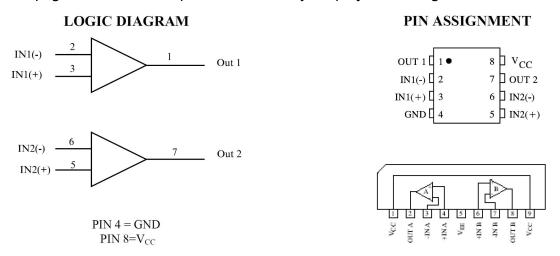


FEATURES


- Internally frequency compensated for unity gain
- Large DC voltage gain: 100dB
- Wide power supply range:3V ~ 32V (or 1.5V ~ 16V)
- Input common-mode voltage range includes ground
- Large output voltage swing: 0V DC to V_{CC}-1.5V DC
- Power drain suitable for battery operation
- Low input offset voltage and offset current
- Differential input voltage range equal to the power supply voltage

GENERAL DESCRIPTION

The CBM2904 contains two independent high gain operational amplifiers with internal frequency compensation. The two op-amps operate over a wide voltage range from a single power supply. Also use a split power supply. The device has low power supply current drain, regardless of the power supply voltage. The low power drain also makes the CBM2904 a good choice for battery operation.

When your project calls for a traditional op-amp function, now you can streamline your design with a simple single power supply. Use ordinary $+5V_{DC}$ common to practically any digital system or personal computer application, without requiring an extra 15V power supply just to have the interface electronics you need.

The CBM2904 is a versatile, rugged workhorse with a thousand-and-one uses, from amplifying signals from a variety of transducers to dc gain blocks, or any op-amp function. The attached pages offer some recipes that will have your project cooking in no time.

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit	
	Power Supply Voltages			
V_{cc}	Single Supply	32	V	
	Split Supplies	±16		
V_{IDR}	Input Differential Voltage Range (1)	±32	V	
V_{ICR}	Input Common Mode Voltage Range	-0.3 to 32	V	
I _{sc}	Output Short Circuit Duration	Continuous		
_	Junction Temperature		96	
T _J	Plastic Packages	150	°C	
T_{stg}	Storage Temperature		•125 °C	
	Plastic Packages	-55 to +125		
I _{IN}	Input Current, per pin (2)	50	mA	
T _L	Lead Temperature, 1mm from Case for 10 Seconds	260	℃	

^{*} Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Functional operation should be restricted to the Recommended Operating Conditions.

+Derating - Plastic DIP: - 10 mW/°C from 65°C to 125°C

SOIC Package: : - 7 mW/°C from 65°C to 125°C

Notes:

- 1. Split Power Supplies.
- 2. V_{IN} <-0.3V. This input current will only exist when voltage at any of the input leads is driven negative.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V_{cc}	DC Supply Voltage	±2.5 or 5.0	±15 or 30	V
T _A	Operating Temperature, All Package Types	-40	+105	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range

CBM2904 OPERATION INSTRUCTION

 $\label{eq:GND} \text{GND} \quad (V_{\text{IN}} \text{ or } V_{\text{OUT}}) \quad V_{\text{CC}}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS (T_A =-40 to +105°C)

Complete	Downwater	Took Conditions	Guaranteed Limit			11:4	
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
V	Maximum Input Offset	$V_0 = 1.4V V_{CC} = 5.0-30V;$			9.0	mV	
V _{IO}	Voltage	$R_S=0\Omega V_{ICM}=0V \text{ to } V_{CC}-1.7V$			5.0*	mv	
$\triangle V_{IO}/\triangle T$	Input Offset Voltage Drift	$R_S=0\Omega$, $V_{CC}=30V$		7.0		μV/°C	
	Maximum Input Offset	V _{CC} =5.0V			150	nA	
I _{IO}	Current				50*		
△I _{IO} /△T	Input Offset Current Drift	$R_S=0\Omega$, $V_{CC}=30V$		10		pA/°C	
	Maximum Input Bias Current	Bias Current V _{CC} =5.0V			500		
I _{IB}				250* n		nA	
V_{ICR}	Input Common Mode Voltage	V _{CC} =30V	0		28	V	
V ICR	Range		U		20		
	Maximum Power Supply	$R_L = \infty, V_{CC} = 30V, V_0 = 0V$	0.3		3	mA	
I _{CC}	Current	$R_L = \infty, V_{CC} = 5V, V_0 = 0V$	0.3		1.2		
A_VOL	Minimum Large Signal	V _{CC} =15V, R _L ≥2KΩ	15			V/mV	
Avol	Open-Loop Voltage Gain		25*			V/IIIV	
V_{OH}	Minimum Output High-Level	$V_{CC}=30V,R_L=2K\Omega$	26			V	
V OH	Voltage Swing	V_{CC} =30V, R_L =10K Ω	27			V	
V_{OL}	Maximum Output Low-Level	$V_{CC}=5V,R_L=10K\Omega$			20	mV	
▼OL	Voltage Swing						
CMR	Common Mode Rejection	V_{CC} =30V, R_S =10K Ω	65*			dB	
PSR	Power Supply Rejection	V _{CC} =30V	65*			dB	
CS	Channel Separation	f=1KHz to 20KHz,V _{CC} =30V	-120			dB	
I _{SC}	Maximum Output Short	V _{CC} =5.0V				mA	
isc	Circuit to GND	V ₀ =0V					
ı	Minimum Source Output	$V_{IN+} = 1V, V_{IN-} = 0V,$	10			mA	
I _{source}	Current	$V_{CC} = 15V, V_0 = 2V$	10				
	Minimum Output Sink Current	$V_{IN} + = 0V, V_{IN} = 1V,$	5			mA	
l _{sink}		$V_{CC} = 15V, V_0 = 15V$	10*			111/5	
		$V_{IN+} = 0V, V_{IN-} = 1V,$	12*			μΑ	
		V _{CC} =15V, V ₀ =0.2V				Μ',	
V_{IDR}	Differential Input Voltage	All V _{IN} GND or V-Supply (if			V _{CC} *	V	
י וטג	Range	used)			- ((•	

^{*=@25℃}

TYPICAL PERFORMANCE CHARACTERISTICS

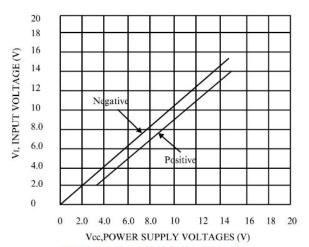


Figure 1.Input Voltage Range

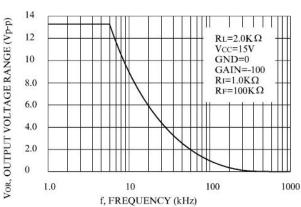


Figure 3. Large-Signal Frequency Response

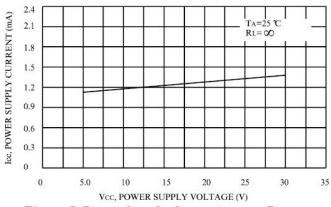


Figure 5. Power Supply Current versus Power Supply Voltage

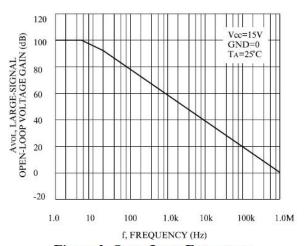


Figure 2. Open-Loop Frequency

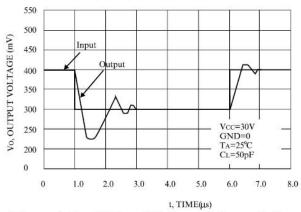


Figure 4. Small-Signal Voltage Follower Pulse Response (Noninverting)

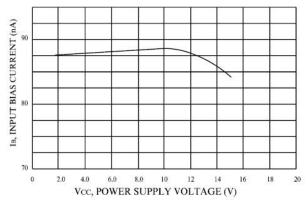
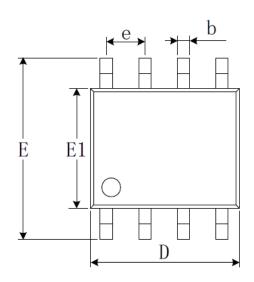
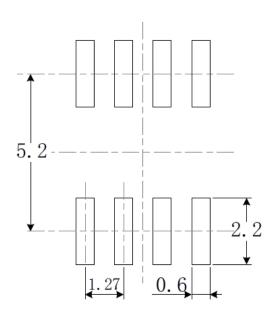
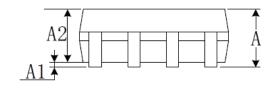
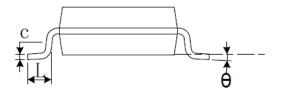




Figure 6. Input Bias Current versus Power Supply Voltage




PACKAGE

RECOMMENDED LAND PATTERN (Unit: mm)

Cranala a l	Dimensions I	n Millimeters	Dimensions Inches	
Symbol	Min	Max	Min	Max
А	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.800	5.000	0.189	0.197
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
е	1.270 BSC		0.050) BSC
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

PACKAGE/ORDERING INFORMATION

PRODUCT	ORDERING NUMBER	TEMPRANGE	PACKAGE	PAKEAGE MARKING	TRANSPOT MEDIA,QUANTILY
CBM2904	CBM2904AS8	-40°C~105°C	SOP-8	CBM2904A	Tape and Reel,2500
	CBM2904ATS8	-40°C~105°C	TSSOP-8	CBM2904AT	Tape and Reel,3000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Corebai Microelectronics manufacturer:

Other Similar products are found below:

LM358SNG 430227FB AZV831KTR-G1 LT1678IS8 042225DB 058184EB SC2902DG UPC822G2-A UPC258G2-A MIC918YC5-TR

NCS5651MNTXG NCV33202DMR2G NJM324E NTE925 5962-9080901MCA* AP4310AUMTR-AG1 HA1630D02MMEL-E

HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM2902EDR2G NTE778S NTE871

NTE924 NTE937 MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G NCS20282FCTTAG UPC4741G2-E1-A

LM4565FVT-GE2 EL5420CRZ-T7A TSV791IYLT TSV772IQ2T AS324AMTR-E1 TLV2772QPWR NJM4556AM-TE1 NJM2068M-TE1

AS324MTR-E1 AS358MMTR-G1 MCP6232T-EMNY MCP662-E/MF TLC081AIP TLC082AIP TLE2074ACDW TLV07IDR

TLV2170IDGKT