

9MHz, RRIO, Zero-Drift **Zero-Crossover Operational Amplifiers**

Features

Low offset Voltage: 50µV (Max.)

Zero Drift: 0.05µV/°C (Max.)

Low Quiescent Current: 570µA

Gain Bandwidth Product: 9MHz

Single Supply: 2.5V ~ 5.5V

Dual Supply: $\pm 1.25 \text{V} \sim \pm 2.75 \text{V}$

Slew Rate: 8.5V/µs

Rail-to-Rail Input and Output (RRIO)

Unity Gain Stable

Zero Crossover

EMI/RFI Filtered Inputs

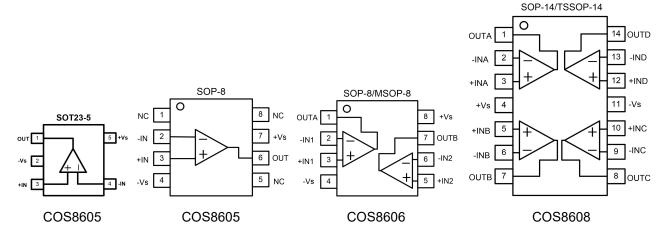
Extended Temperature Ranges From -40°C to +125°C

Small Packaging COS8605 available in SOT23-5/SOP-8 COS8606 available in SOP-8/MSOP-8 COS8608 available in SOP14/TSSOP14

Applications

- Sensor Conditioning
- **Temperature Measurements**
- Transducers
- Test Equipment
- **Medical Instrumentation**
- **Battery Powered Instruments**
- A/D converters

General Description


The COS8605 (single), COS8606 (dual) and COS8608 (quad) are low-noise, zero-drift, zero-crossover precision operational amplifiers operated on 2.5 to 5.5 single supply or \pm 1.25V to \pm 2.75V dual supplies. COS860x family use chopper stabilized technique to provide very low offset voltage (less than 50µV maximum) and near zero drift over temperature. Despite their low quiescent current, the COS860x family provides excellent overall performance and versatility. They have both rail-to-rail input and output range. The output voltage swing extends to within 1mV of each rail, providing the maximum output dynamic range with excellent overdrive recovery. COS860x family is unity gain stable and has a gain bandwidth product of 9MHz (typical). These features make the devices an ideal choice for driving high-precision, analogto-digital converters (ADCs) or buffering the output of high-resolution, digital-to-analog converters (DACs).

Copyright@2018 Cosine Nanoelectronics Inc. All rights reserved

The information provided here is believed to be accurate and reliable. Cosine Nanoelectronics assumes The reliability of inaccuracies and omissions. Specifications described and contained here are subjected to change without notice on the jumpose of improving the design and performance. All of this information described and contained here are subjected to change without notice on the jumpose of improving the design and performance. All of this information described without notice on the jumpose of improving the design and performance. All of this information described without notice of the province of the

1. Pin Configuration and Functions

Pin Functions

Name	Description	Note
+Vs	Positive power supply	A bypass capacitor of 0.1µF as close to the part as possible should be placed between power supply pins or between supply pins and ground.
-Vs	Negative power supply or ground	If it is not connected to ground, bypass it with a capacitor of 0.1µF as close to the part as possible.
-IN	Negative input	Inverting input of the amplifier. Voltage range of this pin can go from -Vs -0.3V to +Vs + 0.3V.
+IN	Positive input	Non-inverting input of the amplifier. This pin has the same voltage range as –IN.
OUT	Output	The output voltage range extends to within millivolts of each supply rail.
NC	No connection	

2. Package and Ordering Information

Channel	Model	Order Number	Package	Package Option	Marking Information
1	COS8605	COS8605TR	SOT23-5	Tape and Reel, 3000	COS8605
'	COS8605	COS8605SR	SOP-8	Tape and Reel, 4000	COS8605SR
0	COS8606	COS8606SR	SOP-8	Tape and Reel, 4000	COS8606SR
2	COS8606	COS8606MR	MSOP-8	Tape and Reel, 3000	COS8606MR
4	COS8608	COS8608SR	SOP14	Tape and Reel, 2500	COS8608SR
4	COS8608	COS8608TR	TSSOP14	Tape and Reel, 2500	COS8608TR

3. Product Specification

3.1 Absolute Maximum Ratings (1)

Parameter	Rating	Units
Power Supply: +Vs to -Vs	6	V
Input Voltage	-Vs -0.5V to +Vs + 0.5V	V
Input Current (2)	±10	mA
Storage Temperature Range	-65 to 150	°C
Junction Temperature	150	°C
Operating Temperature Range	-40 to 125	°C
ESD Susceptibility, HBM	2000	V

⁽¹⁾ Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

3.2 Thermal Data

Parameter	Rating	Unit
Package Thermal Resistance	190 (SOT23-5) 206 (MSOP8) 155 (SOP8) 105 (TSSOP14) 82 (SOP14)	°C/W

3.3 Recommended Operating Conditions

Parameter	Rating	Unit
DC Supply Voltage	2.5V ~ 5.5V	V
Input common-mode voltage range	-Vs ~ +Vs	V
Operating ambient temperature	-40 to +85	°C

⁽²⁾ Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

3.4 Electrical Characteristics

(+V_S=+5V, -V_S=0, V_{CM}=V_S/2, T_A =+25°C, R_L =10k Ω to V_S /2, unless otherwise noted)

Input Offset Voltage Drift $\Delta V_{OS}/\Delta T$ -40 to 125°C ± 0.005 ± 0.05 μN Input Bias Current IB ± 30 Input Offset Current Ios ± 30 Input Offset Current V _{CM} V _S = 5.5V -0.1 5.6 Common-Mode Voltage Range V _{CM} V _S = 5.5V -0.1 5.6 Common-Mode Rejection Ratio CMRR V _{CM} =0.1V to 4.9V 120 00 00 00 00 00 00 00 00 00 00 00 00 0	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Input Offset Voltage Drift $\Delta Vos/\Delta T$ -40 to 125°C ± 0.005 ± 0.05 μN Input Bias Current IB ± 30 ± 30 Input Offset Current Ios ± 30 ± 30 Input Offset Current Ios ± 30 ± 30 Input Offset Current Ios	Input Characteristics							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ut Offset Voltage	Vos			±5	±50	μV	
	ut Offset Voltage Drift	ΔV _{OS} /ΔT	-40 to 125°C		±0.005	±0.05	μV/°C	
	ut Bias Current	IB			±30		pA	
	ut Offset Current	los			±30		pA	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mmon-Mode Voltage Range	V _{CM}	V _S = 5.5V	-0.1		5.6	V	
	mmon-Mode Rejection Ratio	CMRR	V _{CM} =0.1V to 4.9V		120		dB	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	en-Loop Voltage Gain	AOL	V _O =0.2V to 4.8V		145		dB	
	tput Characteristics							
$R_L = 10k\Omega \qquad \qquad 8 \qquad \qquad r$ Short-Circuit Current $I_{SK} \qquad Sourcing \qquad \qquad 21 \qquad \qquad r$ $I_{SK} \qquad Sinking \qquad \qquad 22 \qquad \qquad r$	11.V. II O		R _L =100kΩ		1		mV	
Short-Circuit Current I _{SK} Sinking 22 r	Output Voltage Swing from Rail		R _L =10kΩ		8		mV	
I _{SK} Sinking 22 r		I _{SR}	Sourcing		21		mA	
Power Supply	ort-Circuit Current	I _{SK}	Sinking		22		mA	
	wer Supply							
Operating Voltage Range 2.5 5.5	erating Voltage Range			2.5		5.5	V	
Power Supply Rejection Ratio PSRR $V_S = 2.5V$ to $5.5V$ 120	wer Supply Rejection Ratio	PSRR	V _S = 2.5V to 5.5V		120		dB	
Quiescent Current / Amplifier I _Q V _S = 5.0V 570	iescent Current / Amplifier	IQ	V _S = 5.0V		570		μA	
Dynamic Performance	namic Performance							
Gain Bandwidth Product GBWP G=+1 9 M	in Bandwidth Product	GBWP	G=+1		9		MHz	
Slew Rate SR G = +1 , 2V Output Step 8.5 V	w Rate	SR	G = +1 , 2V Output Step		8.5		V/µs	
Noise Performance	ise Performance				•		•	
Voltage Noise Density e _n f=1kHz 12 nV/	tage Noise Density	en	f=1kHz		12		nV/ √ Hz	

4.0 Application Notes

Driving Capacitive Loads

Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases, and the closed loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. A unity gain buffer (G = +1) is the most sensitive to capacitive loads, but all gains show the same general behavior.

When driving large capacitive loads with these op amps (e.g., > 100 pF when G = +1), a small series resistor at the output (R_{ISO} in Figure 1) improves the feedback loop's phase margin (stability) by making the output load resistive at higher frequencies. It does not, however, improve the bandwidth.

To select R_{ISO} , check the frequency response peaking (or step response overshoot) on the bench. If the response is reasonable, you do not need R_{ISO} . Otherwise, start R_{ISO} at 1 k Ω and modify its value until the response is reasonable.

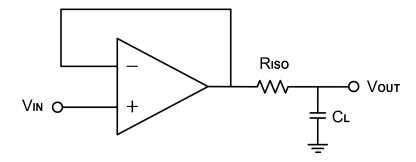


Figure 1. Indirectly Driving Heavy Capacitive Load

An improvement circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. R_F provides the DC accuracy by connecting the inverting signal with the output, C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

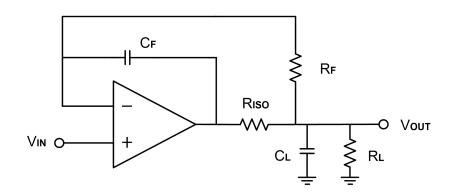


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For noninverting configuration, there are two others ways to increase the phase margin: (a) by increasing the amplifier's gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node, as shown in Figure 3.

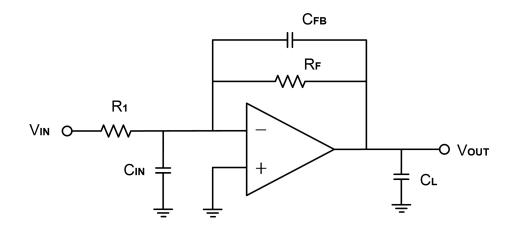


Figure 3. Adding a Feedback Capacitor in the Noninverting Configuration

Power-Supply Bypassing and Layout

The COS860x operates from a single +2.5V to +5.5V supply or dual ± 1.25 V to ± 2.75 V supplies. For single-supply operation, bypass the power supply +Vs with a $0.1\mu F$ ceramic capacitor which should be placed close to the +Vs pin. For dual-supply operation, both the +Vs and the -Vs supplies should be bypassed to ground with separate $0.1\mu F$ ceramic capacitors. $2.2\mu F$ tantalum capacitor can be added for better performance.

The length of the current path is directly proportional to the magnitude of parasitic inductances and thus the high frequency impedance of the path. High speed currents in an inductive ground return create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance. Thus a ground plane layer is important for high speed circuit design.

Typical Application Circuits

Differential Amplifier

The circuit shown in Figure 4 performs the differential function. If the resistors ratios are equal $(R_4 / R_3 = R_2 / R_1)$, then $V_{OUT} = (V_{IP} - V_{IN}) \times R_2 / R_1 + V_{REF}$.

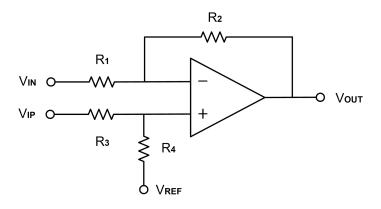


Figure 4. Differential Amplifier

Low Pass Active Filter

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to establish this limited bandwidth is to place an RC filter at the noninverting terminal of the amplifier. If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task, as Figure 5. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to follow this guideline can result in reduction of phase margin. The large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration.

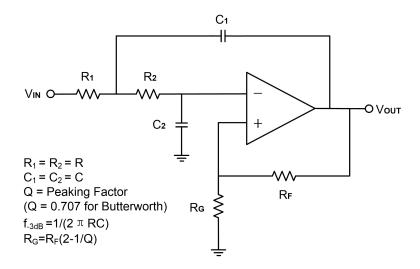
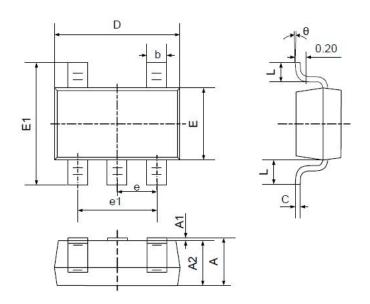
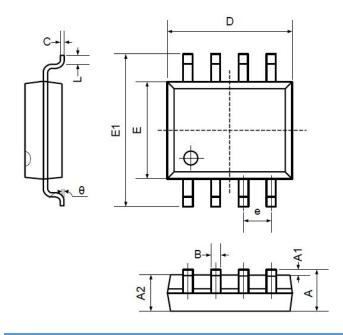
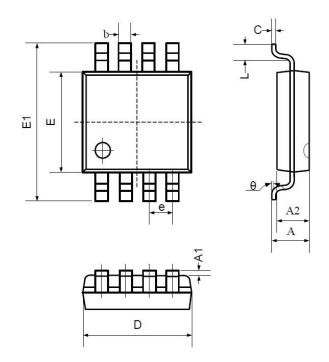



Figure 5. Two-Pole Low-Pass Sallen-Key Active Filter

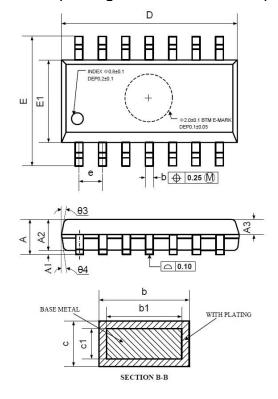

5. Package Information

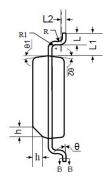
5.1 SOT23-5 (Package Outline Dimensions)

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.400	0.012	0.016	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111 0.11		
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	OTYP	0.037TYP		
e1	1.800	2.000	0.071	0.079	
L	0.700REF		0.028	BREF	
L1	0.300	0.600	0.012	0.012 0.024	
θ	0°	8°	0°	8°	


5.2 SOP8 (Package Outline Dimensions)

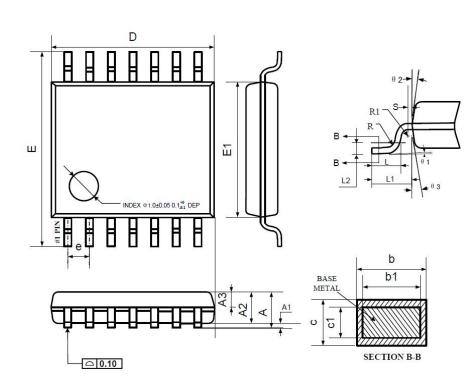
Symbol		Dimensions n Millimeters		Dimensions In Inches		
	Min	Max	Min	Max		
Α	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
В	0.330	0.510	0.013	0.020		
С	0.190	0.250	0.007	0.010		
D	4.780	5.000	0.188	0.197		
E	3.800	4.000	0.150	0.157		
E1	5.800	6.300	0.228	0.248		
е	1.270TYP		0.050	TYP		
L	0.400 1.270 0.016		0.016	0.050		
θ	0°	8°	0°	8°		




5.3 MSOP8 (Package Outline Dimensions)

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	0.800	1.200	0.031	0.047	
A1	0.000	0.200	0.000	0.008	
A2	0.760	0.970	0.030	0.038	
b	0.30	TYP	0.012 TYP		
С	0.15	TYP	TYP 0.006 TY		
D	2.900	3.100	0.114	0.122	
е	0.65	TYP	0.026 TYP		
E	2.900	3.100	0.114	0.122	
E1	4.700	5.100	0.185	0.201	
L	0.410	0.650	0.016	0.026	
θ	0°	6°	0°	6°	

5.4 SOP14 (Package Outline Dimensions)



Symbol	1.00	imensio Millime	
-	MIN	NOM	MAX
Α	1.35	1.60	1.75
A1	0.10	0.15	0.25
A2	1.25	1.45	1.65
A3	0.55	0.65	0.75
b	0.36		0.49
b1	0.35	0.40	0.45
С	0.16		0.25
c1	0.15	0.20	0.25
D	8.53	8.63	8.73
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27 BS0	C
L	0.45	0.60	0.80
L1		1.04 REI	F
L2		0.25 BS0	0
R	0.07		
R1	0.07		
h	0.30	0.40	0.50
θ	0°		8°
θ1	6°	8°	10°
θ2	6°	8°	10°
93	5°	7°	9°
94	5°	7°	9°

5.5 TSSOP14 (Package Outline Dimensions)

Cumbal	1	imensio Millime		
Symbol	In	willime	ICIGI 2	
	MIN	NOM	MAX	
Α	<u> </u>	_	1.20	
A1	0.05	1 1	0.15	
A2	0.90	1.00	1.05	
A3	0.34	0.44	0.54	
b	0.20	_	0.28	
b1	0.20	0.22	0.24	
С	0.10	1. 1	0.19	
c1	0.10	0.13	0.15	
D	4.86	4.96	5.06	
Е	6.20	6.40	6.60	
E1	4.30	4.40	4.50	
е		0.65 BSC		
L	0.45	0.45 0.60		
L1		1.00 REF		
L2		0.25 BSC		
R	0.09	_	_	
R1	0.09 —		-	
S	0.20			
91	0°	3 <u>—</u> 3	8°	
θ2	10°	12°	14°	
θ3	10°	12°	14°	

6. Related Parts

Part Number	Description
COS6041/2/4	24kHz, 0.5μA, RRIO Op Amps, 1.8 to 5.5V Supply
COS1347/2347/4347	350kHz, 15μA, RRIO Op Amps, 1.8 to 5.5V Supply
COS6001/2/4	1.5MHz, 50µA, RRIO Op Amps, 1.8 to 5.5V Supply
COS1314/2314/4314	3MHz, 150μA, RRIO Op Amps, 1.8 to 5.5V Supply
COS821/2/4	5MHz, 300μA, RRIO Op Amps, 1.8 to 5.5V Supply
COS1374/2374/4374	7MHz, 500μA, RRIO Op Amps, 1.8 to 5.5V Supply
COS721/2/4	10MHz, 650μA, RRIO Op Amps, 2.1 to 5.5V Supply
COS1333/2333/4333	0.35MHz, 18μA, RRIO Op Amps, 1.8 to 5.5V Supply, Zero Drift, Vos<20μV

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Precision Amplifiers category:

Click to view products by COSINE manufacturer:

Other Similar products are found below:

LM201AN NCS20166SN2T1G MCP6V52-E/MS ADA4692-4ARUZ-RL EL8176FSZ ISL28158FHZ-T7 ISL28236FBZ ISL28236FBZ-T7

ISL28258FUZ ISL28258FUZ-T7 ISL28276FBZ ISL28276IAZ ISL28276IAZ-T7 ISL28288FUZ NCS21914DR2G NCS21914DTBR2G

COS2177MR/U COS8552SRA COSOP27SRA COS8554SRB COS2177MR/UA COS2388SRA COSOP27SRB COS2376SRA COS2277SR

COS4277TR COS8602SR COS8606 COS4177SR COS2335SRC COS2387SRB COS8629 COS2335SRB COS2376SRB COS2340SR

COS2387SRC COS2335SRA COS2387SRA COS2376SRC COS277SR COSOP27SRC OPA2177M/TR HG376M5/TR RS8654XP

SLA333 OPA2335 LTC6362IMS8#TRPBF COS8552SRC COS8554TRB COS4277SR