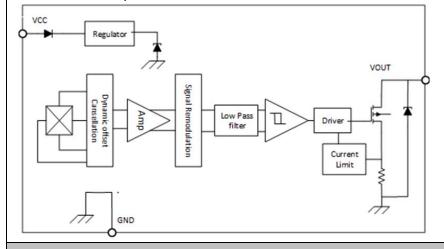
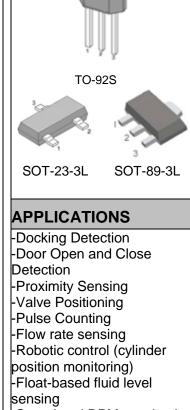


Automotive Product Group


CHA93X/CHI93X


This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice and Cosemitech assumes no obligation for future manufacture of this product. Contact Cosemitech for the latest status. Preliminary Datasheet 1.3

PACKAGE

FEATURES and FUNCTIONAL DIAGRAM

- AEC-Q100 automotive qualified for CHA93X
- Digital Omnipolar-Switch Hall Sensor
- Superior Temperature Stability
- Multiple Sensitivity Options (BOP / BRP): ±25 / ±15 Gauss; ±70 /±35 Gauss; ±100/ ±50 Gauss;
- On board voltage regulator for 2.5V to 22V range
- Open Drain Output (25 mA Sink)
- Resistant to physical stress
- Output short-circuit protection
- Operation from unregulated supply
- Reverse-battery and freewheeling protection
- Solid-state reliability
- Wide Operating temperature range: -40 to 150 °C
- Small package sizes TO-92S, SOT-23 and SOT-89
- RoHS-compliant material meets directive 2011/65/EU

-Speed and RPM sensing in fitness equipment

DESCRIPTION

The CHA93X/CHI93X Hall-effect sensor is extremely temperature-stable and stress-resistant sensor ICs, especially suited for operation over extended temperature ranges from -40°C to 150°C. Superior high temperature performance is possible through dynamic offset cancellation, which reduces the residual offset voltage normally caused by device over-molding, temperature dependencies, and thermal stress.

The device includes a voltage regulator, Hall-voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and a short circuit protected open-drain output to sink up to 25 mA.

An on-board regulator permits operation with supply voltages of 2.5 to 22 V. The advantage of operating down to 2.5V is that the device can used in 2.5V applications or with additional external resistance in series with the supply pin for greater protection against high-voltage transient events.

The CHA93X/CHI93X series is digital Omnipolar Hall switch. When the applied magnetic flux density exceeds the BOP threshold, the chip open-drain output goes low. The output stays low until the field decreases to less than BRP, and then the output goes to high impedance.

The CHA93X/CHI93X also integrated internal clamps against supply/output transients; output short circuits protection; reverse battery conditions.

Three package styles provide a magnetically optimized package for most applications, SOT-23, TO-92S and SOT-89. Each package type is lead (Pb) free (suffix, –T), with a 100% matte-tin-plated lead-frame.

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice and Cosemitech assumes no obligation for future manufacture of this product. Contact Cosemitech for the latest status. **Preliminary Datasheet 1.3**

Table of Contents

1. Product Family Members
2. Pin Definitions and Descriptions
3. Absolute Maximum Ratings 4
4. ESD Protections
5. Function Description
6. Definition of Switching Function
7. Temperature Characterization
8. Parameters Specification
9. Application infromation7
10.Test Condition
11. Package and Packing Information

CHI933TB

CHI933ER

1933

1933

Automotive Product Group

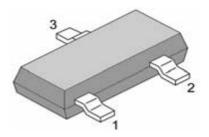
I. Product Family Members					
Part Number	Marking ID	Description			
CHA931SR	C931	Omnipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)			
CHA931TB	C931	Omnipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)			
CHA931ER	C931	Omnipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)			
CHA932SR	C932	Omnipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)			
CHA932TB	C932	Omnipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)			
CHA932ER	C932	Omnipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)			
CHA933SR	C933	Omnipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)			
СНА933ТВ	C933	Omnipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)			
CHA933ER	C933	Omnipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)			
CHI931SR	1931	Omnipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)			
CHI931TB	1931	Omnipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)			
CHI931TR	1931	Omnipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, tape and reel packing (3000 units per reel)			
CHI931ER	1931	Omnipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)			
CHI932SR	1932	Omnipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)			
CHI932TB	1932	Omnipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)			
CHI932ER	1932	Omnipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)			
CHI933SR	1933	Omnipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)			
		Omning loss with the light digital concers IC flat TO 022 neckars hulk			

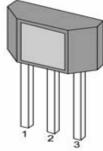
packing (1000 units per bag)

and reel packing (1000 units per reel)

Omnipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk

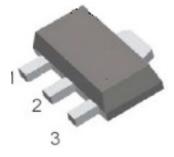
Omnipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape




This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice and Cosemitech assumes no obligation for future manufacture of this product. Contact Cosemitech for the latest status.

Preliminary Datasheet 1.3

2. Pin Definitions and Descriptions


SOT-23-3L (S)	TO-92S (T)	SOT-89-3L (E)	Name	Туре	Function
1	1	1	VDD	Supply	Supply Voltage pin
2	3	3	OUT	Output	Open Collector Output pin
3	2	2	GND	Ground	Ground pin

SOT-23-3L

TO-92S

SOT-89-3L

3. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
Supply Voltage	V _{DD}	-	24	V
VDD Reverse Voltage VDD	V _{RDD}	-22		V
Supply Current	I _{DD}	-	20	mA
Output Voltage	V _{OUT}	-0.3	24	V
Output Current	Ι _{Ουτ}	-	25	mA
Operating Ambient Temperature	T _A	-40	150	°C
Storage Temperature	Ts	-50	150	°C
Junction temperature	TJ	-50	165	°C
Magnetic Flux	В	No I	_imit	Gauss

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum- rated conditions for extended periods may affect device reliability.

4. ESD Protections

Parameter	Value	Unit
All pins ¹⁾	+/-8000	V
All pins ²⁾	+/-200	V
All pins ³⁾	+/-750	V

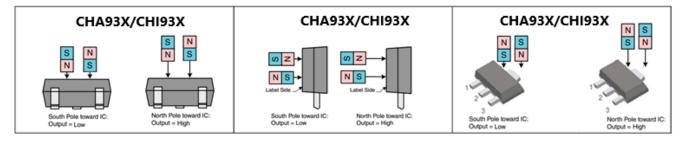
1) HBM (Human Body Mode) according to AEC-Q100-002

2) MM (Machine Mode) according to AEC-Q100-003

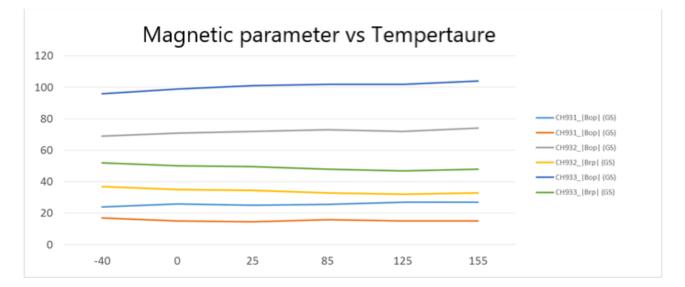
3) CDM (charged device mode) according to AEC-Q100-011

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice and Cosemitech assumes no obligation for future manufacture of this product. Contact Cosemitech for the latest status.

Preliminary Datasheet 1.3


5. Function Description

The CHA93X/CHI93X exhibits digital Omnipolar switching characteristics. Therefore, it requires only south poles or north poles to operate properly.


When the applied magnetic flux density exceeds the BOP threshold, the chip open-drain output goes low. The output stays low until the field decreases to less than BRP, and then the output goes to high impedance.

A magnetic hysteresis BHYST keeps BOP and BRP separated by a minimal value. This hysteresis prevents output oscillation near the switching point.

6. Magnetic Activation

7. Temperature Characteristics

CHA93X/CHI93X

Automotive Product Group

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice and Cosemitech assumes no obligation for future manufacture of this product. Contact Cosemitech for the latest status.

Preliminary Datasheet 1.3

8. Parameters Specification (VCC=3.3V supply, TA= -40 °C to 150 °C except where otherwise specified.)

Symbol	Parameter	Test Condition	Min	Тур.	Max	Units	
V_{DD}	Supply voltage	-40 °C to 150 °C	2.5	-	22	V	
I _{DD}	Supply Current	$V_{DD} = 3.3V$	I	1.6	3	mA	
VZSUPPLY	Supply Zener Clamp Voltage	I _{CC} =7 mA; TA = 25°C	24			V	
V _{ZOUT}	Output Zener Clamp Voltage	I _{OUT} = 3mA	24			V	
V_{RCC}	Reverse Battery Zener				-22	V	
I _{RCC}	Reverse Battery Current	$V_{CC} = -22 V$	-5			mA	
Fc	Chopping Frequency			500		KHz	
t _{PO}	Power-On Time	$TA = 25^{\circ}C; C_{LOAD} = 10$ pF	Ι	_	30	μs	
V_{DSon}	Output saturation voltage	at 20mA, Gauss >BOP	I	-	0.4	V	
I _{OFF}	Output Leakage Current	VOUT = 24 V; Switch state = Off	-	-	10	uA	
IOUT(lim)	Output Current Limit	Short-Circuit Protection	30	_	90	mA	
T _R	Output rise time	R_{LOAD} = 820 Ω , C_{LOAD} = 10 pF;	-	0.2	2	uS	
T_F	Output fall time	$R_{LOAD} = 820\Omega, C_{LOAD} =$ 10 pF;	-	0.1	2	uS	
T _d	Output delay Time	B=Brp-100G to Bop+100G in 1us		13	25	μs	
R _{TH}	Thermal resistance: SOT-23-3L TO-92S SOT-89-3L	-	- -	303 203 230	- - -	°C /W °C/W °C/W	
F _{SW} ⁽²⁾	Maximum Switching Frequency		20	30		KHz	
Т	Operating temperature	-	-40	-	150	°C	
Ts	Storage temperature:	-	-40	-	150	°C	
CHA931/0	CHI931						
B _{OP}	Magnetic operating point	T _A =-40°C to 150°C	±15	±30	±55	Gauss	
B _{RP}	Magnetic release point	T _A =-40°C to 150°C	±5	±20	±45	Gauss	
B _{HYST}	Magnetic hysteresis window BOP - BRP	T _A =-40°C to 150°C	4	10	30	Gauss	
Bo	Magnetic offset; B ₀ = (BOP + BRP) / 2	T _A =-40°C to 150°C		20		Gauss	
CHA932/0	CHI932						
B _{OP}	Magnetic operating point	T _A =-40°C to 150°C	±30	±60	±90	Gauss	
B _{RP}	Magnetic release point	T _A =-40°C to 150°C	±15	±30	±60	Gauss	
B _{HYST}	Magnetic hysteresis window BOP - BRP	T _A =-40°C to 150°C	20	30	50	Gauss	
Bo	Magnetic offset; B _O = (BOP + BRP) / 2	T _A =-40°C to 150°C		45		Gauss	
CHA933/CHI933							
BOP	Magnetic operating point	T _A =-40°C to 150°C	±70	±100	±150	Gauss	

CHA93X/CHI93X

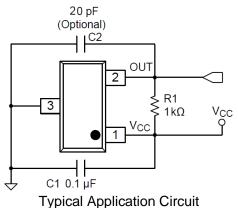
Automotive Product Group

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice and Cosemitech assumes no obligation for future manufacture of this product. Contact Cosemitech for the latest status.

			Pre	liminar	y Datas	heet 1.3
B _{RP}	Magnetic release point	T _A =-40°C to 150°C	±30	±50	±100	Gauss
BHYST	Magnetic hysteresis window BOP - BRP	T _A =-40°C to 150°C		50		Gauss
Bo	Magnetic offset; B ₀ = (BOP + BRP) / 2	T _A =-40°C to 150°C		75		Gauss

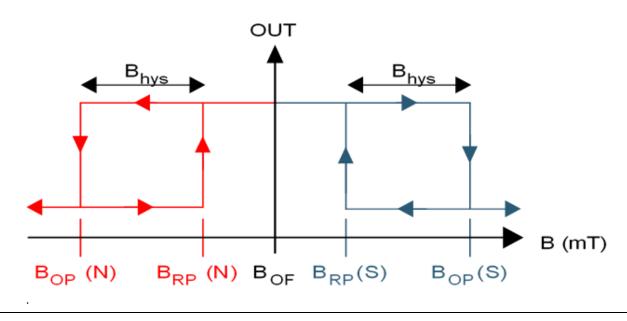
(1) 1 mT = 10 Gauss

(2) Bandwidth describes the fastest changing magnetic field that can be detected and translated to the output.


NOTICE

The magnetic field strength (Gauss) required to cause the switch to change state (operate and release) will be as specified in the magnetic characteristics. To test the switch against the specified magnetic characteristics, the switch must be placed in a uniform magnetic field.

9. Application Information


9.1 Typical Application

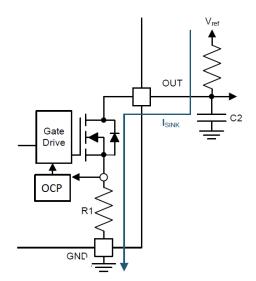
It is recommended that an external capacitor C1 is connected to the supply. This can reduce the noise injected into the device. Normal 0.1uF is suggested.

9.2 Device Output

If the device is powered on with a magnetic field strength between BRP and BOP, then the device output is indeterminate and can either be Hi-Z or Low. If the field strength is greater than BOP, then the output is pulled low. If the field strength is less than BRP, then the output is released.

in development or undergoing evaluation. Details are subject to change without notice and Cosemitech

Automotive Product Group


assumes no obligation for future manufacture of this product. Contact Cosemitech for the latest status. Preliminary Datasheet 1.3

9.3 Output Stage

The CHA93X/CHI93X output stage uses an open-drain NMOS, and it is rated to sink up to 30 mA of current. For proper operation, calculate the value of the pullup resistor R1 using Equation 1.

 $\frac{V_{\text{ref}} \max}{30 \text{ mA}} \le R1 \le \frac{V_{\text{ref}} \min}{100 \mu A}$

 $30 \text{ mA}^{-100 \mu \text{A}}$ (1) The size of R1 is a tradeoff between the OUT rise time and the current when OUT is pulled low. A lower current is generally better, however faster transitions and bandwidth require a smaller resistor for faster switching. In addition, ensure that the value of R1 > 500 Ω to ensure the output driver can pull the OUT pin close to GND.

Select a value for C2 based on the system bandwidth specifications as shown in Equation 2.

$$2 \times f_{\rm BW} (\rm Hz) < \frac{1}{2\pi \times \rm R1 \times \rm C2}$$
 (2)

Most applications do not require this C2 filtering capacitor.

9.4 Protection Circuits

The CHA93X/CHI93X device is fully protected against overcurrent and reverse-supply conditions.

9.5 Overcurrent Protection (OCP)

An analog current-limit circuit limits the current through the FET. The driver current is clamped to IOCP. During this clamping, the rDS(on) of the output FET is increased from the nominal value.

9.6 Reverse Supply Protection

The CHA93X/CHI93X device is protected in the event that the VCC pin and the GND pin are reversed (up to -22 V).

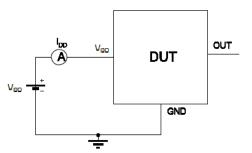
CHA93X/CHI93X

Automotive Product Group

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice and Cosemitech assumes no obligation for future manufacture of this product. Contact Cosemitech for the latest status. Preliminary Datasheet 1.3

9.7 Alternative Two-Wire Application

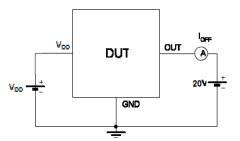
For systems that require minimal wire count, the device output can be connected to VCC through a resistor, and the total supplied current can be sensed near the controller.


2-Wire Application

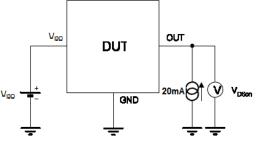
Current can be sensed using a shunt resistor or other circuitry.

10. Test Conditions

Note: DUT=Device Under Test

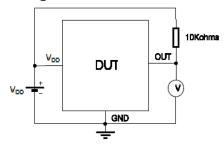

Supply Current

Note 1 - The supply current IDD represents the static supply current. OUT is left open during measurement


Note 2 - The device is put under magnetic field with B<BRP

Output Leakage Current

Note 1 - The device is put under magnetci field with B<BRP


Output Saturation Voltage

Note 1 - The output saturation voltage VDSon is measeured at VDD=3.3 V and VDD=20V

Note 2 - The device is put under magnetic field with B>Bop

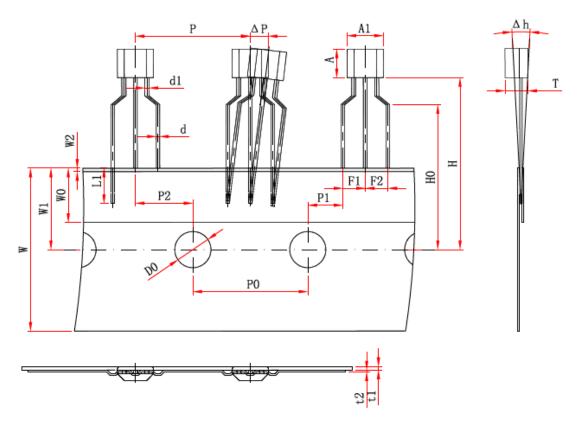
Magenetic Thresholds


Note 1 - BOP is determined by putting the device under magnetic field swept from BRPmin up to BOPmax until the output is switched on. Note 2 - BRP is determined by putting the device under magnetic field swept from BOPmax down to BRPmin until the output is switched off.

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice and Cosemitech assumes no obligation for future manufacture of this product. Contact Cosemitech for the latest status.

Preliminary Datasheet 1.3

11. Package and Packing Information: For CHA93XTB and CHI93XTB:

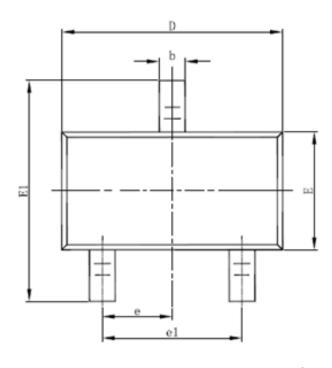


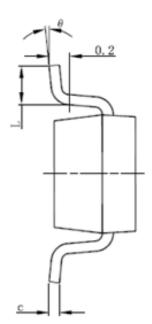
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice and Cosemitech assumes no obligation for future manufacture of this product. <u>Contact Cosemitech for the latest status.</u> **Preliminary Datasheet 1.3**

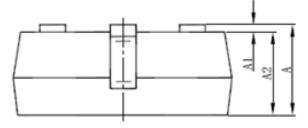
For CHI931TR only:

TO-92S PACKAGE TAPEING DIMENSION

Item	Symbol	Value & Tolerance
Body width	A1	4.0 ± 0.1
Body height	A	3.15 ± 0.1
Body thickness	Т	1.52 ± 0.1
Lead wire diameter	d	0.38+0.1, - 0.05
Lead wire diameter1	d1	0.46+ 0.05, - 0.06
Pitch of component	Р	12.7 ± 0.3
Feed hole pitch	P0	12.7 ± 0.2
Hole center to component center	P2	6.35 ± 0.3
Lead to lead distance	F1,F2	2.5 ± 0.3
Component alignment, F-R	∆h	0 ± 1.0
Type width	W	18.0 + 1.0, - 0.5
Hole down tape width	W0	6.0 ± 0.5
Hole position	W1	9.0 ± 0.5
Hole down tape position	W2	1.0MAX.
Height of component from tape center	Н	19.0 +2.0, -1.0
Lead wire clinch height	H0	16.0 ± 0.5
Lead wire(tape portion)	L1	2.50 MIN.
Feed hole diameter	D0	4.0 ± 0.2
Carrier Tape Thickness	t1	0.4 ± 0.05
Taped Lead Thickness	t2	0.2 ± 0.05
Position of hole	P1	3.85±0.3
Component alignment	$\triangle P$	0 ± 1.0
		Unit : mm

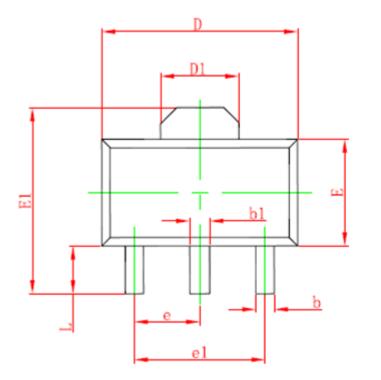


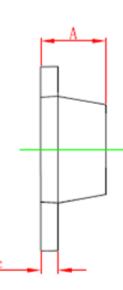

CHA93X/CHI93X


This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice and Cosemitech assumes no obligation for future manufacture of this product. Contact Cosemitech for the latest status.

Preliminary Datasheet 1.3

PACKAGE DESIGNATOR SOT-23-3L


Sumbal	Dimensions Ir	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°



This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice and Cosemitech assumes no obligation for future manufacture of this product. Contact Cosemitech for the latest status.

Preliminary Datasheet 1.3

PACKAGE DESIGNATOR SOT-89-3L

Sumbol	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
A	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
с	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550	REF.	0.061 REF.	
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP.		0.060 TYP.	
e1	3.000 TYP.		0.118	TYP.
L	0.900	1.200	0.035	0.047

CHA93X/CHI93X

Automotive Product Group

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice and Cosemitech assumes no obligation for future manufacture of this product. Contact Cosemitech for the latest status.

Preliminary Datasheet 1.3

Information furnished is believed to be accurate and reliable. However, Cosemitech assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cosemitech. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. Cosemitech products are not authorized for use as critical components in life support devices or systems without express written approval of Cosemitech.

The Cosemitech logo is a registered trademark of Cosemitech

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:

Click to view products by Cosemitech manufacturer:

Other Similar products are found below :

HGPRDT005A AH277AZ4-AG1 AV-10379 AV-10448 SS41C AH1894-Z-7 TLE4917 50017859-003 TY-13101 TLE4976L SS85CA BU52002GUL-E2 BU52003GUL-E2 AH277AZ4-BG1 TLE49614MXTSA1 AH211Z4-AG1 AH3360-FT4-7 TLE4941-1 SS460S-100SAMPLE 50065820-03 AH374-P-A AH3372-P-B AH1806-P-A TLE49595UFXHALA1 SS460P-T2 AH1913-W-7 AH3373-P-B TLE9852QXXUMA1 TLE5046ICAKLRHALA1 TLE49421CHAMA2 AH1903-FA-EVM AH8502-FDC-EVM AH3774-P-EVM TLE4998S3XALA1 TLE5011FUMA1 TLE5027CE6747HAMA1 TLE5109A16E1210XUMA1 TLI4966GHTSA1 TLI4906KHTSA1 MA710GQ-P S-57K1NBL2A-M3T2U S-57P1NBL9S-M3T4U S-576ZNL2B-L3T2U S-576ZNL2B-A6T8U S-57P1NBL0S-M3T4U S-57A1NSL1A-M3T2U S-57K1RBL1A-M3T2U S-57P1NBH9S-M3T4U S-57P1NBH0S-M3T4U S-57A1NSH1A-M3T2U