3V to 16V SPDT/SPST CMOS ANALOG SWITCHES

Features

■ 3 V to 16 V Single-Supply Operation

- Low ON-State Resistance:
-2.8Ω with 16 V Supply
-3.6Ω with 12 V Supply
-11Ω with 5 V Supply
- Low Leakage Currents
- 1 nA Off-Leakage at $25^{\circ} \mathrm{C}$
- 1 nA On-Leakage at $25^{\circ} \mathrm{C}$
- Fast Switching Speed
ton=70ns, toff=50ns (12V Supply)
- Break-Before-Make Operation

■ Rail-to-Rail Operation

- TTL/CMOS Logic Compatible
- Small Packaging:

SOT23-6 (COS4561)
SOT23-5 (COS4514/4515)

General Description

The COS4561 is a single-pole/double-throw (SPDT) CMOS analog switch. The COS4514 and COS4515 are single pole / single throw (SPST) CMOS analog switches. They have very low switch ON-state resistance. The COS4514 is normally open (NO). The COS4515 is normally closed (NC).

These CMOS switches can operate continuously with a single supply between 3 V and 16V. Each switch can handle rail-to-rail analog signals. The OFF/ON-Leakage current maximum is only 1 nA at $25^{\circ} \mathrm{C}$ or 10 nA at $85^{\circ} \mathrm{C}$. The digital inputs have 0.8 V to 2.4 V logic thresholds, ensuring TTL/CMOS logic compatibility when using a +5 V supply.

Pin Diagram

Rev1.0

Copyright@2018 Cosine Nanoelectronics Inc. All rights reserved
Copyright@2018 Cosine Nanoelectronics Inc. Alr rights reserved The information provided here is believed to be accurate and reliable. Cosine Nanoelectronics assumes
no reliability for inaccuracies and omissions. Specifications described and contained here are subjected to change without notice on the purpose of improving the design and performance. All of this information described herein should not be implied or granted for any third party.

Applications

- Power routing applications
- Audio and video signal switching
- Precision automatic test equipment
- Relay replacement
- Automotive applications
- Sample and hold systems
- Telecom signal switching
- Battery power systems

1. Pin Configuration and Functions

COS4561

SOT23-5

LOGIC	SWITCH
0	OFF
1	ON

COS4514

LOGIC	SWITCH
0	ON
1	OFF

COS4515

Figure 1 Pin Diagram

Pin Description

PIN			NAME	FUNCTION	
COS4561	COS4514	COS4515			
1	4	4	IN	Digital Control Input	
2	5	5	V+	Supply Voltage	
3	3	3	GND	Ground	
4	-	2	NC	Normally Closed Terminal	
5	1	1	COM	Common Terminal	
6	2	-	NO	Normally Open Terminal	

2. Ordering Information

Order Number	Package	Package Option	Marking Information
COS4561TR	SOT23-6	Tape and Reel, 3000	C4561
COS4514TR	SOT23-5	Tape and Reel, 3000	C4514
COS4515TR	SOT23-5	Tape and Reel, 3000	C4515

3. Product Specification

3.1 Absolute Maximum Ratings ${ }^{(1)}$

Parameter	Min	Max	Unit
Supply voltage range $\left(\mathrm{V}_{+}\right)$	-0.3	17	V
Analog voltage range $\left(\mathrm{V}_{\mathrm{Nc}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{com}}\right)$	-0.3	$\mathrm{~V}_{+}+0.3$	V
Continuous current into any terminal		± 20	mA
Peak current into any terminal		± 30	mA
Continuous power dissipation		560	mW
Operating junction temperature	-40	+125	${ }^{\circ} \mathrm{C}$
Storage temperature	-55	+150	${ }^{\circ} \mathrm{C}$

(1) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

3.2 Thermal Data

Parameter	Rating	Unit
Package Thermal Resistance	190(SOT23-5/6)	${ }^{\circ} \mathrm{C} / \mathrm{W}$

3.3 Recommended Operating Conditions

Parameter	Rating	Unit
DC Supply Voltage	$3.0 \mathrm{~V} \sim 16 \mathrm{~V}$	V
Operating ambient temperature	-40 to +85	${ }^{\circ} \mathrm{C}$

3.4 Electrical Characteristics for 5-V Supply

(Typical values are tested at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8$, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Analog Switch						
Analog signal range	$V_{\text {сом, }}$ $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$		0		V+	V
On-state resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {сом }}=3.5 \mathrm{~V}, \\ & \mathrm{I}_{\text {сом }}=1 \mathrm{~mA} \end{aligned}$		11	28	Ω
OFF leakage current $(\mathrm{NO}, \mathrm{NC})$	INO(OFF), INC(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {com }}=1 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \end{aligned}$			1	nA
OFF leakage current (COM)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {сом }}=1 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \end{aligned}$			1	nA
ON leakage current (COM)	ICOM(ON)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \end{aligned}$			1	nA
Digital Control Input (IN)						
Input logic high	V_{IH}		2.4		V+	V
Input logic low	VIL		0		0.8	V
Input leakage current	$\mathrm{I}_{\mathrm{IH},} \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$			0.01	$\mu \mathrm{A}$
Switch Dynamic Characteristics						
Turn-on time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega$, $C_{L}=35 \mathrm{pF}$, Figure 1		75	130	ns
Turn-off time	toff	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega$, $C_{L}=35 p F$, Figure 1		45	70	ns
Break-Before-Make Delay (COS4561 only)	$\mathrm{t}_{\text {BBM }}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=300 \Omega$, $C_{L}=35 p F$, Figure 2	5	40		ns
Charge Injection	Q	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0, \\ & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \text { Figure } 3 \\ & \hline \end{aligned}$		-40		pC
NO or NC Off Capacitance	Coff	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=0, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$		15		pF
COM Off-Capacitance (COS4514/COS4515 only)	Ссом	$\begin{aligned} & V_{\text {сом }}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		65		pF
COM On-Capacitance	Ссом	$\begin{aligned} & V_{\mathrm{COM}}=V_{\mathrm{NO}}, V_{\mathrm{NC}}=0, \\ & f=1 \mathrm{MHz}, \end{aligned}$		65		pF
Off-Isolation	Viso	$\begin{aligned} & \hline R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		-85		dB
Bandwidth	BW	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		600		MHz
Power Supply						
V+ supply current	I+	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$			0.01	$\mu \mathrm{A}$

COS4561, 4514, 4515

3.5 Electrical Characteristics for 12-V Supply

(Typical values are tested at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=11.4 \mathrm{~V}$ to $12.6 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{NH}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8$, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Analog Switch						
Analog signal range	Vсом, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$,		0		V+	V
On-state resistance	Ron	$\begin{aligned} & \mathrm{V}+=11.4 \mathrm{~V}, \mathrm{~V}_{\text {сом }}=10 \mathrm{~V}, \\ & \mathrm{I}_{\text {сом }}=1 \mathrm{~mA} \end{aligned}$		3.6	6	Ω
On-state resistance flatness	Ron	$\begin{aligned} & \mathrm{V}+=11.4 \mathrm{~V}, \text { Ісом }=1 \mathrm{~mA} \\ & \mathrm{~V}_{\text {com }}=2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V} \end{aligned}$		1.5	3	Ω
OFF leakage current (NO, NC)	INO(OFF), InC(OFF)	$\begin{aligned} & \mathrm{V}_{+}=12.6 \mathrm{~V}, \mathrm{~V}_{\text {com }}=1 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\text {No or }} \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} \end{aligned}$			1	nA
OFF leakage current (COM)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}+=12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{com}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{No}} \text { or } \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} \end{aligned}$			1	nA
ON leakage current (COM)	ICOM(ON)	$\begin{aligned} & \mathrm{V}+=12.6 \mathrm{~V}, \mathrm{~V}_{\text {сом }}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} \end{aligned}$			1	nA
Digital Control Input (IN)						
Input logic high	V_{H}		5		V+	V
Input logic low	VIL		0		0.8	V
Input leakage current	$\mathrm{I}_{\mathrm{H}, \mathrm{ILL}}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$			0.01	$\mu \mathrm{A}$
Switch Dynamic Characteristics						
Turn-on time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega$, $C_{L}=35 \mathrm{pF}$, Figure 1		70	130	ns
Turn-off time	toff	$\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega \text {, }$ $C_{L}=35 \mathrm{pF}$, Figure 1		50	75	ns
Break-Before-Make Delay (COS4561 only)	$\mathrm{t}_{\text {BBM }}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega$, $\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, Figure 2	5	40		ns
Charge Injection	Q	$\begin{aligned} & \mathrm{V}_{G E N}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0, \\ & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF} \text {, Figure } 3 \end{aligned}$		-110		pC
NO or NC off capacitance	Coff	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=0, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$		15		pF
COM off-capacitance (COS4514/COS4515 only)	Ссом	$\begin{aligned} & \mathrm{V} \text { сом }=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		65		pF
COM On-Capacitance	Ссом	$\begin{aligned} & V_{\mathrm{com}}=V_{\mathrm{NO}}, V_{\mathrm{NC}}=0, \\ & f=1 \mathrm{MHz}, \end{aligned}$		65		pF
Off-Isolation	Viso	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V}_{\text {RMS },} \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		-85		dB
Bandwidth	BW	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V}_{\text {RMS },} \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		900		MHz
Power Supply						
V+ supply current	${ }_{+}^{+}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$			0.01	$\mu \mathrm{A}$

4. Test Circuits and Timing Diagrams

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

Figure 3. Charge Injection

5. Package Information

5.1 SOT23-5 (Package Outline Dimensions)

Symbol	Dimensions In Millimeters		Dimensions In Inches			
	Min	Max	Min	Max		
A	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.400	0.012	0.016		
c	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
E	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104	0.116		
e	0.950 TYP		$0.037 T Y P$			
e1	1.800	2.000	0.071			
L	$0.700 R E F$		$0.028 R E F$			
L1	0.300		0.600	0.012		0.024
θ	0°		8°	0°		8°

5.2 SOT23-6 (Package Outline Dimensions)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1\|	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.400	0.012	0.016
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950TYP		0.037 TYP	
e1	1.800	2.000	0.071	0.079
L	0.700REF		0.028REF	
L1	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by COSINE manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB MAX4762ETB+ NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQEX PI5A392AQE FSA634UCX NX3L1T5157GMZ ADG714BCPZ-REEL7 HT4051ARZ TC4066BP(N,F) DG302BDJ-E3 ADG854BCPZ-REEL7 PI5A100WE PI5A100QEX HV2733FG-G HV2701FG-G HV2301FG-G HV2301FG-G-M931 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX391CPE+ MAX4744ELB+ MAX4730EXT+T MAX4730ELT+ MAX333AEWP+ BU4066BC MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G NX3L4684TK,115 NX5L2750CGUX NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G

