36V, Precision

Low-Power Instrumentation Amplifier

Features

- Low Offset Voltage: $50 \mu \mathrm{~V}$ (Max.)
- Low Drift: $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Input Bias Current: 2nA (Max.)
- Gain Bandwidth Product: 1.5 MHz
- Slew Rate: $1.0 \mathrm{~V} / \mu \mathrm{s}$
- Wide Supply Range: $\pm 2.25 \mathrm{~V} \sim \pm 18 \mathrm{~V}$
- Low Quiescent Current: 1.0 mA
- Unity Gain Stable
- Input Over-Voltage Protection
- Extended Temperature Ranges From $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Available as SOP8/MSOP8/DIP8

Applications

- Medical Instrumentation
- RTD Sensor Amplifier
- Data Acquisition
- Thermocouple Amplifier
- Bridge Amplifier

Rev1.2

Copyright@2018 Cosine Nanoelectronics Inc. All rights reserved
The information provided here is believed to be accurate and reliable. Cosine Nanoelectronics assumes no reliability for inaccuracies and omissions. Specifications described and contained here are subjected described herein should not be implied or granted for any third party performance. All of this information

General Description

COS128 and COS129 are low-power, general purpose instrumentation amplifiers offering excellent accuracy. The versatile 3 -op amp design and small size make these amplifiers ideal for a wide range of applications. A single external resistor sets any gain from 1 to 10,000 .

COS128 and COS129 are laser-trimmed for very low offset voltage $(50 \mu \mathrm{~V})$, drift $\left(0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$ and high common mode rejection. They operate with power supplies as low as ± 2.25. The quiescent current is only 1.0 mA , ideal for battery-operated systems. COS128/129 are available in 8 -pin plastic SOP8, DIP8 and MSOP8 packages, specified for the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Block Diagram

1. Pin Configuration and Functions

Pin Functions

Pin	Name	I/O	Description
1,8	R_{G}	-	Gain setting pin. For gains greater than 1, place a gain resistor between pin1 \& 8
2	$\mathrm{~V}_{\mathbb{I N}-}$	I	Negative input
3	$\mathrm{~V}_{\mathbb{N}+}$	I	Positive input
4	$-\mathrm{V}_{\mathrm{S}}$	P	Negative supply
5	REF	I	Reference input. This Pin must be driven by low impedance or connected to ground
6	$\mathrm{~V}_{\text {OUT }}$	O	Output
7	$+\mathrm{V}_{\mathrm{S}}$	P	Positive supply

2. Product Specification

2.1 Absolute Maximum Ratings ${ }^{(1,2)}$

Parameter	Rating	Units
Power Supply: +Vs to -Vs	36	V
Differential Input Voltage Range	± 36	V
Common Mode Input voltage Range $^{(2)}$	-Vs to +Vs	V
Output Current	50	mA
Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$
Junction Temperature	150	${ }^{\circ}{ }^{\circ} \mathrm{C}$
Operating Temperature Range	-40 to 125	${ }^{\circ} \mathrm{C}$
ESD Susceptibility, HBM	2000	V

(1) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should be current-limited to 10 mA or less.

2.2 Thermal Data

Parameter	Rating	Unit
Package Thermal Resistance	206 (MSOP8)	
	155 (SOP8)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	46 (DIP8)	

2.3 Recommended Operating Conditions

Parameter	Rating	Unit
DC Supply Voltage	$\pm 2.5 \mathrm{~V} \sim \pm 18 \mathrm{~V}$	V
Input common-mode voltage range	$-\mathrm{Vs}+1.9 \sim+\mathrm{Vs}-1.2$	V
Operating ambient temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

2.4 Electrical Characteristics

$\left(+V_{S}=+15 \mathrm{~V},-V_{s}=-15 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right.$, unless otherwise noted)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input Characteristics						
Input Offset Voltage	Vos	COS128U/129U		± 10	± 50	$\mu \mathrm{V}$
		COS128UA/129UA		± 25	± 125	$\mu \mathrm{V}$
		COS128C/129C		± 50	± 250	$\mu \mathrm{V}$
Input Offset Voltage Drift	$\Delta \mathrm{V}_{\text {os }} / \Delta \mathrm{T}$	-40 to $125^{\circ} \mathrm{C}$		0.2	0.7	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{B}			± 0.5	± 2	nA
Input Offset Current	los			± 0.2	± 1	nA
Common-Mode Voltage Range	$\mathrm{V}_{\text {CM }}$		$-\mathrm{V}_{\mathrm{s}}+1.9$		$+\mathrm{V}_{\mathrm{s}-1.2}$	V
Common-Mode Rejection Ratio	CMRR		120	125		dB
Open-Loop Voltage Gain	AOL	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	100	120		dB

Output Characteristics						
Output Voltage High	Vor				$+\mathrm{V}_{\mathrm{s}-1.1}$	V
Output Voltage Low	Vol		$-\mathrm{V}_{\mathrm{S}}+0.9$			V
Output Current	lout	$\mathrm{V}_{\text {DROPOUT }}<1.2 \mathrm{~V}$		± 10		mA
Short-Circuit Current	Isc			± 24		mA
Power Supply						
Operating Voltage Range			± 2.25		± 18	V
Power Supply Rejection Ratio	PSRR		120	130		dB
Quiescent Current / Amplifier	la			1.0	1.3	mA
Dynamic Performance						
Gain Bandwidth Product	GBWP	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		1.5		MHz
Slew Rate	SR	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{Av}=1 \end{aligned}$		1.0		V/us
Noise Performance						
Voltage Noise Density	en_{n}	$\mathrm{f}=1 \mathrm{kHz}$		8.0		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

3.0 Application Notes

3.1 Overview

The COS128/129 instrumentation amplifiers are differential amplifier that has been outfitted with input protection circuit and input buffer amplifiers, which eliminate the need for input impedance matching and make the amplifier particularly suitable for use in measurement and test equipment. Additional characteristics of the COS128/129 include a very low DC offset, low drift, low noise, very high open-loop gain, very high common-mode rejection ratio, and very high input impedance.

3.2 Application Information

COS128/129 measure small differential voltage with high common-mode voltage developed between the noninverting and inverting input. The ability to set the reference pin to adjust the functionality of the output signal offers additional flexibility that is practical for multiple configurations.

Figure 3.1 shows the basic connections required for operation of the COS128/129. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 8Ω in series with the REF pin will cause a typical device to degrade to approximately 80dB CMR.

Figure 3.1 Functional Block Diagram

Gain is set by connecting a single external resistor, R_{G}, between pins 1 and 8 :

$$
\begin{array}{rlr}
\mathrm{G} & =1+2^{*} \mathrm{R} 1 / \mathrm{R}_{\mathrm{G}} & \\
& =1+50 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{G}} & \text { for } \cos 128 \\
& =1+49.4 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{G}} & \text { for } \cos 129
\end{array}
$$

Commonly used gains and resistor values are shown in Table 3.1.

Desired Gain $\mathbf{G (V / V)}$	$\mathbf{C O S 1 2 8 : ~ G = 1 + 5 0 \mathrm { k } \Omega / R _ { \mathrm { G } }}$		$\mathbf{C O S 1 2 9 : ~ G = 1 + 4 9 . 4 \mathrm { k } \Omega / R _ { \mathrm { G } }}$	
	$\mathbf{R}_{\mathbf{G}}(\mathbf{\Omega})$	$\mathbf{N e a r e s t}$ $\mathbf{1 \%} \mathbf{R}_{\mathbf{G}}(\mathbf{\Omega})$	$\mathbf{R}_{\mathbf{G}}(\mathbf{\Omega} \mathbf{)}$	$\mathbf{N e a r e s t}$ $\mathbf{1 \%} \mathbf{R G}_{\mathbf{G}}(\mathbf{\Omega})$
1	NC	NC	NC	NC
2	50 k	49.9 k	49.4 k	49.9 k
5	12.5 k	12.4 k	12.35 k	12.4 k
10	5.556 k	5.62 k	5489	5.49 k
20	2.632 k	2.61 k	2600	2.61 k
50	1.02 k	1.02 k	1008	1 k
100	505.1	511	499	499
200	251.3	249	248	249
500	100.2	100	99	100
1000	50.05	49.9	49.5	49.9
2000	25.01	24.9	24.7	24.9
5000	10.00	10	9.88	9.76
10000	5.001	4.99	4.94	4.87

Table 3.1 Required Values of Gain Resistors

3.3 Power-Supply Bypassing and Layout

The COS $128 / 129$ operate from a single +4.5 V to +36 V supply or dual $\pm 2.25 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies. For single-supply operation, bypass the power supply +Vs with a $0.1 \mu \mathrm{~F}$ ceramic capacitor which should be placed close to the + Vs pin. For dual-supply operation, both the +Vs and the -Vs supplies should be bypassed to ground with separate $0.1 \mu \mathrm{~F}$ ceramic capacitors. $2.2 \mu \mathrm{~F}$ tantalum capacitor can be added for better performance.

The length of the current path is directly proportional to the magnitude of parasitic inductances and thus the high frequency impedance of the path. High speed currents in an inductive ground return create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance. Thus a ground plane layer is important for high speed circuit design.

4. Package Information

4.1 SOP8 (Package Outline Dimensions)

4.2 DIP8 (Package Outline Dimensions)

Symbol	Min	Non	Max
A1	6.28	6.33	6.38
A2	6.33	6.38	6.43
A3	7.52	7.62	7.72
A4	7.80	8.40	9.00
B1	9.15	9.20	9.25
B2	9.20	9.25	9.30
C		5.57	
D		1.52	
E	0.43	0.45	0.47
F		2.54	
G		0.25	
H	1.54	1.59	1.64
I	3.22	3.27	3.32
R		0.20	
M1	9°	10°	11°
M2	11°	12°	13°

5. Ordering Information

Model	Order Number	Package	Package Option	Marking Information
COS128	COS128U	SOP-8	Tape and Reel, 4000	COS128
	COS128UA	SOP-8	Tape and Reel, 4000	COS128
	COS128C	SOP-8	Tape and Reel, 4000	COS128
	COS128P	DIP-8	Tube, 50	COS128P
	COS128PA	DIP-8	Tube, 50	COS128PA
COS129	COS129U	SOP-8	Tape and Reel, 4000	COS129
	COS129UA	SOP-8	Tape and Reel, 4000	COS129
	COS129C	SOP-8	Tape and Reel, 4000	COS129
	COS129P	DIP-8	Tube, 50	COS129P
	COS129PA	DIP-8	Tube, 50	COS129PA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Instrumentation Amplifiers category:
Click to view products by COSINE manufacturer:

Other Similar products are found below :
ISL28274FAZ COS620BRZ AD8420ARMZ-RL COS129UA COSINA333MRA COS128U COS8221BRZ COSINA333MRB AD620ARZREEL(TOKMAS) COS129U COS128C INA350ABSIDDFR INA821IDGKR AD8556ARZ-REEL MCP6N16-100EMF MCP6N16001E/MF AD8422BRMZ-R7 INA188IDRJR AD8220BRMZ-R7 INA333AIDGKRG4 INA826SIDRCT INA826SIDRCR INA828IDR INA828ID AD8221ARMZ AD8226ARZ-RL AD694JN AD620ANZ AD621BR AD622ANZ AD623ANZ AD623ARMZ AD623BNZ AD625BDZ AD625JNZ AD694ARZ-REEL AD694JNZ AD620SQ/883B AD8220ARMZ-R7 AD8221ARMZ-R7 AD8222ACPZ-R7 AD8223ARMZ-R7 AD8226ARMZ AD8226ARMZ-R7 AD8228ARMZ-R7 AD8236ARMZ-R7 AD8237ARMZ AD8237ARMZ-R7 AD8250ARMZ AD8250ARMZ-R7

