

Differential Current Sensor

Product Description

The CT219 Series is a differential current sensor especially designed for consumer and industrial applications based on Crocus Technology's patented TMR technology, Magnetic Logic Unit™ (MLU™). Used in a closed-loop circuit configuration, the CT219 measures bi-directional magnetic fields generated by a current carrying conductor such as a PCB trace or bus bar.

The CT219 provides design flexibility with high sensitivity in a small footprint SOT-26 package and is cost competitive for high volume manufacturing. The CTD203 development board demonstrating the closed-loop circuit solution is available for additional support and guidance.

Features and Benefits

- High sensitivity
- Wide Dynamic Range
- Stable temperature performance up to 85°C
- AC and DC Current Sensing
- Low power consumption
- High frequency performance
- Differential voltage output
- Cost competitive
- RoHS Compliant

Application Examples

- Current Transformer (CT) Replacement
- Variable Speed Drives
- Power Utility Meters
- Motor control
- UPS, SMPS, and telecom power supplies
- Air Conditioning
- Over –current fault protection
- Threshold detection
- Robotics

Differential Current Sensor

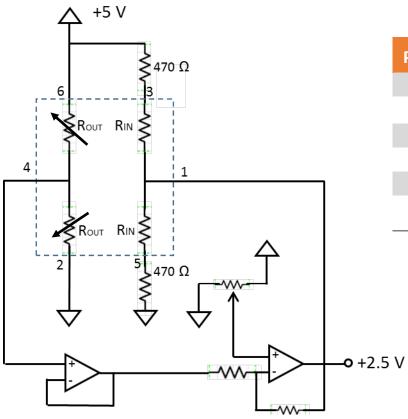
Table 1: Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vs		10	V
Supply Current	Is		300	uA
Operating Temp	Та		125	°C
Storage Temp	Ts		150	°C
Soldering Temp	Т		260	°C
Magnetic Flux Density	В		1	Т

Table 2: Electrical Characteristics

Supply Voltage = 5.0V, Ta = 25°C unless otherwise specified.

Characteristic	Symbol	Conditions	Min	Тур	Max	Unit
Operating Temperature	Та		-40	25	85	°C
Supply Voltage	V _B			5		V
Supply Current	I _B				200	μΑ
Quiescent Voltage	Vo	B=0, I _N = 5mA	2.3	2.5	2.7	V
Input Bias Current	I _N			5		mA
Field Line Resistance	R _{IN}	Each Resistor		30		Ohm
Sensitivity				75		mV/mT
Linearity Error*		±1.0 mT		0.5	1.0	%FS
Hysteresis		±1.0 mT		1		%FS
Operating Frequency*					1	MHz
Temperature Coefficient of Output*				15	30	ppm/°C

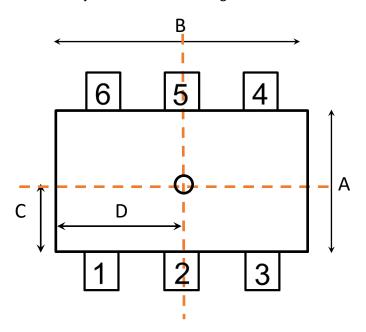

^{*}Note: Tested in closed-loop configuration as shown in Figure 3.

Differential Current Sensor

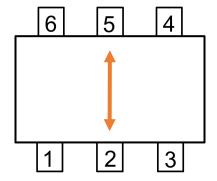
Figure 1: Closed-loop Application Circuit

Below is an example of the recommended closed-loop circuit for the half-bridge CT219 with +5V supply. The input bias current (field line current) should be approximately 5 mA. The typical value of $R_{\mbox{IN}}$ is 30 Ω .

Pin Name	Pin#	Function
I _{IN MID}	1	Input Mid
V_{B}	2	Power/Ground
I _{IN}	3	Input Bias Current
V _{OUT}	4	Output Voltage
I _{IN GND}	5	Input Ground
V _{BGND}	6	Ground/Power



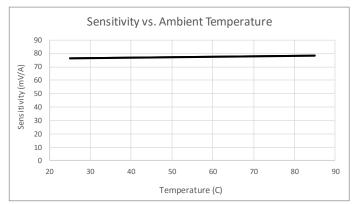
Differential Current Sensor


Figure 2: TMR Sensor Location

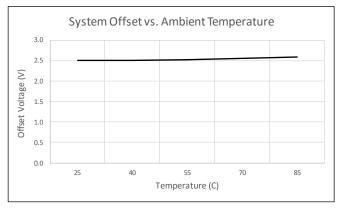
The center of the TMR sensor is centrally located in the package. When designing with the CT219, the magnetic field lines generated by the current carrying conductor should run through the TMR sensor as shown below. The polarity can also be adjusted to as noted in Figure 3.

Symbol	Nominal Dimensions (mm)
Α	1.60
В	2.90
С	0.65
D	1.43

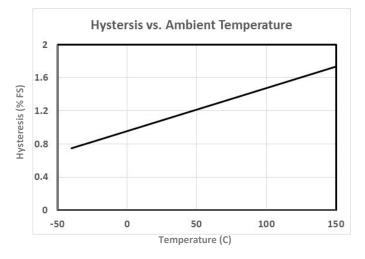
Figure 3: Axis of Sensitivity



The arrow represent the axis of sensitivity of the two sensors inside the device (as referenced as Rout in Figure 1) that have their axis of sensitivity 180 degrees out of phase with each other.

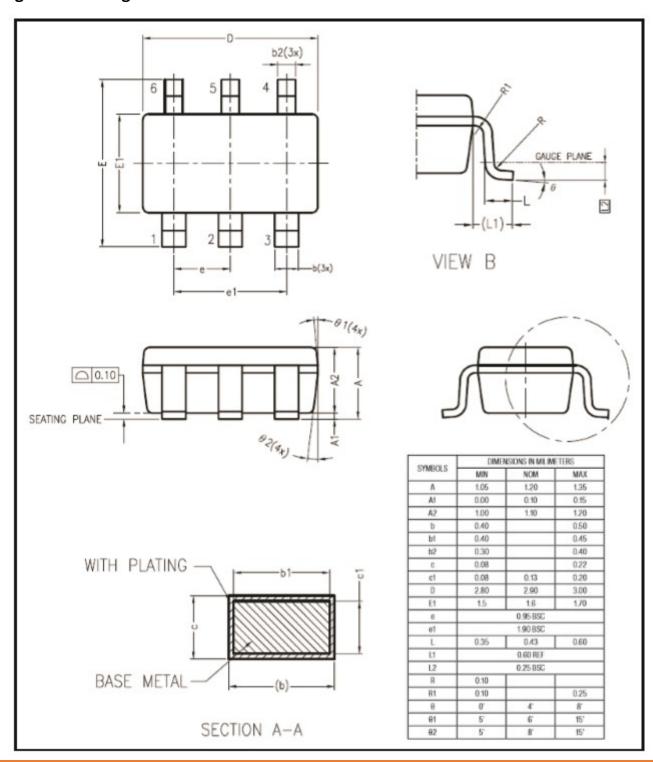


Differential Current Sensor


Figure 4: Typical Performance Characteristics

Note: Sensitivity based on current trace measurement on PCB

Note: Sensitivity based on current trace measurement on PCB



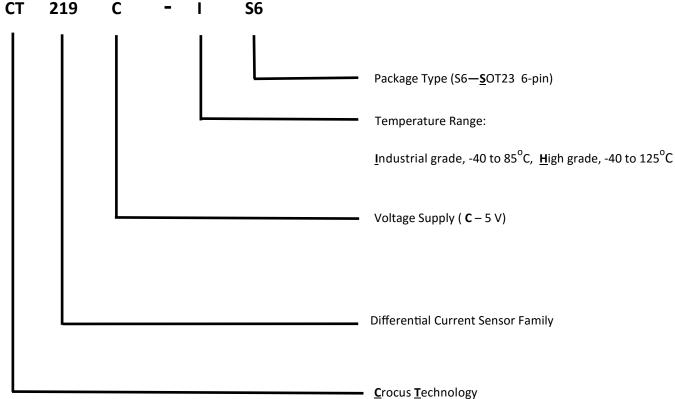
Output Voltage (V)

Differential Current Sensor

Figure 5: Package Dimensions

Differential Current Sensor

Table 3: Order Guide


Part Number	Operating Temperature	Description
CT219C—IS6	-40 to 85°C	Differential current sensor with differential output
CT219C—HS6 *	-40 to 125°C	SOT-26 Package, Tape-and-reel packaging

Note*: For high temperature grade device availability consult factory.

Figure 6: Part Number Legend

Differential Current Sensor

Disclaimer: The contents of this document are provided in connection with products of Crocus Technology (Crocus). CROCUS MAKES NO REPRESENTATIONS OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND RESERVES THE RIGHT TO MAKE CHANGES TO THE SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. Crocus reserves the right to discontinue or make changes to its products at any time without notice. Crocus's products have not been designed, tested, or manufactured for use and should not be used in applications where the failure, malfunction or inaccuracy of the Products carries a risk of death or serious bodily injury or damage to tangible property, including, but not limited to, life support systems, nuclear facilities, military, aircraft navigation or communication, emergency systems, harsh environments, or other applications with a similar degree of potential hazard.

ATTRIBUTION

© 2016 Crocus Technology, Inc. and Crocus Technology SA. All rights reserved. Crocus Technology, Blossoming Future, MLU, and combinations thereof are trademarks of Crocus Technology, Inc. and Crocus Technology SA.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Current Sensors category:

Click to view products by Crocus manufacturer:

Other Similar products are found below:

CSDD1FR CSLA2ELI CSNP661-007 SCL15 10006 L18P003S05 T60404-B4658-X030 LA02P021S03 LA01M041S05 LA03P054S05

CSNE151-003 L08P150D15IPV CT220FMC-IS5 CT220PMC-IS5 CT220BMC-HS5 SIC830AED-T1-GE3 CT-05 CT-07-100 CT-07-50

MR-1 MR-1-P5 T60404-N4646-X662 T60404-N4646-X664 DRV421RTJT CSNR161005 T60404-N4646-X651 MR-3 MR-2 MR-4 CT-06-100 CT-06-50 T60404-N4646-X412 CT-06-75 CSDA1BA-S CSDC1DA CSDD1EC CSLA1CF CSLA1DE CSLA1DG CSLA1DK

CSLA1EL CSLA1GE CSLA1GF CSLA2CDI CSLA2CFI CSLA2CFI CSLA2DE CSLA2DG CSLA2DH CSLA2DJI CSLA2DJI