

The CHA92X/CHI92X Hall-effect sensor is extremely temperature-stable and stress-resistant sensor ICs, especially suited for operation over extended temperature ranges from $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. Superior high temperature performance is possible through dynamic offset cancellation, which reduces the residual offset voltage normally caused by device over-molding, temperature dependencies, and thermal stress.

The device includes a voltage regulator, Hall-voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and a short circuit protected open-drain output to sink up to 25 mA .

An on-board regulator permits operation with supply voltages of 2.5 to 22 V . The advantage of operating down to 2.5 V is that the device can used in 2.5 V applications or with additional external resistance in series with the supply pin for greater protection against high-voltage transient events.

The CHA92X/CHI92X series is digital unipolar Hall switch. When the applied magnetic flux density exceeds the BOP threshold, the chip open-drain output goes low. The output stays low until the field decreases to less than BRP, and then the output goes to high impedance.

The CHA92X/CHI92X also integrated internal clamps against supply/output transients; output short circuits protection; reverse battery conditions.

Three package styles provide a magnetically optimized package for most applications, SOT-23, TO-92S and SOT-89. Each package type is lead (Pb) free (suffix, -T), with a 100% matte-tin-plated lead-frame.

	Cosemitech	CHA92X/CHI92X
osemi	Automotive Product Group	

Preliminary Datasheet 1.4

1. Product Family Members ... 3
2. Pin Definitions and Descriptions .. 3
3. Absolute Maximum Ratings .. 4
4. ESD Protections... 4
5. Function Description .. 5
6. Definition of Switching Function... 5
7. Temperature Characterization .. 5
8. Parameters Specification ... 6
9. Application infromation.. 8
10.Test Condition .. 10
10. Package Information ... 11

	Cosemitech	CHA92X/CHI92X
	Automotive Product Group	

Preliminary Datasheet 1.4

1. Product Family Members

Part Number	Marking ID	Description
CHA921SR	C921	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
CHA921TB	C921	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
CHA921ER	C921	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
CHA922SR	C922	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
CHA922TB	C922	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
CHA922ER	C922	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
CHA923SR	C923	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
CHA923TB	C923	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
CHA923ER	C923	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
CHA924SR	C924	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
CHA924TB	C924	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
CHA924ER	C924	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
CHA925SR	C925	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
CHA925TB	C925	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
CHA925ER	C925	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
CHI921SR	1921	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
CHI921TB	1921	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
CHI921ER	1921	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
CHI922SR	1922	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
CHI922TB	1922	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
CHI922ER	1922	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
CHI923SR	1923	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
CHI923TB	1923	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
CHI923ER	1923	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
CHI924SR	1924	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
CHI924TB	1924	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk

	Cosemitech	CHA92X/CHI92X
semi	Automotive Product Group	

Preliminary Datasheet 1.4

		packing (1000 units per bag)
CHI924ER	1924	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
CHI925SR	1925	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
CHI925TB	1925	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
CHI925ER	1925	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)

Prefix

CHX92X: unipolar Hall IC

Application Field
I: Industry
A: Automotive

Package

SR: SOT-23-3L, tape and reel packing
TB: TO-92S, bulk packing
ER: SOT-89-3L, tape and reel packing

Cosemitech
Automotive Product Group

2. Pin Definitions and Descriptions

SOT-23-3L $($ S $)$	TO-92S $($ T)	SOT-89-3L (E)	Name	Type	Function
1	1	1	VDD	Supply	Supply Voltage pin
2	3	3	OUT	Output	Open Collector Output pin
3	2	2	GND	Ground	Ground pin

SOT-23-3L

TO-92S

SOT-89-3L

3. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
Supply Voltage	$\mathrm{V}_{\text {DD }}$	-	24	V
VDD Reverse Voltage VDD	$\mathrm{V}_{\text {RDD }}$	-22		V
Supply Current	I_{DD}	-	20	mA
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.3	24	V
Output Current	$\mathrm{I}_{\text {OUT }}$	-	25	mA
Operating Ambient Temperature	T_{A}	-40	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	T_{S}	-50	150	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{J}	-50	165	${ }^{\circ} \mathrm{C}$
Magnetic Flux	B	No Limit		Gauss

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum- rated conditions for extended periods may affect device reliability.

4. ESD Protections

Parameter	Value	Unit
All pins ${ }^{1)}$	$+/-8000$	V
All pins ${ }^{2)}$	$+/-200$	V
All pins $^{3)}$	$+/-750$	V

1) HBM (Human Body Mode) according to AEC-Q100-002
2) MM (Machine Mode) according to AEC-Q100-003
3) CDM (charged device mode) according to AEC-Q100-011

	Cosemitech	CHA92X/CHI92X
semi	Automotive Product Group	

Preliminary Datasheet 1.4

5. Function Description

The CHA92X/CHI92X exhibits digital unipolar switching characteristics. Therefore, it requires only south poles or north poles (depend on the package type) to operate properly.

When the applied magnetic flux density exceeds the BOP threshold, the chip open-drain output goes low. The output stays low until the field decreases to less than BRP, and then the output goes to high impedance.
A magnetic hysteresis BHYST keeps BOP and BRP separated by a minimal value. This hysteresis prevents output oscillation near the switching point.

6. Magnetic Activation

7. Temperature Characteristics

Magnetic Parameter vs Temperature							
300							
$250 \times$ _ CH921 Bop (GS)							
200							-CH921_Brp (GS)
- 200							-CH922_Bop (GS)
$\overline{\tilde{n}}$							-CH922_Brp (GS)
© 150							_CH923_Bop (GS)
$\stackrel{U}{\tilde{U}}$							-CH923_Brp (GS)
							_-CH924_Bop (GS)
							- CH924_Brp (GS)
500							-CH925_Bop (GS)
							_-CH925_Brp (GS)
	-40	0	25	85	125	155	
Temperature (C)							

Cosemitech
Automotive Product Group

Preliminary Datasheet 1.4

8. Parameters Specification (VCC $=3.3 \mathrm{~V}$ supply, $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ except where otherwise specified.)

Symbol	Parameter	Test Condition	Min	Typ.	Max	Units	
$V_{D D}$	Supply voltage	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	2.5	-	22	V	
ldo	Supply Current	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	-	1.6	3	mA	
VzSUPply	Supply Voltage Clamp	$\mathrm{Icc}^{\text {c }}=7 \mathrm{~mA} ; \mathrm{TA}=25^{\circ} \mathrm{C}$	24			V	
$V_{\text {zout }}$	Output Voltage Zener Clamp	lout $=3 \mathrm{~mA}$	24			V	
$\mathrm{V}_{\mathrm{RCC}}$	Reverse Battery Zener				-22	V	
IRCC	Reverse Battery Current	$\mathrm{V}_{\mathrm{cc}}=-22 \mathrm{~V}$	-5			mA	
F_{c}	Chopping Frequency			500		KHz	
tpo	Power-On Time	$\begin{aligned} & \text { TA }=25^{\circ} \mathrm{C} ; \mathrm{C}_{\text {LOAD }}=10 \\ & \mathrm{pF} \end{aligned}$	-	-	30	$\mu \mathrm{s}$	
$\mathrm{V}_{\text {DSon }}$	Output saturation voltage	at 20mA, Gauss >BOP	-	-	0.4	V	
loff	Output Leakage Current	VOUT = 24 V ; Switch state $=$ Off	-	-	10	uA	
lout(lim)	Output Current Limit	Short-Circuit Protection	30	-	90	mA	
T_{R}	Output rise time	$\begin{aligned} & \mathrm{R}_{\text {LOAD }}=820 \Omega \text {, CLOAD } \\ & =10 \mathrm{pF} ; \end{aligned}$	-	0.2	2	uS	
TF	Output fall time	$\begin{aligned} & R_{\text {LOAD }}=820 \Omega, \text { C }_{\text {LOAD }}= \\ & 10 \mathrm{pF} ; \end{aligned}$	-	0.1	2	uS	
T_{d}	Output delay Time	B=Brp-100G to Bop+100G in 1us		13	25	$\mu \mathrm{s}$	
$\mathrm{R}_{\text {TH }}$	Thermal resistance: SOT-23-3L TO-92S SOT-89-3L	-		$\begin{array}{r} 303 \\ 203 \\ 230 \\ \hline \end{array}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / W \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} M \\ & \hline \end{aligned}$	
$\mathrm{Fsw}^{(2)}$	Maximum Switching Frequency		20	30		KHz	
T	Operating temperature	-	-40	-	150	${ }^{\circ} \mathrm{C}$	
Ts	Storage temperature:	-	-40	-	150	${ }^{\circ} \mathrm{C}$	
CHA921/CHI921							
Bop	Magnetic operating point	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	20	35	50	Gauss	
$\mathrm{B}_{\text {RP }}$	Magnetic release point	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	10	20	40	Gauss	
Bhyst	$\begin{aligned} & \text { Magnetic hysteresis window } \\ & \text { \|BOP-BRP\| } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	10	15	30	Gauss	
B	$\begin{aligned} & \text { Magnetic offset; } \mathrm{B}_{\mathrm{o}}=(\mathrm{BOP} \\ & +\mathrm{BRP}) / 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		27.5		Gauss	
CHA922/CHI922							
Bop	Magnetic operating point	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	40	60	80	Gauss	
$\mathrm{B}_{\text {RP }}$	Magnetic release point	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	20	30	50	Gauss	
Bhyst	Magnetic hysteresis window \|BOP-BRP		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	15	30	45	Gauss
B	$\begin{aligned} & \text { Magnetic offset; } \mathrm{B}_{\mathrm{o}}=(\mathrm{BOP} \\ & +\mathrm{BRP}) / 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		45		Gauss	
CHA923/CHI923							
Bop	Magnetic operating point	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	110	140	170	Gauss	

	Cosemitech	CHA92X/CHI92X
semi	Automotive Product Group	

Preliminary Datasheet 1.4

$\mathrm{B}_{\text {RP }}$	Magnetic release point	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	40	60	80	Gauss	
$\mathrm{B}_{\text {HYST }}$	Magnetic hysteresis window \|BOP-BRP		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	50	80	110	Gauss
B_{0}	Magnetic offset; $\mathrm{B}_{\mathrm{O}}=(\mathrm{BOP}$ $+\mathrm{BRP}) / 2$	$\mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		100		Gauss	

CHA924/CHI924

Bop	Magnetic operating point	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	120	145	170	Gauss	
$\mathrm{B}_{\text {RP }}$	Magnetic release point	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	80	105	130	Gauss	
Bhyst	Magnetic hysteresis window \|BOP-BRP		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	25	40	60	Gauss
B	$\begin{aligned} & \text { Magnetic offset; } \mathrm{Bo}_{\mathrm{o}}=(\mathrm{BOP} \\ & +\mathrm{BRP}) / 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		125		Gauss	
CHA925/CHI925							
Bop	Magnetic operating point	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	210	250	290	Gauss	
$\mathrm{B}_{\text {RP }}$	Magnetic release point	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	160	200	240	Gauss	
Bhyst	Magnetic hysteresis window \|BOP-BRP		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	25	50	75	Gauss
B	$\begin{aligned} & \text { Magnetic offset; } \mathrm{B}_{\mathrm{o}}=(\mathrm{BOP} \\ & +\mathrm{BRP}) / 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		225		Gauss	

(1) $1 \mathrm{mT}=10$ Gauss
(2) Bandwidth describes the fastest changing magnetic field that can be detected and translated to the output.

NOTICE

The magnetic field strength (Gauss) required to cause the switch to change state (operate and release) will be as specified in the magnetic characteristics. To test the switch against the specified magnetic characteristics, the switch must be placed in a uniform magnetic field.

Cosem	Cosemitech	CHA92X/CHI92X
	Automotive Product Group	

9. Application Information

9.1 Typical Application

It is recommended that an external capacitor C 1 is connected to the supply. This can reduce the noise injected into the device. Normal 0.1 uF is suggested.

9.2 Device Output

If the device is powered on with a magnetic field strength between BRP and BOP, then the device output is indeterminate and can either be Hi-Z or Low. If the field strength is greater than BOP, then the output is pulled low. If the field strength is less than BRP, then the output is released.

9.3 Output Stage

The CHA92X/CHI92X output stage uses an open-drain NMOS, and it is rated to sink up to 30 mA of current. For proper operation, calculate the value of the pullup resistor R1 using Equation 1.

$$
\begin{equation*}
\frac{V_{\text {ref }} \max }{30 \mathrm{~mA}} \leq R 1 \leq \frac{V_{\text {ref }} \min }{100 \mu \mathrm{~A}} \tag{1}
\end{equation*}
$$

The size of R1 is a tradeoff between the OUT rise time and the current when OUT is pulled low. A lower current is generally better, however faster transitions and bandwidth require a smaller resistor for faster switching. In addition, ensure that the value of R1>500 Ω to ensure the output driver can pull the OUT pin close to GND.

	Cosemitech	CHA92X/CH192X
semi	Automotive Product Group	

Preliminary Datasheet 1.4

Select a value for C 2 based on the system bandwidth specifications as shown in Equation 2.

$$
\begin{equation*}
2 \times f_{\mathrm{BW}}(\mathrm{~Hz})<\frac{1}{2 \pi \times \mathrm{R} 1 \times \mathrm{C} 2} \tag{2}
\end{equation*}
$$

Most applications do not require this C2 filtering capacitor.

9.4 Protection Circuits

The CHA92X/CHI92X device is fully protected against overcurrent and reverse-supply conditions.

9.5 Overcurrent Protection (OCP)

An analog current-limit circuit limits the current through the FET. The driver current is clamped to IOCP. During this clamping, the rDS(on) of the output FET is increased from the nominal value.

9.6 Reverse Supply Protection

The CHA92X/CHI92X device is protected in the event that the VCC pin and the GND pin are reversed (up to -22 V).

9.7 Alternative Two-Wire Application

For systems that require minimal wire count, the device output can be connected to VCC through a resistor, and the total supplied current can be sensed near the controller.

2-Wire Application
Current can be sensed using a shunt resistor or other circuitry.

cosem:	Cosemitech	CHA92X/CHI92X
	Automotive Product Group	

10. Test Conditions

Note: DUT=Device Under Test

Supply Current

Note 1 - The supply current IDD represents the static supply current. OUT is left open during measurement

Note 2 - The device is put under magnetic field with $B<B R P$

Output Leakage Current

Note 1 - The device is put under magnetci field with $B<B_{R P}$

Output Saturation Voltage

Note 1 - The output saturation voltage Voson is measeured at $V_{D D}=3.3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{D}}=20 \mathrm{~V}$

Note 2 - The device is put under magnetic field with $\mathrm{B}>$ Bop

Magenetic Thresholds

Note 1 - Bop is determined by putting the device under magnetic field swept from BRPmin up to Bopmax until the output is switched on.
Note 2 - BRP is determined by putting the device under magnetic field swept from Bopmax down to BrPmin until the output is switched off.

	Cosemitech	CHA92X/CH192X
semi	Automotive Product Group	

11. Package Information:

PACKAGE DESIGNATOR

TO-92S

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
A	1.420	1.620	0.056	0.064
A1	0.660	0.860	0.026	0.034
b	0.350	0.480	0.014	0.019
b1	0.400	0.550	0.016	0.022
c	0.360	0.510	0.014	0.020
D	3.900	4.100	0.154	0.161
D1	2.280	2.680	0.090	0.106
E	3.050	3.250	0.120	0.128
e	1.270 TYP.		0.050 TYP.	
e1	2.440	2.640	0.096	0.104
L	15.100	15.500	0.594	0.610
θ	45° TYP.		45° TYP.	

cosem:	Cosemitech	CHA92X/CHI92X
	Automotive Product Group	

PACKAGE DESIGNATOR

SOT-23-3L

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
C	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950		BSC)	$0.037(B S C)$
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

	Cosemitech	CHA92X/CHI92X
semi	Automotive Product Group	

Preliminary Datasheet 1.4
PACKAGE DESIGNATOR
SOT-89-3L

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
A	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
c	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550 REF.		0.061 REF.	
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
e	1.500 TYP.		0.060 TYP.	
e1	$3.000 ~ T Y P . ~$		0.118 TYP.	
L	0.900	1.200	0.035	0.047

	Cosemitech	CHA92X/CHI92X
tech	Automotive Product Group	This is advanced information on a new product now in development or undergoing evaluation. Details are no obligation for future manufacture of this product.

Preliminary Datasheet 1.4

Information furnished is believed to be accurate and reliable. However, Cosemitech assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cosemitech. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. Cosemitech products are not authorized for use as critical components in life support devices or systems without express written approval of Cosemitech.

The Cosemitech logo is a registered trademark of Cosemitech

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:
Click to view products by Cosemitech manufacturer:
Other Similar products are found below :
HGPRDT005A AH277AZ4-AG1 AV-10379 AV-10448 SS41C AH1894-Z-7 TLE4917 50017859-003 TY-13101 TLE4976L SS85CA BU52002GUL-E2 BU52003GUL-E2 AH277AZ4-BG1 TLE49614MXTSA1 AH211Z4-AG1 AH3360-FT4-7 TLE4941-1 SS460S-
100SAMPLE 50065820-03 AH374-P-A AH3372-P-B AH1806-P-A TLE49595UFXHALA1 SS460P-T2 AH1913-W-7 AH3373-P-B
TLV4961-1M TLE9852QXXUMA1 TLE5046ICAKLRHALA1 AH1903-FA-EVM AH8502-FDC-EVM TLE4998S3XALA1
TLE5011FUMA1 TLE5027CE6747HAMA1 TLE5109A16E1210XUMA1 TLI4966GHTSA1 TLI4906KHTSA1 MA710GQ-P S-57K1NBL2A-M3T2U S-57P1NBL9S-M3T4U S-576ZNL2B-L3T2U S-576ZNL2B-A6T8U S-57P1NBL0S-M3T4U S-57A1NSL1A-M3T2U S-57K1RBL1A-M3T2U S-57P1NBH9S-M3T4U S-57P1NBH0S-M3T4U S-57A1NSH1A-M3T2U S-57A1NSH2A-M3T2U

