Regulators
－Positive to Negative Converter （Buck－Boost）
－Negative Step－Up Converters
－Power Supply for Battery Chargers

GENERAL DESCRIPTION

The CBM2576HVSseries of regulators are monolithic integrated circuits that provide all the active functions for a step－down（buck）switching regulator，capable of driving 3A load with excellent line and load regulation．These devices are available in fixed output voltages of 3.3 V ， $5.0 \mathrm{~V}, 12 \mathrm{~V}$ ，and adjustable output version．Requiring a minimum number of external components， these regulators are simple to use and include internal frequency compensation and a fixed－frequency oscillator．

The CBM2576HVSseries offers a high－efficiency replacement for popular three－terminal linear regulators．It substantially reduces the size of the heat sink，and in some cases no heat sink is required．A standard series of inductors optimized for use with the CBM2576HVSare available from several different manufacturers．This feature greatly simplifies the design of switch－mode power supplies．

Other features include a guaranteed $士 4 \%$ tolerance on output voltage within specified input voltages and output load conditions，and $士 10 \%$ on the oscillator frequency．The external shutdown function can be controlled by logic level and then come into standby mode．The output switch includes cycle－by－cycle current limiting，as well as thermal shutdown for full protection under fault conditions．

The CBM2576HVSseries a 「e available in a standard 5－lead T0－220 package．

Block diagram

Figure 1.
3.3V R2 $=2.02 \mathrm{k}$
5.0V, R2 = 3.69k
$12 \mathrm{~V}, \mathrm{R} 2=10.56 \mathrm{k}$
For adjustable version
R1 = Open, R2 = on

Typical Electrical Parameters

Parameter, unit		Symbol	Typ. value	Test condition
Efficiency,\%	CBM2576HVS-ADJ		77	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$
	CBM2576HVS-3.3		75	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$
	CBM2576HVS-5.0		77	
	CBM2576HVS-12		88	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$
Max. Duty Cycle \{ON), \%		DC max	98	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$

Typical Application (Fixed Output voltage versions)

Figure 2.
C1—aluminum electrolytic capacitor(100uF, 75V);
C2—aluminum electrolytic capacitor(1000uF, 25V);
L1-inductor (100uH);
D1—Schottky diode

Adjustable Output Voltage Versions

Figure 3.
$V_{\text {out }}=V_{\text {ref }}\left(1.0+\frac{R_{2}}{R_{1}}\right), \quad R_{2}=R_{1}\left(\frac{V_{\text {out }}}{V_{\text {ref }}}-1.0\right)$
Where Vref $=1.23 \mathrm{~V}$, R1 between 1.0 k and 5.0 k
$\mathrm{C} 1=10 \mathrm{nF}$
$\mathrm{C} 2=1 \mathrm{nF}$

ABSOLUTE MAXIMUM RATINGS

（Absolute Maximum Ratings indicate limits beyond which damage to the device may occur．）

Rating	Symbol	Value	Unit
Maximum Supply Voltaqe	Vin	63	V
ON／OFF Pin Input Voltage		$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+25$	V
Output Voltaoe to Ground（Steadv－State）		－0．1	V
Power Dissipation TO－220，5－Lead Thermal Resistance，Junction－to－Ambient Thermal Resistance，Junction－to－Case T0－263，5－Lead（D2PAK） Thermal Resistance，Junction－to－Ambient Thermal Resistance，Junction－to－Case	P_{D} $\mathrm{R}_{\text {өJA }}$ $\mathrm{R}_{\text {өرс }}$ P_{D} $\mathrm{R}_{\text {өJA }}$ $\mathrm{R}_{\text {өرс }}$	Internally Limited 65 5.0 Internally Limited 70 5.0	W ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ W ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	Tstg		${ }^{\circ} \mathrm{C}$
Minimum ESD Rating（Human Body Model： $\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega)$		2.0	kV
Lead Temperature（Soldering， 10 seconds）		260	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	T，	150	${ }^{\circ} \mathrm{C}$

＊Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．
Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．

OPERATING RATINGS

（Operating Ratings indicate conditions for which the device is intended to be functional，but do not guarantee specific performance limits．For guaranteed specifications and test conditions，see the Electrical Characteristics．）

Rating	Symbol	Value	Unit
Operating Junction Temperature Range	T_{J}	-40 to +125	${ }^{\circ} \mathrm{C}$
Supply Voltage	V_{IN}	60	V

ELECTRICAL CHARACTERISTICS

（Unless otherwise specified，Vin $=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$ ，and Adjustable version，Vin $=25 \mathrm{~V}$ for the 12 V version，and $\mathrm{Vin}=30 \mathrm{~V}$ for the 15 V version． $\mathrm{I}_{\text {Load }}=500 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$ ，for min／max values T_{j} is the operating junction temperature range that applies unless otherwise noted）

IC	Parameter，unit	Symbol	Limit		Test condition	$\mathrm{T}_{\mathrm{A},}{ }^{\circ} \mathrm{C}$
			min	max		
$\begin{aligned} & \text { CBM2576 } \\ & \text { HVS-ADJ } \end{aligned}$	Feedback bias current，nA	IB	－	$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{VFB}=1,3 \mathrm{~V} ; \\ & \mathrm{VIN}=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \pm 10 \\ & 125^{*} \\ & -40 \end{aligned}$
	Oscillator frequency，kHz	fOSC	$\begin{aligned} & 47 \\ & 42 \\ & \hline \end{aligned}$	$\begin{aligned} & 58 \\ & 63 \end{aligned}$	$\mathrm{VIN}=12 \mathrm{~V}$	
	Saturation voltage，V	VSAT	－	$\begin{aligned} & \hline 1.8 \\ & 2,0 \end{aligned}$	$\begin{aligned} & \text { VFB }=O V ; \\ & \text { VIN }=12 V ; \\ & \text { IOUT }=3 A \end{aligned}$ no external circuit	
	Current limit，A	ICL	$\begin{aligned} & 4.2 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{VFB}=O V \\ & \mathrm{VIN}=12 \mathrm{~V} \\ & 3 \mathrm{~A} \leq I O U T \leq 8 \mathrm{~A} \end{aligned}$ no external circuit	
	Output leakage current，mA	IL（O）		2	$\begin{aligned} & \text { VFB }=12 \mathrm{~V} ; \\ & \text { VIN }=60 \mathrm{~V} ; \\ & \text { VOUT }=O \mathrm{~V} \\ & \text { no external circuit } \end{aligned}$	25 ± 10
		IL（－1）		30	$\begin{aligned} & \mathrm{VFB}=12 \mathrm{~V} ; \\ & \text { VIN }=60 \mathrm{~V} ; \\ & \text { VOUT }=-1 \mathrm{~V} \end{aligned}$ no external circuit	
	Quiescent current，mA	IQ		10	$\begin{aligned} & \mathrm{VFB}=12 \mathrm{~V} ; \\ & \mathrm{VIN}=12 \mathrm{~V} \end{aligned}$	
	Standby quiescent current， uA	ISTBY		200	$\begin{aligned} & \hline \text { VFB }=O V ; \\ & \text { VIN }=60 \mathrm{~V} ; \\ & \text { VON } / O F F=5 \mathrm{~V} \\ & \hline \end{aligned}$	
	ON／OFF pin low level input voltage（switch on）， V	VIL	$\begin{aligned} & \hline 1.0 \\ & 0.8 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{FB}=0 \mathrm{~V} \\ & \mathrm{~N}=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 士 10 \\ & 125^{*} \\ & -40 \end{aligned}$
	ON／OFF pin high level input voltage（switch off），V	VIH		$\begin{aligned} & \hline 2.2 \\ & 2.4 \end{aligned}$		
	ON／OFF pin high level input current（switch off），uA	IIH		30	$\begin{aligned} & \hline \mathrm{VFB}=0 \mathrm{~V} ; \\ & \mathrm{VIN}=12 \mathrm{~V} ; \\ & \mathrm{VON} / O F F=5 \mathrm{~V} \\ & \hline \end{aligned}$	25 ± 10
	ON／OFF pin low level input current（switch on），uA	IIL		10	$\begin{aligned} & \mathrm{VFB}=0 \mathrm{~V} ; \\ & \mathrm{VIN}=12 \mathrm{~V} ; \\ & \text { VON/OFF }=0 \mathrm{~V} \end{aligned}$	
	Feedback voltage，V	VFB	1.217	1.243	$\begin{aligned} & \text { VIN }=12 \mathrm{~V} ; \text { ILOAD }=0.5 \mathrm{~A} ; \\ & \text { VOUT }=5 \mathrm{~V} \end{aligned}$	
			$\begin{aligned} & 1.193 \\ & 1.180 \end{aligned}$	$\begin{aligned} & 1.273 \\ & 1.286 \end{aligned}$	$\begin{aligned} & 8 \mathrm{~V} \leq \mathrm{VIN} \leq 60 \mathrm{~V} ; \\ & 0.5 \mathrm{~A} \leq \mathrm{ILOAD} \leq 3 \mathrm{~A} ; \\ & \mathrm{VOUT}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \pm 10 \\ & 125^{*} \\ & -40 \\ & \hline \end{aligned}$

IC	Parameter, unit	Symbol	Limit		Test condition	$\mathrm{T}_{\mathrm{A},}{ }^{\circ} \mathrm{C}$
			min	max		
$\begin{aligned} & \text { CBM2576 } \\ & \text { HVS-3.3 } \end{aligned}$	Oscillator frequency, kHz	fosc	$\begin{aligned} & 47 \\ & 42 \end{aligned}$	$\begin{aligned} & 58 \\ & 63 \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$	$\begin{aligned} & 25 \pm 10 \\ & 125^{*} \\ & -40 \end{aligned}$
	Saturation voltage, V	$\mathrm{V}_{\text {SAT }}$		$\begin{aligned} & 1.8 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {FB }}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \\ & \mathrm{I}_{\text {OUT }}=3 \mathrm{~A} \\ & \text { no external circuit } \end{aligned}$	
	Current limit, A	ICL	$\begin{aligned} & 4.2 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}_{;} \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \\ & 3 \mathrm{~A} \leq \mathrm{I}_{\mathrm{OUT}} \leq 8 \mathrm{~A} ; \\ & \text { no external circuit } \\ & \hline \end{aligned}$	
	Output leakage current, mA	$\mathrm{I}_{\text {(0) }}$		2	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IN}}=60 \mathrm{~V} ; \\ & 3 \mathrm{~A} \leq \mathrm{I}_{\mathrm{OUT}} \leq 8 \mathrm{~A} \\ & \text { no external circuit } \\ & \hline \end{aligned}$	25 ± 10
		$\mathrm{I}_{\mathrm{L}(-1)}$		30	$\begin{aligned} & \hline \mathrm{V}_{\text {FB }}=12 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IN }}=60 \mathrm{~V} ; \\ & \mathrm{V}_{\text {OUT }}=-1 \mathrm{~V} ; \\ & \text { no external circuit } \\ & \hline \end{aligned}$	
	Quiescent current, mA	I_{Q}		10	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \\ & \hline \end{aligned}$	
	Standby quiescent current, uA	$\mathrm{I}_{\text {STBY }}$		200	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IN }}=60 \mathrm{~V} ; \\ & \mathrm{V}_{\text {ON/OFF }}=5 \mathrm{~V} \end{aligned}$	
	ON/OFF pin low level input voltage (switch on), V	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & \hline 1.0 \\ & 0.8 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \pm 10 \\ & 125^{*} \\ & -40 \end{aligned}$
	ON/OFF pin high level input voltage (switch off), V	V_{IH}		$\begin{array}{\|l\|} \hline 2.2 \\ 2.4 \\ \hline \end{array}$		
	ON/OFF pin high level input current (switch off), uA	I_{H}		30	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \\ & \mathrm{V}_{\text {ON/OFF }}=5 \mathrm{~V} \\ & \hline \end{aligned}$	25 ± 10
	ON/OFF pin low level input current (switch on), uA	$\mathrm{I}_{\text {IL }}$	-	10	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{ON} / \text { OFF }}=0 \mathrm{~V} \end{aligned}$	
	Output voltage, V	$\mathrm{V}_{\text {OUT }}$	3.234	3.366	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} ; \\ & \mathrm{V}_{\text {LOAD }}=0.5 \mathrm{~A} \end{aligned}$	
			$\begin{aligned} & \hline 3.168 \\ & 3.135 \end{aligned}$	$\begin{aligned} & \hline 3.450 \\ & 3.682 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 25 \pm 10 \\ & 125^{*} \\ & -40 \\ & \hline \end{aligned}$

IC	Parameter, unit	Symbol	Limit		Test condition	$\mathrm{T}_{\mathrm{A},}{ }^{\circ} \mathrm{C}$
			min	max		
$\begin{aligned} & \text { CBM2576 } \\ & \text { HVS-5.0 } \end{aligned}$	Oscillator frequency, kHz	$\mathrm{f}_{\text {Soc }}$	$\begin{aligned} & 47 \\ & 42 \end{aligned}$	$\begin{aligned} & 58 \\ & 63 \end{aligned}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$	$\begin{aligned} & 25 \pm 10 \\ & 125^{*} \\ & -40 \end{aligned}$
	Saturation voltage, V	$\mathrm{V}_{\text {SAT }}$		$\begin{aligned} & \hline 1.8 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} ; \\ & \mathrm{I}_{\text {OUT }}=3 \mathrm{~A} \end{aligned}$ no external circuit	
	Current limit, A	I_{CL}	$\begin{aligned} & 4.2 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 6.9 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}_{;} \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \\ & 3 \mathrm{~A} \leq \mathrm{I}_{\mathrm{OUT}} \leq 8 \mathrm{~A} \end{aligned}$ no external circuit	
	Output leakage current, mA	$\mathrm{I}_{\text {(0) }}$		2	$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {FB }}=12 \mathrm{~V} ; \\ \mathrm{V}_{\text {IN }}=60 \mathrm{~V} ; \\ \mathrm{V}_{\text {OUT }}=0 \mathrm{~A} \\ \text { no external circuit } \\ \hline \end{array}$	25 ± 10
		$\mathrm{I}_{\mathrm{L}(-1)}$		30	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IN }}=60 \mathrm{~V} ; \\ & \mathrm{V}_{\text {OUT }}=-1 \mathrm{~A} \end{aligned}$ no external circuit	
	Quiescent current, mA	I_{Q}		10	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \end{aligned}$	
	Standby quiescent current, uA	$\mathrm{I}_{\text {STBY }}$		200	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IN }}=60 \mathrm{~V} ; \\ & \mathrm{V}_{\text {ON/OFF }}=5 \mathrm{~V} \end{aligned}$	
	ON/OFF pin low level input voltage (switch on), V	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & \hline 1.0 \\ & 0.8 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \pm 10 \\ & 125^{*} \end{aligned}$
	ON/OFF pin high level input voltage (switch off), V	V_{IH}		$\begin{aligned} & 2.2 \\ & 2.4 \end{aligned}$		-40
	ON/OFF pin high level input current (switch off), uA	$I_{1 H}$		30	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \\ & \mathrm{V}_{\text {ON/OFF }}=5 \mathrm{~V} \\ & \hline \end{aligned}$	25 ± 10
	ON/OFF pin low level input current (switch on), uA	$\mathrm{I}_{\text {IL }}$		10	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{ON} / \mathrm{OFF}}=0 \mathrm{~V} \end{aligned}$	
	Output voltage, V	$\mathrm{V}_{\text {OUT }}$	4.90	5.10	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A} \end{aligned}$	
			$\begin{aligned} & 4.800 \\ & 4.750 \end{aligned}$	$\begin{aligned} & 5.225 \\ & 5.275 \end{aligned}$	$\begin{aligned} & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} ; \\ & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 25 \pm 10 \\ & 125^{*} \\ & -40 \end{aligned}$

IC	Parameter, unit	Symbol	Limit		Test condition	$\mathrm{T}_{\mathrm{A},}{ }^{\circ} \mathrm{C}$
			min	max		
$\begin{aligned} & \hline \text { CBM2576 } \\ & \text { HVS-12 } \end{aligned}$	Oscillator frequency, kHz	Fosc	$\begin{aligned} & 47 \\ & 42 \end{aligned}$	$\begin{aligned} & 58 \\ & 63 \end{aligned}$	$\mathrm{V}_{\text {IN }}=25 \mathrm{~V}$	$\begin{aligned} & 25 \pm 10 \\ & 125^{\star} \\ & -40 \end{aligned}$
	Saturation voltage, V	$\mathrm{V}_{\text {SAT }}$		$\begin{aligned} & \hline 1.8 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IN }}=25 \mathrm{~V} ; \\ & \mathrm{l}_{\text {OUT }}=3 \mathrm{~A} \end{aligned}$ no external circuit	
	Current limit, A	I_{CL}	$\begin{aligned} & 4.2 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 6.9 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}_{;} \\ & \mathrm{V}_{\text {IN }}=25 \mathrm{~V} ; \\ & 3 \mathrm{~A} \leq \mathrm{I}_{\mathrm{OUT}} \leq 8 \mathrm{~A} \end{aligned}$ no external circuit	
	Output leakage current, mA	$\mathrm{I}_{\text {(0) }}$		2	$\begin{aligned} & \mathrm{V}_{\text {FB }}=25 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IN }}=60 \mathrm{~V} ; \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$ no external circuit	25 ± 10
		$\mathrm{I}_{\mathrm{L}(-1)}$		30	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{FB}}=25 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IN }}=60 \mathrm{~V} ; \\ & \mathrm{V}_{\text {OUT }}=-1 \mathrm{~V} \\ & \text { no external circuit } \end{aligned}$	
	Quiescent current, mA	I_{Q}		10	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=25 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V} \end{aligned}$	
	Standby quiescent current, uA	$\mathrm{I}_{\text {STBY }}$		200	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=60 \mathrm{~V} ; \\ & \mathrm{V}_{\text {ON/OFF }}=5 \mathrm{~V} \end{aligned}$	
	ON/OFF pin low level input voltage (switch on), V	VIL	$\begin{array}{\|l\|} \hline 1.0 \\ 0.8 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=25 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \pm 10 \\ & 125^{*} \end{aligned}$
	ON/OFF pin high level input voltage (switch off), V	V_{IH}		$\begin{aligned} & 2.2 \\ & 2.4 \end{aligned}$		-40
	ON/OFF pin high level input current (switch off), uA	$I_{\text {IH }}$		30	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IN }}=25 \mathrm{~V} ; \\ & \mathrm{V}_{\text {ON/OFF }}=5 \mathrm{~V} \end{aligned}$	25 ± 10
	ON/OFF pin low level input current (switch on), uA	$\mathrm{I}_{\text {IL }}$		10	$\begin{aligned} & \mathrm{V}_{\text {FB }}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IN }}=25 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{ON} / \mathrm{OFF}}=0 \mathrm{~V} \end{aligned}$	
	Output voltage, V	$\mathrm{V}_{\text {OUT }}$	11.76	12.24	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A} \\ & \hline \end{aligned}$	
			$\begin{aligned} & \hline 11.52 \\ & 11.40 \end{aligned}$	$\begin{aligned} & 12.54 \\ & 12.66 \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} ; \\ & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \frac{25 \pm 10}{125^{*}} \\ & -40 \end{aligned}$
* Junction temperature. Junction temperature is equal to ambient because of measurements of electric parameters are executed in pulse mode.						

Application Information

INVERTING REGULATOR

Figure 4 shows a CBM2576-12 in a buck-boost configuration to generate a negative 12 V output from a positive input voltage. This circuit bootstraps the regulator's ground pin to the negative output voltage, then by grounding the feedback pin, the regulator senses the inverted output voltage and regulates it to -12 V .

For an input voltage of 12 V or more, the maximum available output current in this configuration is approximately 700 mA . At lighter loads, the minimum input voltage required drops to approximately 4.7V.

The switch currents in this buck-boost configuration are higher than in the standard buck-mode design, thus lowering the available output current. Also, the start-up input current of the buck-boost converter is higher than the standard buck-mode regulator, and this may overload an input power source with a current limit less than 5A. Using a delayed turn-on or an undervoltage lockout circuit (described in the next section) would allow the input voltage to rise to a high enough level before the switcher would be allowed to turn on.

Because of the structural differences between the buck and the buck-boost regulator topologies, the buck regulator design procedure section can not be used to to select the inductor or the output capacitor. The recommended range of inductor values for the buck-boost design is between $68 \mu \mathrm{H}$ and $220 \mu \mathrm{H}$, and the output capacitor values must be larger than what is normally required for buck designs. Low input voltages or high output currents require a large value output capacitor (in the thousands of micro Farads).

The peak inductor current, which is the same as the peak switch current, can be calculated from the following formula:
$\mathrm{I}_{\mathrm{p}} \approx \frac{\mathrm{I}_{\mathrm{LOAD}}\left(\mathrm{V}_{\text {IN }}+\left|\mathrm{V}_{\mathrm{O}}\right|\right)}{\mathrm{V}_{\mathrm{IN}}}+\frac{\mathrm{V}_{\text {IN }}\left|\mathrm{V}_{\mathrm{O}}\right|}{\mathrm{V}_{\text {IN }}+\left|\mathrm{V}_{\mathrm{O}}\right|} \times \frac{1}{2 \mathrm{~L}_{1} \mathrm{~F}_{\text {OSC }}}$
Where $\mathrm{f}_{\text {osc }}=52 \mathrm{kHz}$. Under normal continuous inductor current operating conditions, the minimum V_{IN} represents the worst case. Select an inductor that is rated for the peak current anticipated.

FIGURE 4. Inverting Buck-Boost Develops -12V
Also, the maximum voltage appearing across the regulator is the absolute sum of the input and output voltage. For a -12 V output, the maximum input voltage for the IL2576 is +28 V .

NEGATIVE BOOST REGULATOR

Another variation on the buck-boost topology is the negative boost configuration. The circuit in Figure 5 accepts an input voltage ranging from -SV to -12 V and provides a regulated -12 V output. Input voltages greater than-12V will cause the output to rise above -12 V , but will not damage the regulator

Typical Load Current
400 mA for $\mathrm{V}_{\mathbb{I N}}=-5.2 \mathrm{~V}$
750 mA for $\mathrm{V}_{\text {IN }}=-7 \mathrm{~V}$
Note: Heat sink may be required
FIGURE 5. Negative Boost

Because of the boosting function of this type of regulator, the switch current is relatively high, especially at low input voltages.

Output load current limitations are a result of the maximum current rating of the switch. Also, boost regulators can not provide current limiting load protection in the event of a shorted load, so some other means (such as a fuse) may be necessary.

UNDERVOLTAGE LOCKOUT

In some applications it is desirable to keep the regulator off until the input voltage reaches a certain threshold. An undervoltage lockout circuit which accomplishes this task is shown in Figure 6 while Figure 7 shows the same circuit applied to a buck-boost configuration. These circuits keep the regulator off until the input voltage reaches a predetermined level.

$$
\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{Z} 1}+2 \mathrm{VB}_{\mathrm{E}}(\mathrm{Q} 1)
$$

FIGURE 6. Undervoltage Lockout for Buck Circuit

Note: Complete circuit not shown (see Figure 10).
FIGURE 7. Undervoltage Lockout for Buck-Boost Circuit

DELAYED STARTUP

The ON /OFF pin can be used to provide a delayed startup feature as shown in Figure 8. With an input voltage of 20 V and for the part values shown, the circuit provides approximately 10 ms of delay time before the circuit begins switching

Increasing the RC time constant can provide longer delay times. But excessively large RC time constants can cause problems with input voltages that are high in 60 Hz or 120 Hz ripple, by coupling the ripple into the ON /OFF pin.

Note: Complete circuit not shown.
FIGURE 8. Delayed Startup

ADJUSTABLE OUTPUT, LOW-RIPPLE POWER SUPPLY

A 3A power supply that features an adjustable output voltage is shown in Figure 9. An additional L-C filter that reduces the output ripple by a factor of 10 or more is included in this circuit.

FIGURE 9. Adjustable 3A Power Supply with Low Output Ripple

Definition of Terms

BUCK REGULATOR

A switching regulator topology in which a higher voltage is converted to a lower voltage. Also known as a step-down switching regulator.

BUCK-BOOST REGULATOR

A switching regulator topology in which a positive voltage is converted to a negative voltage without a transformer.

DUTY CYCLE (D)

Ratio of the output switch's on-time to the oscillator period.
for buck regulator

$$
\mathrm{D}=\frac{\mathrm{t}_{\text {oN }}}{\mathrm{T}}=\frac{\mathrm{V}_{\text {out }}}{\mathrm{V}_{\text {IN }}}
$$

for buck-boost regulator

$$
\mathrm{D}=\frac{\mathrm{t}_{\mathrm{oN}}}{\mathrm{~T}}=\frac{\left|\mathrm{V}_{0}\right|}{\left|\mathrm{V}_{\mathrm{O}}\right|+\mathrm{V}_{\mathrm{IN}}}
$$

CATCH DIODE OR CURRENT STEERING DIODE

The diode which provides a return path for the load current when the IL2576 switch is OFF.

EFFICIENCY ($\boldsymbol{\eta}$)

The proportion of input power actually delivered to the load.
$\eta=\frac{\mathrm{P}_{\text {OUT }}}{\mathrm{P}_{\text {IN }}} \approx \frac{\mathrm{P}_{\text {OUT }}}{\mathrm{P}_{\text {OUT }}+\mathrm{P}_{\text {LOSS }}}$

PACKAGE INFORMATION

TO-220-5L

SYMBOL	DIMENSIONS IN MILLIMETERS		DIMENSIONS IN INCHES			
	MIN	NOM	MAX	MIN	NOM	MAX
A	4.07	4.45	4.82	0.160	0.175	0.190
b	0.76	0.89	1.02	0.030	0.035	0.040
C	0.36	0.50	0.64	0.014	0.020	0.025
D	14.22	14.86	15.50	0.560	0.585	0.610
E	9.78	10.16	10.54	$0 . .385$	0.400	0.415
e1	1.57	1.71	1.85	0.062	0.067	0.073
F	6.68	6.81	6.93	0.263	0.268	0.273
H1	1.14	1.27	1.40	0.045	0.050	0.055
J1	2.46	6.16	6.86	0.215	0.243	0.270
L	13.21	13.97	14.73	0.520	0.550	0.580
øp	3.68	3.81	3.94	0.145	0.150	0.155
Q	2.54	2.73	2.92	0.100	0.107	0.115

TO-263-5L

SYMBOL	DIMENSIONS IN MILLIMETERS		DIMENSIONS IN INCHES			
	MIN	NOM	MAX	MIN	NOM	MAX
A	4.07	4.46	4.85	0.160	0.176	0.191
B	0.66	0.84	1.02	0.026	0.033	0.040
C	0.36	0.50	0.64	0.014	0.020	0.025
C2	1.14	1.27	1.40	0.045	0.050	0.055
D	8.65	9.15	9.65	0.341	0.360	0.380
E	9.78	10.16	10.54	0.385	0.400	0.415
F	1.57	1.71	1.85	0.062	0.068	0.073
L	6.60	6.86	7.11	0.260	0.270	0.280
L1	14.61	15.24	15.88	0.575	0.600	0.625
L2	2.29	2.54	2.79	0.090	0.100	0.110

TO-220-5L(Bent Staggered)

SYMBOL	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	4.4	4.6	4.7	0.175	0.180	0.185
b	0.7	0.8	0.9	0.027	0.032	0.037
D	8.4	8.7	8.9	0.330	0.340	0.350
d1	1.0			0.039		
d2	6.3			0.248		
E	9.91	10.16	10.41	0.390	0.400	0.410
e	1.6	1.7	1.8	0.062	0.067	0.072
F	1.2	1.25	1.3	0.048	0.050	0.052
H1		6.4			0.250	
H2	20.8	21.6	22.4	0.820	0.850	0.880
H3	23.9	24.7	25.5	0.942	0.972	1.002
$J 1$	2.7			0.105		
J2	3.7	$4 . .5$	5.3	0.147	0.177	0.207
J3	8.4			0.331		
Q	2.5	2.8	3.0	0.100	0.110	0.120

PACKAGE/ORDERING INFORMATION

PRODUCT	ORDERING NUMBER	TEMPRANG E	PACKAGE	PAKEAGE MARKING	TRANSPOT MEDIA,QUANTILY
	CBM2576HVT-ADJ	$-40^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$	TO-220	2576 HVT-ADJ	Tape and Reel,46
	CBM2576HVS-ADJ	$-40^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$	TO-263-5	2576 HVS-ADJ	Tape and Reel,500
CBM2576-5	CBM72576HVT-3.3	$-40^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$	TO-220	2576 HVT-3.3	Tape and Reel,46
	CBM2576HVS-3.3	$-40^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$	TO-263-5	2576 HVS-3.3	Tape and Reel,500
	CBM2576HVT-5.0	$-40^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$	TO-220	2576 HVT-5.0	Tape and Reel,46
CBM2576-12	CBM2576HVT-12	$-40^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$	TO-220	2576 HVT-12	Tape and Reel,46
	CBM2576HVS-12	$-40^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$	TO-263-5	2576 HVS-12	Tape and Reel,500

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Corebai Microelectronics manufacturer:
Other Similar products are found below :
NCP1218AD65R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81101BMNTXG NCP81205MNTXG SJE6600 AZ7500BMTR-E1 SG3845DM NCP1250BP65G NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81206MNTXG NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NCP1230P100G NX2124CSTR SG2845M NCP1366BABAYDR2G NCP81101MNTXG NCP81174NMNTXG NCP4308DMTTWG NCP4308AMTTWG NCP1366AABAYDR2G NCP1251FSN65T1G NCP1246BLD065R2G MB39A136PFT-G-BND-ERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G NCP1246ALD065R2G AZ494AP-E1 CR1510-10 NCP4205MNTXG ISL69158IRAZ-T7A XRP6141ELTR-F RY8017 LP6260SQVF LP6298QVF ISL6121LIB ISL6225CA ISL6244HRZ ISL6268CAZ ISL6315IRZ ISL6420AIAZ-TK ISL6420AIRZ ISL6420IAZ

