EEPROM CXEF256K8SNII 产品说明书

V1.00

1 产品概述

CXEF256K8SNI 是一款 EEPROM,由 32,768 字组成,每字包含 8 位。它提供一个附加页,名为 ID 页(64 字节),ID 页可用于存储敏感应用程序参数,这些参数可以永久锁定在只读模式下。

1.1 产品特性

- ◆ 可实现与 Atmel 公司的 AT24C256C-SSKM 脚对脚替换
- ◆ 容量: 256K (32K×8bit)
- ◆ 工作电压: 1.7V~5.5V
- ◆ 2-线串行接口兼容 IIC
- ◆ 64字节页写模式
- ◆ 质量等级:工业级

1.2 管脚排列

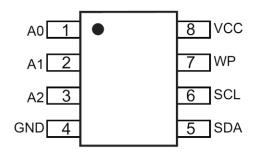


图1 管脚排列图(顶视图)

引出端管脚说明:

31 Et al E 24 90 73 1										
序号	符号	功能	序号	符号	功能					
1	A0	地址输入端 0	5	SDA	串口数据					
2	A1	地址输入端 1	6	SCL	串口时钟输入端					
3	A2	地址输入端 2	7	WP	写保护输入端					
4	GND	接地端	8	VCC	电源端					

1.3 功能框图

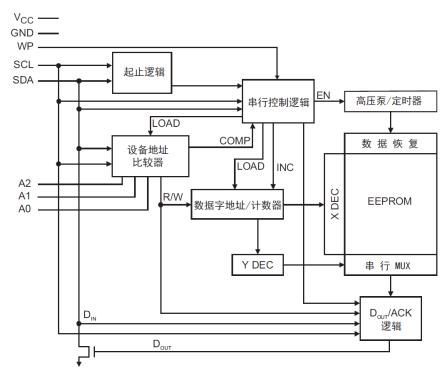


图2 功能框图

2 电特性

2.1 绝对最大额定值

参数	符号	最小值	最大值	单位
电源电压	$V_{\rm CC}$	-0.3	+6.5	V
输入/输出电压	-	GND-0.3	V _{CC} +0.3	V
静电放电	ESD(HBM)	±8	000	V
贮存温度	Tstg	-65	+150	°C

2.2 推荐工作条件

参数	符号	最小值	最大值	单位
电源电压	V_{CC}	+1.7	+5.5	V
工作温度	TA	-40	+85	° C

2.3 输入电容

若无特殊说明,测试条件为 T_A = -40 $^{\circ}$ $^{\circ}$ $^{\circ}$ +85 $^{\circ}$ $^{\circ}$

参数	符号	条件	最大值	单位
输入/输出电容(SDA)	$C_{\rm I/O}$	$V_{\mathrm{I/O}} = 0 \ \mathrm{V}$	8	
输入电容 (A0, A1, A2, SCL)	C _{IN}	$V_{\rm IN} = 0 \ V$	6	pF

成都承芯科技有限公司

2.4 直流电特性

若无特殊说明,测试条件为 T_A = -40 $^{\circ}$ $^{\circ}$ $^{\circ}$ +85 $^{\circ}$ $^{\circ}$

特性	符号	条件	最小值	典型值	最大值	单位
电源电流	I _{CC1}	V _{CC} =5.0V,读在400kHz	-	0.4	1.0	A
电源电机	I _{CC2}	V _{CC} =5.0V,写在400 kHz	-	2.0	3.0	mA
	I _{SB1}	$V_{CC} = 1.7V$, $V_{IN} = V_{CC} \stackrel{\rightarrow}{\otimes} V_{SS}$	-	0.6	1.0	
 待机电流	I _{SB2}	$V_{CC} = 2.5V$, $V_{IN} = V_{CC} \stackrel{\rightarrow}{\otimes} V_{SS}$	-	1.0	2.0	
1寸7/1. 巴7/11	I _{SB3}	$V_{CC} = 2.7V$, $V_{IN} = V_{CC} \stackrel{\rightarrow}{\boxtimes} V_{SS}$		1.0	2.0	
	I_{SB4}	$V_{CC} = 5.0V$, $V_{IN} = V_{CC} \stackrel{\rightarrow}{\otimes} V_{SS}$		2.0	5.0	μA
输入漏电流	I_{LI}	V _{IN} = V _{CC} 或 V _{SS}	-	0.1	3.0	
输出漏电流	I_{LO}	$V_{IN} = V_{CC}$ 或 V_{SS}	-	0.05	3.0	
输入低电平电压	V_{IL}	$V_{CC} = 1.8V \sim 5.5V$	-0.3	1	$V_{CC} \times 0.3$	V
输入高电平电压	V_{IH}	$V_{CC} = 1.8V \sim 5.5V$	$V_{CC} \times 0.7$	1	V _{CC} +0.3	V
输入低电平电压	V_{IL}	$V_{CC} = 1.7V$	-0.3	-	$V_{CC} \times 0.2$	V
输入高电平电压	$V_{ m IH}$	$V_{CC} = 1.7V$	$V_{CC} \times 0.7$	1	V _{CC} +0.3	V
	V_{OL1}	$V_{CC} = 1.7V$, $I_{OL} = 0.15mA$	-	-	0.2	
输出低电平电压	V _{OL2}	$V_{CC} = 3.0V$, $I_{OL} = 2.1 \text{mA}$	-	-	0.4	V
	V_{OL3}	$V_{CC} = 5.0V$, $I_{OL} = 3.0 \text{mA}$	-	-	0.4	

2.5 交流电特性

若无特殊说明, 测试条件为 $T_A = -40$ $^{\circ}$ $^$

70 70 70 70 70 70 70 70 70 70 70 70 70 7	//3 1/ 1/3/11	/ J - A	10 0 10	33 0 , 1	1.01111129		7 7 3.3	<u> </u>
	符号	极限值						
特性		1.7V≤V _{CC} ≤2.5V			2.5V≤V _{CC} ≤5.5V			单位
		最小值	典型值	最大值	最小值	典型值	最大值	
时钟频率	f_{SCL}	-	-	400	-	-	1000	kHz
时钟低脉冲宽度	t _{LOW}	1.2	-	-	0.6	-	-	μs
时钟高脉冲宽度	t _{HIGH}	0.6	-	-	0.4	-	-	μs
噪声抑制时间	t _I	-	-	50	-	-	50	ns
时钟低到数据输出	t _{AA}	0.1	-	0.9	0.05	-	0.9	μs
在新的传输开始之前,总 线必须空闲时间	t _{BUF}	1.2	-	-	0.5	-	-	μs
启动保持时间	t _{HD,STA}	0.6	-	-	0.25	-	-	μs
启动建立时间	t _{SU.DAT}	0.6	-	-	0.25	-	-	μs
数据保持时间	t _{HD.DAT}	0	-	-	0	-	-	μs
数据建立时间	t _{SU.DAT}	100	-	-	100	-	-	ns
输出上升时间	t _R	-	-	0.3	-	-	0.3	μs
输入下降时间	t_{F}	-	-	0.3	-	-	100	ns
停止建立时间	$t_{ m SU}$	0.6	-	-	0.25	-	-	μs

C CXYTW

成都承芯科技有限公司

		极限值						
特性	符号	1.7V≤V _{CC} ≤2.5V			2.5V ≤ V _{CC} ≤ 5.5V			单位
		最小值	典型值	最大值	最小值	典型值	最大值	
数据输出保持时间	t _{DH}	50	-	-	50	-	-	ns
写周期时间	t_{WR}	-	3.3	5	-	3.3	5	ms

测试条件: 输入脉冲电压: 0.3V_{CC}~0.7V_{CC}

输入上升和下降时间: 50ns

输入和输出时序参考电压: 0.5Vcc

R_L (连接到 V_{CC}): 1.3kΩ

SCL: 串行时钟, SDA: 串行数据 I/0。

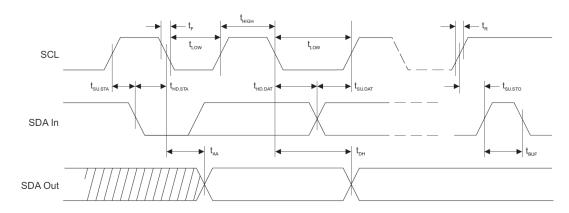


图3 总线时序图

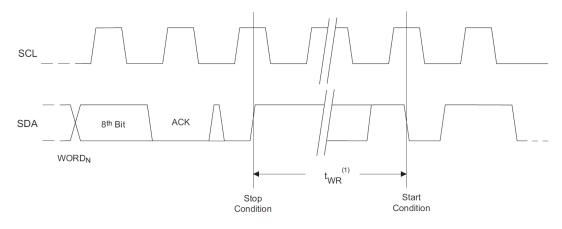
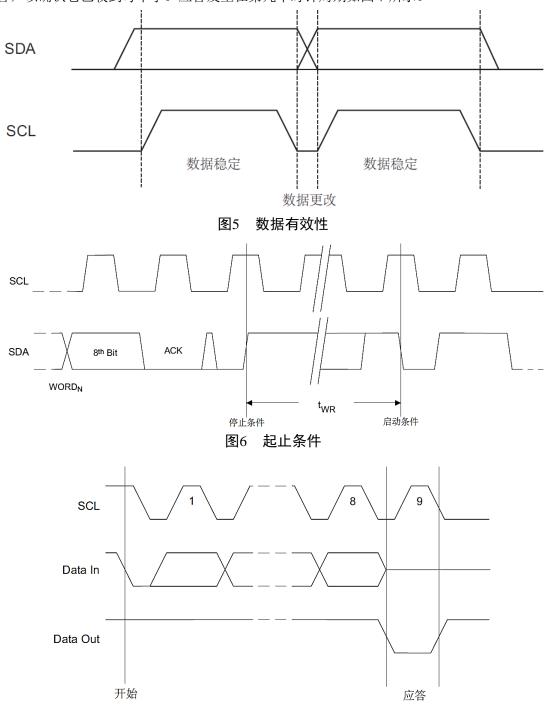


图4 写周期时序图


3 应用信息

3.1 设备操作

时钟和数据发送: SDA 引脚通常使用外部设备拉高。SDA 引脚上的数据只能在 SCL 为低电平时进行更改,SCL 为高电平时数据更改将指示开始或停止条件。如图 5 所示。

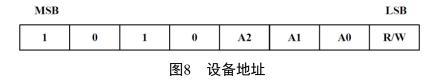
起止条件: SDA 由高到低且 SCL 为高是启动条件,必须先于任何其他命令。SDA 由低到高且 SCL 为高是停止条件,在一个读序列后,停止命令会使 EEPROM 进入待机模式。如图 6 所示。

应答: 所有地址和数据字均以 8 bit 字连续传输到 EEPROM, EEPROM 发送一个"0"来应答, 以确认它已收到每个字。应答发生在第九个时钟周期如图 7 所示。

3.2 设备寻址

CXEF256K8SNI 要求在启动条件之后使用 8bit 设备地址字,以启用读或写操作。设备地址字前四位由"1"和"0"序列组成,如图 8 所示。

图7


输出应答

接下来三位是 A2、A1 和 A0 设备地址位,允许在同一总线上使用多达 8 个设备;这些引脚必须连接到对应的硬件输入引脚,如果 A2、A1 和 A0 悬空,它

会使用内部专有电路使其偏置到低电平。

第八位是读/写操作选择位,如果该位为"1",则启动读操作;如果该位为"0",则启动写操作。

通过比较设备地址,EEPROM 将输出"0"。如果不进行比较,设备将返回到备用状态。

CXEF256K8SNI 有硬件写保护引脚(WP),当 WP 连接到 GND 时,设备进行正常的写操作;当 WP 连接到 VCC 时,设备所有的写操作都被禁止。如果 WP 悬空,会默认连接到内部地。

3.3 写操作

写字节:写操作要求在设备地址字和应答之后有一个 8bit 的数据字地址,在收到这个地址后,EEPROM 将再次响应一个,然后在第一个 8bit 数据字中计时。在接收到 8bit 数据字后,设备将输出一个"0",寻址设备(如微控制器)必须用一个停止条件终止写入序列。这时 EEPROM 进入内部的一个同步写周期,此时数据写到一个非易失性存储器。所有输入在写周期内禁用,EEPROM 将不会响应,直到写入完成。

页写: 256K EEPROM 支持 64 字节页写。页写入与字节写入相同,但在第 1 个数据字进入时钟之后,微控制器不会发送停止条件。相反,在 EEPROM 中确认了第 1 个数据字后,微控制器可以传输多达 63 个数据字。EEPROM 收到的每个数据字后将以一个"0"来响应。微控制器必须以一个停止条件来终止页写入序列。

数据字地址低的 6 位在接收每个数据字之后递增,较高的数据字地址位不会递增,保留内存页行位置。当内部产生的字地址达到了页面边界,随后的字节会回滚到本页的开始。如果超过 64 字节的数据传送到 EEPROM,数据字地址将"回滚"到页开始,覆盖之前的数据。

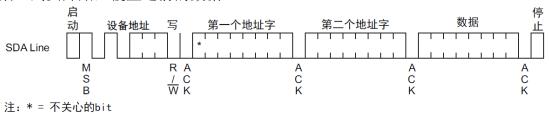


图9 写字节

成都承芯科技有限公司

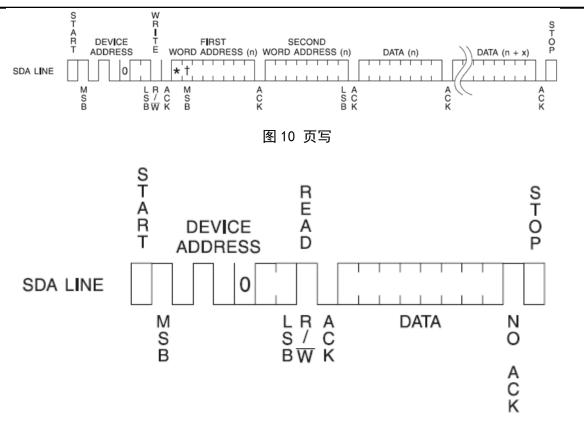


图 11 当前读地址

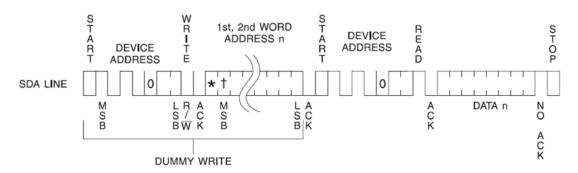


图 12 随机读取

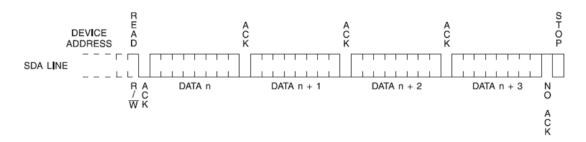


图 13 顺序读取

3.4 典型应用

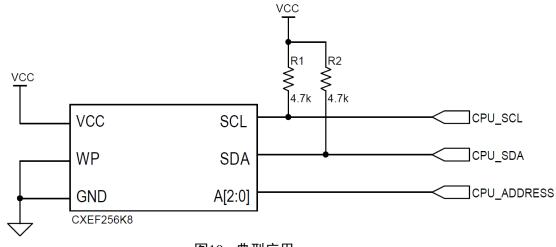


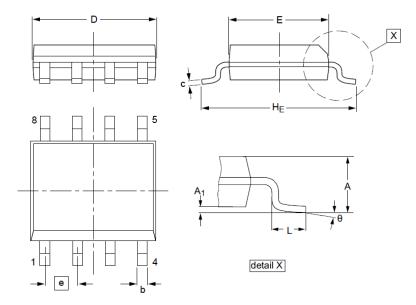
图10 典型应用

3.5 操作规程及注意事项

器件必须采取防静电措施进行操作。取用器件时应佩戴防静电手套,防止 ESD 对器件造成损伤。在进行器件焊接或安装时,应注意器件的方向;将器件从 电路板上取下时,应注意施力方向以确保器件管脚均匀受力。

推荐下列操作措施:

- a) 器件应在防静电的工作台上操作,或佩戴防静电手套;
- b) 试验设备和器具应做好接地处理;
- c) 不能随意触摸器件表面及引线:
- d) 器件应存放在导电材料制成的容器中(如:集成电路专用盒);
- e) 生产、测试、使用以及转运过程中应避免使用引起静电的塑料、橡胶或丝织物:
 - f) 相对湿度尽可能保持在 50%以上;
 - g) 使用时,正确区分器件的电源和地,防止发生短路。


3.6 运输和储存

器件贮存环境温度为-65℃~+150℃,使用指定的防静电包装盒进行产品的包装和运输。在运输过程中,确保器件不要与外物发生碰撞。

3.7 开箱和检查

开箱使用器件时,请注意观察器件管壳上的产品标识。确定产品标识清晰, 无污迹,无擦痕。同时,注意检查器件管壳及引脚。确定管壳无损坏,无伤痕, 管脚整齐,无缺失,无变形。

4 封装形式 (SOP8)

口十次只	单位: mm						
尺寸符号	最小	公 称	最大				
A	1.35	1.55	1.75				
A1	0.05	0.15	0.25				
b	0.39	0.43	0.47				
С	0.20	0.22	0.24				
D	4.70	4.90	5.10				
E	3.70	3.90	4.10				
HE	5.70	6.00	6.30				
e	1.27BSC						
L	0.50	-	0.80				
θ	0°	-	8°				

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for EEPROM category:

Click to view products by COREX manufacturer:

Other Similar products are found below:

M29F040-70K6 718278CB 718620G AT28C256-15PU-ND 444358RB 444362FB BR93C46-WMN7TP 442652G 701986CB
TC58NVG0S3HBAI4 5962-8751413XA TC58BVG0S3HBAI4 TH58NYG3S0HBAI6 CAT25320YIGT-KK CAT25320DWF LE24C162-RE 5962-8751417YA 5962-8751409YA CAT25M01LI-G DS28E11P+ BR9016AF-WE2 LE2464DXATBG CAS93C66VP2I-GT3
DS28E25+T DS28EL15Q+T M95320-DFDW6TP DS28E05GB+T AT25320B-SSPDGV-T HE24C64WLCSPD BL24SA128B-CSRC
24FC16T-I/OT 24FC08T-I/OT M24128-BFMN6TP S-24CS04AFM-TFH-U M24C04-FMC5TG M24C16-DRMN3TPK M24C64-DFMN6TP
34AA02-EMS M95080-RMC6TG M95128-DFCS6TP/K M95128-DFDW6TP M95256-DFMN6TP M95320-RDW6TP M95640-RDW6TP
AT17LV010-10CU AT24C01C-SSHM-B AT24C01D-MAHM-T AT24C04D-MAHM-T AT24C04D-SSHM-T AT24C08C-SSHM-B