

CT427

XtremeSense® TMR Ultra-Low Noise, <1% Total Error Current Sensor

Features

- Integrated Contact Current Sensing for Low to Medium Current Ranges:
 - o 0 A to +20 A
 - o -20 A to +20 A
 - o 0 A to +30 A
 - o -30 A to +30 A
 - o 0 A to +50 A
 - o -50 A to +50 A
 - o 0 A to +65 A
 - o -65 A to +65 A
- Integrated Current Carrying Conductor (CCC)
- Linear Analog Output Voltage
- Total Error Output ≤ ±1.0% FS
- 1 MHz Bandwidth
- Response Time: ~300 ns
- UL/IEC 62387 Certification
 - Rated Isolation Voltage >4 kV_{RMS}
 - Working Voltage for Basic Isolation >701 V_{RMS}
 - Working Voltage for Reinforced Isolation >344
 V_{RMS}
- IEC 61000-4-5 Certification
- Low Noise: 9.5 mA_{RMS} to 19.0 mA_{RMS} @ f_{BW} = 100 kHz
- Supply Voltage: 3.0 V to 3.6 V
- Filter Function to Reduce Noise on Output Pin
- Immunity to Common Mode Fields: -54 dB
- Supply Voltage: 3.0 V to 3.6 V
- Over-Current Detection (OCD™)
 - Out of Range Currents
- AEC-Q100 Grade 1
- 8-Lead SOIC Package

Applications

- Solar/Power Inverters
- UPS, SMPS and Telecom Power Supplies
- Battery Management Systems
- Motor Control
- White Goods
- Consumer and Enterprise Electronics
- Over-Current Fault Protection

Product Description

The CT427 is a high bandwidth and ultra-low noise integrated contact current sensor that uses Crocus Technology's patented XtremeSense® TMR technology to enable high accuracy current measurements for many consumer, enterprise, and industrial applications. It supports eight (8) current ranges where the integrated current carrying conductor (CCC) will handle up to 30 A of current and generates a current measurement as a linear analog output voltage. It achieves a total output error of less than $\pm 1.0\%$ full-scale (FS).

It has about a 300 ns output response time while the current consumption is about 6.0 mA and is immune to common mode fields. The CT427 has an integrated over-current detection (OCD) circuitry to identify out of range <u>currents</u> (OCD) with the result outputted to the fault-bar (FLT) pin. The FLT is an open drain, active LOW digital signal that is activated by the CT427 to alert the microcontroller that a fault condition has occurred.

The CT427 is offered in an industry standard 8-lead SOIC package that is "green" and RoHS compliant.

Part Ordering Information

Part Number	Auto Grade	Operating Temperature Range	Current Range	Package	Packing Method	
CT427-ESN820DR	-	-40°C to +85°C				
CT427-HSN820DR	-	-40°C to +125°C	0 A to +20 A			
CT427-ASN820DR	Grade 1	-40 C to +125 C				
CT427-ESN820MR	-	-40°C to +85°C				
CT427-HSN820MR	-	-40°C to +125°C	-20 A to +20 A			
CT427-ASN820MR	Grade 1	-40 C to +125 C				
CT427-ESN830DR	-	-40°C to +85°C		-		
CT427-HSN830DR	-	40°C to 1405°C	0 A to +30 A			
CT427-ASN830DR	Grade 1	-40°C to +125°C				
CT427-ESN830MR	-	-40°C to +85°C		8-lead SOIC 4.89 x 6.00 x 1.62 mm		
CT427-HSN830MR	-	-40°C to +125°C	-30 A to +30 A			
CT427-ASN830MR	Grade 1	-40 C to +125 C			8-lead SOIC	Tane & Pool
CT427-ESN850DR	-	-40°C to +85°C			Tape & Reel	
CT427-HSN850DR	-	-40°C to +125°C	0 A to +50 A			
CT427-ASN850DR	Grade 1	-40 C to +123 C				
CT427-ESN850MR	-	-40°C to +85°C				
CT427-HSN850MR	-	-40°C to +125°C	-50 A to +50 A			
CT427-ASN850MR	Grade 1	-40 C to +123 C				
CT427-ESN865DR	-	-40°C to +85°C				
CT427-HSN865DR	-	-40°C to +125°C	0 A to +65 A			
CT427-ASN865DR	Grade 1	-40 C to +125 C				
CT427-ESN865MR		-40°C to +85°C				
CT427-HSN865MR	-	-40°C to +125°C	-65 A to +65 A			
CT427-ASN865MR	Grade 1	-40 C to +120 C				

Evaluation Board Ordering Information

Part Number	Current Range	Operating Temperature Range
CTD427-20DC	0 A to +20 A	
CTD427-20AC	-20 A to +20 A	
CTD427-30DC	0 A to +30 A	
CTD427-30AC	-30 A to +30 A	-40°C to +125°C
CTD427-50DC	0 A to +50 A	-40 C t0 + 125 C
CTD427-50AC	-50 A to +50 A	
CTD427-65DC	0 A to +65 A	
CTD427-65AC	-65 A to +65 A	

Block Diagram

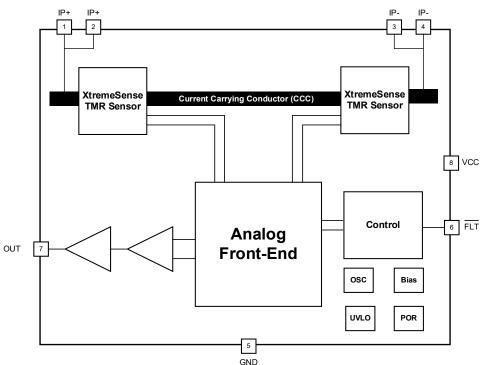


Figure 1. CT427 Functional Block Diagram for 8-lead SOIC Package

Application Diagram

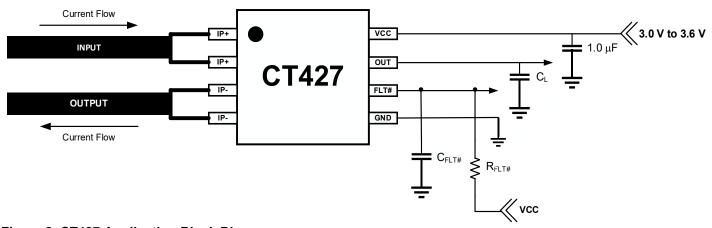


Figure 2. CT427 Application Block Diagram

Table 1. Recommended External Components

Component	Description	Vendor & Part Number	Parameter	Min.	Тур.	Max.	Unit
Свур	1.0 μF, X5R or Better	Murata GRM155C81A105KA12	C1		1.0		μF
C _{FLT} #	1.0 nF, X5R or Better	Murata GRM0335C1E102JA01	C2		1.0		nF
R _{FLT#}	10 kΩ Pull-up Resistor	Various	R1		10		kΩ

CT427 Pin Configuration

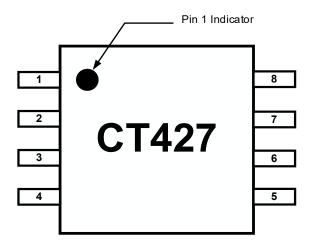


Figure 3. CT427 Pin-out Diagram for 8-lead SOIC Package (Top-Down View)

Pin Definition

Pin#	Pin Name	Pin Description
1	ID.	
2	IP+	Input primary conductor (positive).
3	IP-	Output primary conductor (pagativa)
4	IF-	Output primary conductor (negative).
5	GND	Ground.
6	FLT	Active LOW output fault signal (open drain output) to indicate that the following parameters are outside of normal operational bounds: • Over-Current Detection • UVLO If not used, then a 1.0 nF capacitor must be connected from the pin to ground.
7	OUT	Analog output voltage that represents the measured current.
8	VCC	Supply voltage.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the CT427 and may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
Vcc	Supply Voltage		-0.3	6.0	V
V _{I/O}	Analog Input/Output Pins	s Maximum Voltage	-0.3	V _{CC} + 0.3*	V
I _{CCC(MAX)}	Current Carrying Conduc	ctor, T _A = +25°C		70	Α
Vsurge	Dielectric Surge Strength Test Voltage	IEC 61000-4-5: Tested ±5 Pulses at 2/60 seconds, 1.2 µs (rise) and 50 µs (width)	6.0		kV
Isurge	Surge Strength Test Current	Tested ± 5 Pulses at 3/60 seconds, 8.0 μ s (rise) and 20 μ s (width)	3.0		kA
ESD	Electrostatic Discharge	Human Body Model (HBM) per JESD22-A114	±2.0		I4\ /
ESD	Protection Level Charged Device Model (CDM) per JESD22-C101		±0.5		kV
TJ	Junction Temperature		-40	+150	°C
Tstg	Storage Temperature		-65	+155	Ŝ
TL	Lead Soldering Tempera	ture, 10 Seconds		+260	°C

^{*}The lower of V_{CC} + 0.3 V or 6.0 V.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual operation of the CT427. Recommended operating conditions are specified to ensure optimal performance to the specifications. Crocus Technology does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter		Min.	Тур.	Max.	Unit
Vcc	Supply Voltage Range		3.0	3.3	3.6	V
Vout	OUT Voltage Range	OUT Voltage Range			Vcc	V
Іоит	OUT Current				±1.0	mA
		Industrial	-40	+25	+85	
TA	Operating Ambient Temperature	Extended Industrial	-40	+25	+125	°C
		Automotive	-40	+25	+125	

Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout and is determined in accordance to JEDEC standard JESD51 for a four (4) layer 2s2p FR-4 printed circuit board (PCB) with 2 oz. of copper (Cu) and 4 oz. of copper (Cu) or more for 65 A. Special attention must be paid not to exceed junction temperature $T_{J(MAX)}$ at a given ambient temperature T_{A} .

Symbol	Parameter	Min.	Тур.	Max.	Unit
θJA_SOIC	Junction-to-Ambient Thermal Resistance, SOIC-8		151	176	°C/W
θJC_SOIC	Junction-to-Case Thermal Resistance, SOIC-8		102	128	°C/W

Isolation Specifications

Symbol	Parameter	Conditions	Rating	Unit
V _{ISO}	Rated Isolation Voltage	Agency Tested per IEC 62368* for 60 seconds. Production Tested at V _{ISO} for 1 second per IEC 62368.	4.0	kV _{RMS}
		Agency Tested per UL1577 for 60 seconds. Production Tested at V _{ISO} for 1 second per UL1577.	4.0	kV _{RMS}
Working Voltage for Basic		Tested per per IEC 62368*	991	V _{PK}
Vwork_iso	Isolation	Tested per per IEC 02300	701	V _{RMS}
V.,,,,,,,,	Working Voltage for	Tooted per IEC 62260*	487	V _{PK}
Vwork_ri	Reinforced Isolation	Tested per IEC 62368*	344	V _{RMS}
d _{CR}	Creepage Distance	Minimum Distance Along Package Body from IP Pins to I/O Pins	4.96	mm
d _{CL}	Clearance Distance	Minimum Distance Through Air from IP Pins to I/O Pins	4.63	mm
d _{ISO}	Distance Through Isolation	Minimum Internal Distance Through Isolation	110	μm
CTI	Comparative Tracking Index	Material Group II	400 to 599	V

^{*}IEC 62368 is the succeeding standard to IEC 60950-1 (Edition 2) for isolation testing specifications and as such it will be compliant to the latter standard.

Electrical Specifications

General Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
Power Sup	Power Supplies									
Icc	Supply Current	f _{BW} = 1 MHz No load, I _P = 0 A		6.0	9.0	mA				
Іоит	OUT Maximum Drive Capability (1)	OUT covers 10% to 90% of V _{CC} span.	-1.0		+1.0	mA				
C _{L_OUT}	OUT Capacitive Load (1)				100	pF				
R _{L_} out	OUT Resistive Load (1)			100		kΩ				
Rip	Primary Conductor Resistance			0.5		mΩ				
PSRR	Power Supply Rejection Ratio			35		dB				
SPSRR	Sensitivity Power Supply Rejection Ratio (1)			35		dB				
OPSRR	Offset Power Supply Rejection Ratio (1)			40		dB				
Analog Ou	tput (OUT)									
V _{OUT}	OUT Voltage Linear Range	$V_{SIG_AC} = \pm 1.00 \text{ V}$ $V_{SIG_DC} = +2.00 \text{ V}$	0.65		2.65	V				

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vout_sat	Output High Saturation Voltage	V _{ОUТ} , Т _А = +25°С,	V _{CC} - 0.30	Vcc - 0.25		V
CMFRR	Common Mode Field Rejection			-54		dB
CIVILLIA	Ratio (1)			0.5		mA/G
Fault Outp	ut (FLT)					
V _{FLT} #_OL	FLT Voltage LOW	I _{FLT#_OUT} ≤ 20 mA	0		0.5	V
ILEAK_FLT#	High Impedance Output Leakage Current	V _{FLT#_OH} = V _{CC}		5		μA
RPU	FLT Pull-up Resistor			100		kΩ
Timings						
ton	Power-On Time (1)	V _{CC} ≥ 2.50 V		100	200	μs
t _{RISE}	Rise Time (1)	Ip = Irange(MAX),		200		ns
t _{RESPONSE}	Response Time (1)	$T_A = +25^{\circ}C,$		300		ns
tDELAY	Propagation Delay (1)	C _L = 220 pF		250		ns
t _{FLT#}	FLT Response Time (1)			250		ns
Protection						
\/	Lindar Valtaga Lagkaut	Rising Vcc		2.50		V
V_{UVLO}	Under-Voltage Lockout	Falling Vcc		2.45		V
V _{UV_HYS}	UVLO Hysteresis			50		mV

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics

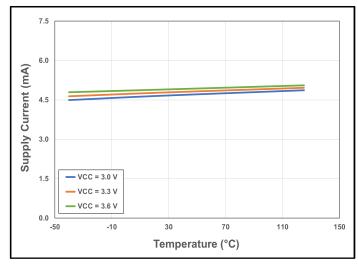


Figure 4. CT427 Supply Current vs. Temperature vs. Supply Voltage

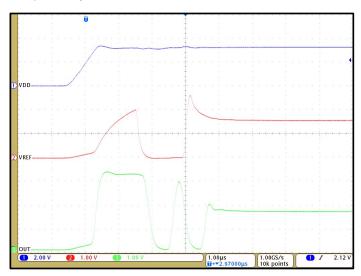


Figure 5. CT427 Startup Waveforms for $V_{OQ} = 1.65 \text{ V}$ (AC Current)

Electrical Characteristics (continued)

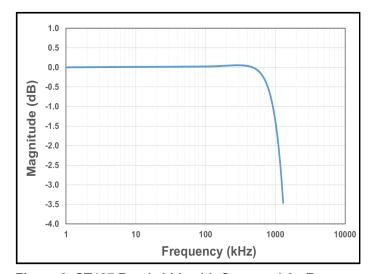


Figure 6. CT427 Bandwidth with $C_{FILTER} = 1.0 pF$

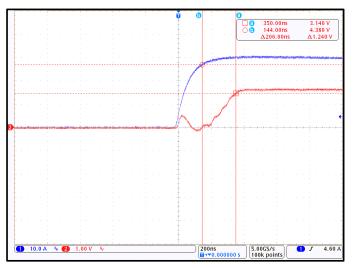


Figure 7. CT427 Response Time; I_P = 30 A_{PK} and C_L = 100 pF

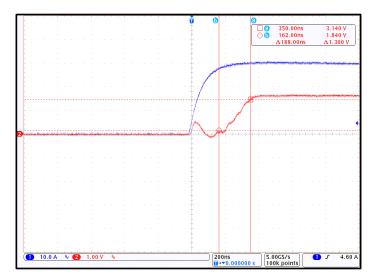


Figure 8. CT427 Rise Time; $I_P = 30 A_{PK}$ and $C_L = 100 pF$

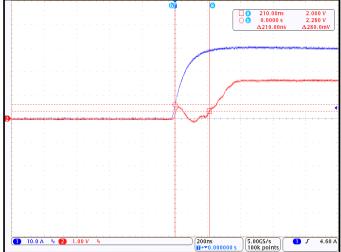


Figure 9. CT427 Propagation Delay; I_P = 30 A_{PK} and C_L = 100 pF

Electrical Characteristics (continued)

 $V_{CC} = 3.3 \text{ V}$ and $T_A = +25^{\circ}\text{C}$ and $C_{BYP} = 1.0 \,\mu\text{F}$ (unless otherwise specified)

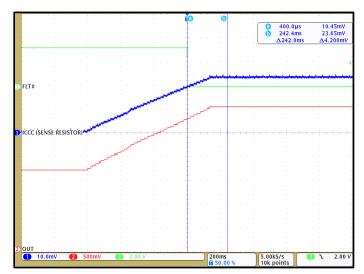


Figure 10. CT427 OCD enabled at +110% of +30 A_{PK} and FLT# is LOW

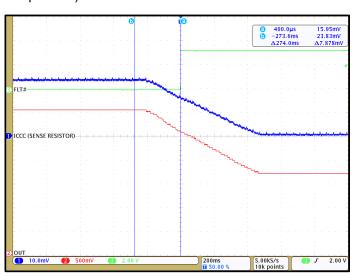


Figure 11. CT427 OCD disabled at +90% of +30 A_{PK} and FLT# is HIGH

Figure 12. CT427 OCD enabled at -110% of -30 A_{PK} and FLT# is LOW

Figure 13. CT427 OCD disabled at -90% of -30 A_{PK} and FLT# is HIGH

CT427-xSN820DR: 0 A to +20 A

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
I _{RANGE}	Current Range		0		+20	Α		
Voq	Voltage Output Quiescent	T _A = +25°C, I _P = 0 A	0.645	0.650	0.655	V		
S	Sensitivity	I _{RANGE(MIN)} < I _P < I _{RANGE(MAX)}		100		mV/A		
f _{BW}	Bandwidth (1)	Small Signal = -3 dB		1.0		MHz		
e _N	Noise (1)	$T_A = +25^{\circ}C$, $f_{BW} = 100 \text{ kHz}$		9.5		mA _{RMS}		
OUT Accu	racy Performance							
Еоит	Total Output Error	$I_P = I_{P(MAX)}$		±0.7	±1.0	% FS		
ELIN	Non-Linearity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.1		% FS		
Esens	Sensitivity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.2		% FS		
V	Offset Voltage (1)	I _P = 0 A,		±5.2		mV		
V _{OFFSET}	Offset Voltage (1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.3		% FS		
Lifetime D	Lifetime Drift							
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	$I_P = I_{P(MAX)}$		±1.0		% FS		

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT427-xSN820DR

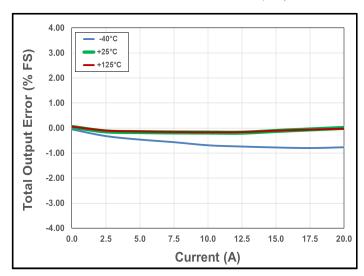


Figure 14. Total Output Error vs. Current vs. Temperature

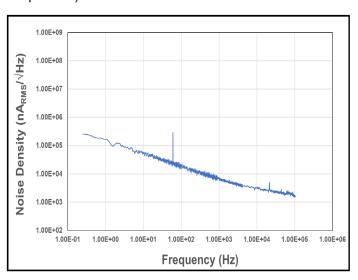


Figure 15. Noise Density vs. Frequency

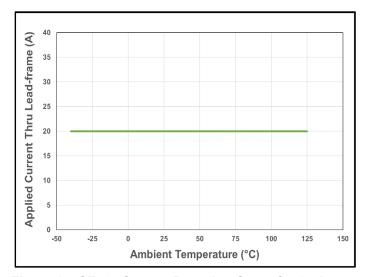


Figure 16. CT427 Current De-rating Curve for 20 ADC

CT427-xSN820MR: -20 A to +20 A

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
I _{RANGE}	Current Range		-20		+20	Α		
Voq	Voltage Output Quiescent	T _A = +25°C, I _P = 0 A	1.645	1.650	1.655	V		
S	Sensitivity	I _{RANGE(MIN)} < I _P < I _{RANGE(MAX)}		50		mV/A		
f _{BW}	Bandwidth (1)	Small Signal = -3 dB		1.0		MHz		
e _N	Noise (1)	$T_A = +25^{\circ}C$, $f_{BW} = 100 \text{ kHz}$		11.0		mA _{RMS}		
OUT Accu	racy Performance							
Еоит	Total Output Error	$I_P = I_{P(MAX)}$		±0.5	±1.0	% FS		
ELIN	Non-Linearity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.1		% FS		
Esens	Sensitivity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.3		% FS		
	Offset Voltage (1)	I _P = 0 A,		±7.9		mV		
V _{OFFSET}	Offset Voltage (1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.4		% FS		
Lifetime D	Lifetime Drift							
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	$I_P = I_{P(MAX)}$		±1.0		% FS		

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT427-xSN820MR

 $V_{CC} = 3.3 \text{ V}$ and $T_A = +25^{\circ}\text{C}$ and $C_{BYP} = 1.0 \,\mu\text{F}$ (unless otherwise specified)

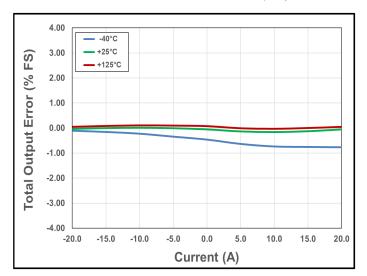


Figure 17. Total Output Error vs. Current vs. Temperature

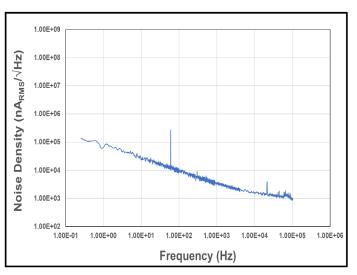


Figure 18. Noise Density vs. Frequency

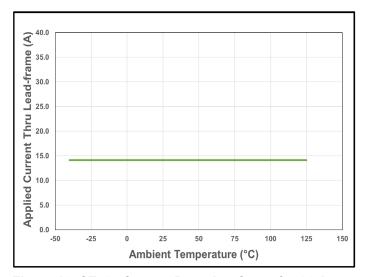


Figure 19. CT427 Current De-rating Curve for 20 A_{PK} (14.1 $A_{\text{DC}})$

CT427-xSN830DR: 0 A to +30 A

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
IRANGE	Current Range		0		+30	Α	
Voq	Voltage Output Quiescent	T _A = +25°C, I _P = 0 A	0.645	0.650	0.655	V	
S	Sensitivity	$I_{RANGE(MIN)} < I_{P} < I_{RANGE(MAX)}$		66.7		mV/A	
f _{BW}	Bandwidth ⁽¹⁾	Small Signal = -3 dB C _{FILTER} = 5 pF		1.0		MHz	
e _N	Noise (1)	$T_A = +25^{\circ}C$, $f_{BW} = 100 \text{ kHz}$		10.0		mA _{RMS}	
OUT Accu	racy Performance						
Еоит	Total Output Error	$I_P = I_{P(MAX)}$		±0.7	±1.0	% FS	
ELIN	Non-Linearity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.1		% FS	
Esens	Sensitivity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.3		% FS	
V	Offset Voltage (1)	I _P = 0 A,		±4.4		mV	
V _{OFFSET}	Offset Voltage (1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.2		% FS	
Lifetime D	Lifetime Drift						
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	$I_P = I_{P(MAX)}$		±1.0		% FS	

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT427-xSN830DR

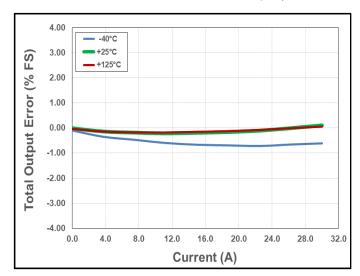


Figure 20. Total Output Error vs. Current vs. Temperature

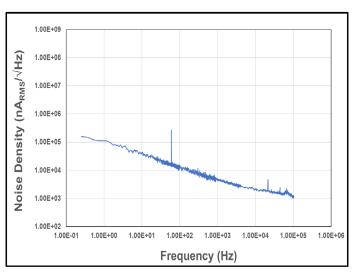


Figure 21. Noise Density vs. Frequency

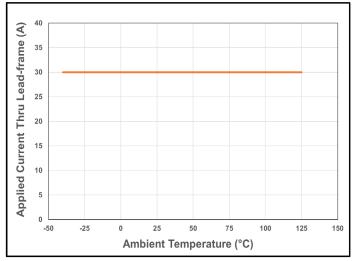


Figure 22. CT427 Current De-rating Curve for 30 A_{DC}

CT427-xSN830MR: -30 A to +30 A

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
IRANGE	Current Range		-30		+30	Α
Voq	Voltage Output Quiescent	T _A = +25°C, I _P = 0 A	1.645	1.650	1.655	V
S	Sensitivity	$I_{RANGE(MIN)} < I_{P} < I_{RANGE(MAX)}$		33.3		mV/A
f _{BW}	Bandwidth ⁽¹⁾	Small Signal = -3 dB C _{FILTER} = 5 pF		1.0		MHz
en	Noise (1)	$T_A = +25^{\circ}C$, $f_{BW} = 100 \text{ kHz}$		12.5		mA _{RMS}
OUT Accu	racy Performance					
Еоит	Total Output Error	$I_P = I_{P(MAX)}$		±0.5	±1.0	% FS
ELIN	Non-Linearity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.1		% FS
Esens	Sensitivity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.3		% FS
V	Officet Voltage (1)	I _P = 0 A,		±6.6		mV
V _{OFFSET}	Offset Voltage (1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.3		% FS
Lifetime D	Lifetime Drift					
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	$I_P = I_{P(MAX)}$		±1.0		% FS

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT427-xSWF30MR

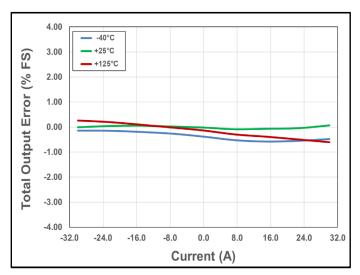


Figure 23. Total Output Error vs. Current vs. Temperature

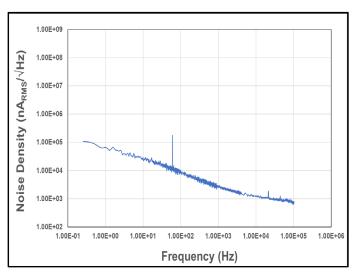


Figure 24. Noise Density vs. Frequency

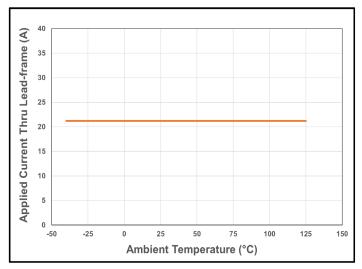


Figure 25. CT427 Current De-rating Curve for 30 A_{PK} (21.2 A_{DC})

CT427-xSN850DR: 0 A to +50 A

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
I _{RANGE}	Current Range		0		+50	Α	
Voq	Voltage Output Quiescent	T _A = +25°C, I _P = 0 A	0.645	0.650	0.655	V	
S	Sensitivity	$I_{RANGE(MIN)} \le I_P \le I_{RANGE(MAX)}$		40		mV/A	
f _{BW}	Bandwidth (1)	Small Signal = -3 dB		1.0		MHz	
e _N	Noise (1)	$T_A = +25^{\circ}C$, $f_{BW} = 100 \text{ kHz}$		11.0		mA _{RMS}	
OUT Accu	OUT Accuracy Performance						
Еоит	Total Output Error	$I_P = I_{P(MAX)}$		±1.0	±1.5	% FS	
ELIN	Non-Linearity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.2		% FS	
Esens	Sensitivity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.7		% FS	
V	Offset Voltage (1)	I _P = 0 A,		±8.8		mV	
V _{OFFSET}	Offset Voltage (1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.4		% FS	
Lifetime D	Lifetime Drift						
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	$I_P = I_{P(MAX)}$		±1.0		% FS	

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT427-xSN850DR

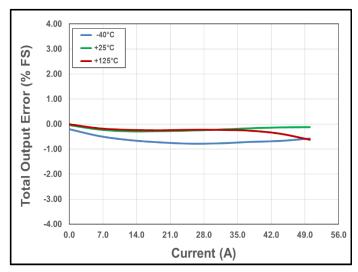


Figure 26. Total Output Error vs. Current vs. Temperature

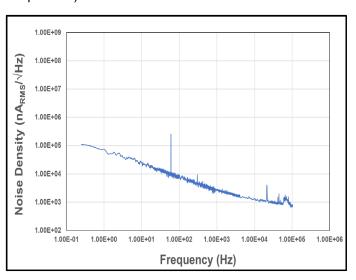


Figure 27. Noise Density vs. Frequency

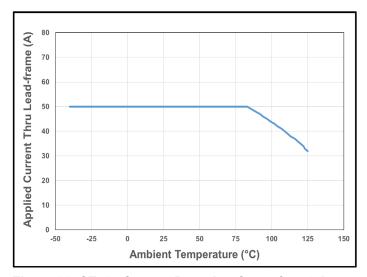


Figure 28. CT427 Current De-rating Curve for 50 A_{DC}

CT427-xSN850MR: -50 A to +50 A

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
I _{RANGE}	Current Range		-50		+50	Α	
Voq	Voltage Output Quiescent	T _A = +25°C, I _P = 0 A	1.645	1.650	1.655	V	
S	Sensitivity	$I_{RANGE(MIN)} \le I_{P} \le I_{RANGE(MAX)}$		20		mV/A	
f _{BW}	Bandwidth (1)	Small Signal = -3 dB		1.0		MHz	
e _N	Noise (1)	$T_A = +25^{\circ}C$, $f_{BW} = 100 \text{ kHz}$		19.0		mA _{RMS}	
OUT Accu	OUT Accuracy Performance						
Еоит	Total Output Error	$I_P = I_{P(MAX)}$		±0.5	±1.0	% FS	
ELIN	Non-Linearity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.1		% FS	
Esens	Sensitivity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.5		% FS	
V	Offset Voltage (1)	I _P = 0 A,		±6.0		mV	
V _{OFFSET}	Offset Voltage (1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.3		% FS	
Lifetime D	Lifetime Drift						
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	$I_P = I_{P(MAX)}$		±1.0		% FS	

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT427-xSN850MR

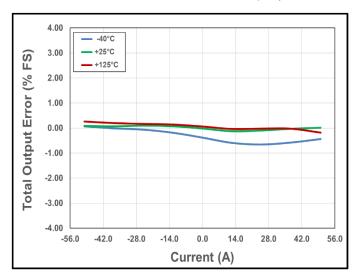


Figure 29. Total Output Error vs. Current vs. Temperature

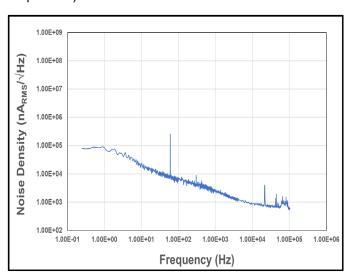


Figure 30. Noise Density vs. Frequency

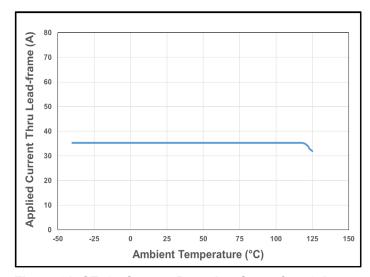


Figure 31. CT427 Current De-rating Curve for 50 A_{PK} (35.4 A_{DC})

CT427-xSN865DR: 0 A to +65 A

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
IRANGE	Current Range		0		+65	Α	
Voq	Voltage Output Quiescent	T _A = +25°C, I _P = 0 A	0.645	0.650	0.655	V	
S	Sensitivity	I _{RANGE(MIN)} < I _P < I _{RANGE(MAX)}		30.8		mV/A	
f _{BW}	Bandwidth ⁽¹⁾	Small Signal = -3 dB C _{FILTER} = 5 pF		1.0		MHz	
en	Noise (1)	$T_A = +25^{\circ}C$, $f_{BW} = 100 \text{ kHz}$		11.5		mA _{RMS}	
OUT Accu	racy Performance						
Еоит	Total Output Error	$I_P = I_{P(MAX)}$		±1.0	±1.5	% FS	
ELIN	Non-Linearity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.2		% FS	
Esens	Sensitivity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.2		% FS	
V	Offset Voltage (1)	I _P = 0 A,		±3.0		mV	
V _{OFFSET}	Offset Voltage (1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.1		% FS	
Lifetime D	Lifetime Drift						
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	$I_P = I_{P(MAX)}$		±1.0		% FS	

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT427-xSN865DR

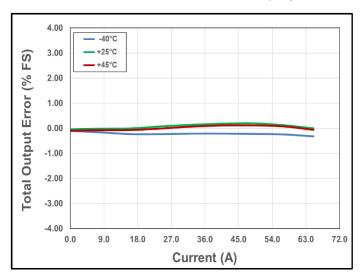


Figure 32. Total Output Error vs. Current vs. Temperature

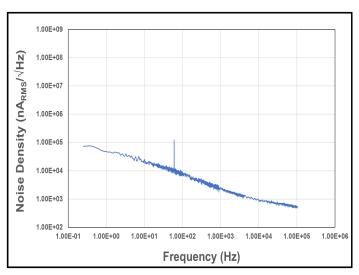


Figure 33. Noise Density vs. Frequency

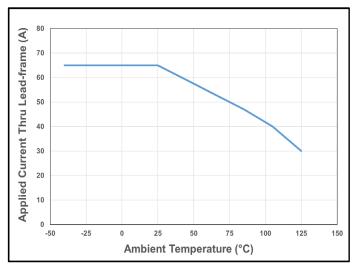


Figure 34. CT427 Current De-rating Curve for 65 A_{DC}

CT427-xSN865MR: -65 A to +65 A

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
IRANGE	Current Range		-65		+65	Α	
Voq	Voltage Output Quiescent	T _A = +25°C, I _P = 0 A	1.645	1.650	1.655	V	
S	Sensitivity	$I_{RANGE(MIN)} < I_{P} < I_{RANGE(MAX)}$		15.4		mV/A	
f _{BW}	Bandwidth ⁽¹⁾	Small Signal = -3 dB C _{FILTER} = 5 pF		1.0		MHz	
en	Noise (1)	$T_A = +25^{\circ}C$, $f_{BW} = 100 \text{ kHz}$		19.0		mA _{RMS}	
OUT Accu	racy Performance						
Еоит	Total Output Error	$I_P = I_{P(MAX)}$		±0.5	±1.0	% FS	
ELIN	Non-Linearity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.2		% FS	
Esens	Sensitivity Error (1)	$I_P = I_{P(MAX)},$ $T_A = -40$ °C to +125°C		±0.3		% FS	
V	Offset Voltage (1)	I _P = 0 A,		±4.0		mV	
V _{OFFSET} Offset Voltage (1)		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.1		% FS	
Lifetime D	Lifetime Drift						
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	$I_P = I_{P(MAX)}$		±1.0		% FS	

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT427-xSN865MR

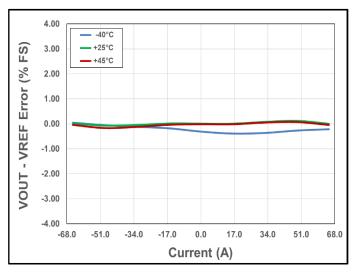


Figure 35. Total Output Error vs. Current vs. Temperature

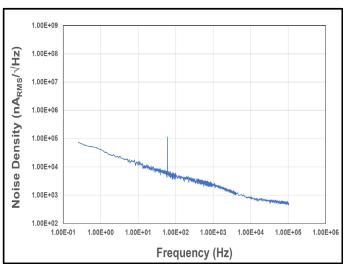


Figure 36. Noise Density vs. Frequency

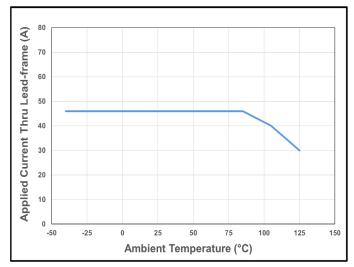


Figure 37. CT427 Current De-rating Curve for 65 A_{PK} (46.0 A_{DC})

Circuit Description

Overview

The CT427 is a very high accuracy contact current sensor with an integrated current carrying conductor (CCC) that handles up to 65 A. It has very high sensitivity and a wide dynamic range with excellent accuracy (very low total output error) across temperature. This current sensor supports eight (8) current ranges:

- 0 A to +20 A
- -20 A to +20 A
- 0 A to +30 A
- -30 A to +30 A
- 0 A to +50 A
- -50 A to +50 A
- 0 A to +65 A
- -65 A to +65 A

When current is flowing through the CCC, the XtemeSense TMR sensors inside the chip senses the field which in turn generates differential voltage signals that then goes through the Analog Front-End (AFE) to output a current measurement with less than $\pm 1.0\%$ full-scale (FS) total output error (EouT).

The chip is designed to enable a very fast response time of 300 ns for the current measurement from the OUT pin as the bandwidth for the CT427 is 1.0 MHz. Even with a high bandwidth, the chip consumes a minimal amount of power.

Linear Output Current Measurement

The CT427 provides a continuous linear analog output voltage which represents the current measurement. The output voltage range of OUT is from 0.65 V to 2.65 V with a V_{OQ} of 0.65 V and 1.65 V for unidirectional and bidirectional currents, respectively. Figure 38 illustrates the output voltage range of the OUT pin as a function of the measured current.

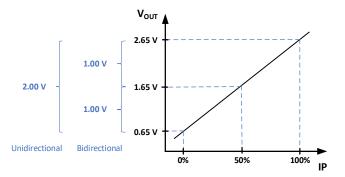


Figure 38. Linear Output Voltage Range (OUT) vs. Measured Current (IP)

Sensitivity

The Sensitivity (S) is a change in CT427's output in response to a change in 1 A of current flowing through the CCC. It is defined by the product of the magnetic circuit sensitivity (G/A, where 1.0 G = 0.1 mT) and the chip's linear amplifier gain (mV/G). Therefore, the result of this gives a sensitivity unit of mV/A. The CT427 is factory calibrated to optimize the sensitivity for the full scale of the device's dynamic range.

Total Output Error

The Total Output Error is the difference between the current measured by CT427 and the actual current, relative to the actual current. It is equivalent to the ratio between the difference of the ideal and actual voltage to the ideal sensitivity multiplied by the current flowing through the primary conductor (CCC). The following equation defines the Total Output Error (E_{OUT}) for the CT427:

$$E_{OUT} = \frac{V_{IOUT_IDEAL}(I_P) - V_{IOUT}(I_P)}{S_{IDEAL}(I_P) \times I_P}$$

The E_{OUT} incorporates all sources of error and is a function of the sensed current (I_P) from CT427. At high current levels, the E_{OUT} will be dominated by the sensitivity error whereas at low current, the dominant characteristic is the offset voltage. Figure 39 shows the behavior of E_{OUT} versus I_P . When I_P goes to 0 from both directions, the curves exhibit asymptotic behavior i.e., E_{OUT} approaches infinity.

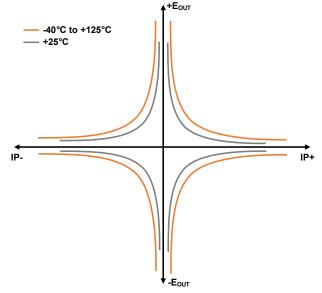


Figure 39. Total Output Error (E_{OUT}) vs. Sensed Current (IP)

The CT427 achieves a total output error (E_{OUT}) that is less than $\pm 1.0\%$ of Full-Scale (FS) over supply voltage and temperature. It is designed with innovative and proprietary TMR sensors and circuit blocks to provide very accurate current measurements regardless of the operating conditions.

Sensitivity Error

The sensitivity error (E_{SENS}) is the sensitivity temperature drift error for unipolar or DC current. It is calculated using the equation below:

$$E_{SENS} = \left(\frac{S_{MEASURED}}{S} - 1\right) \times 100\%$$

For bipolar or AC current, the E_{SENS} is calculated by dividing the equation by 2.

Power-On Time (ton)

The Power-On Time (t_{ON}) of 100 μs is the amount of time required by CT427 to start up, fully power the chip and becoming fully operational from the moment the supply voltage is applied to it. This time includes the ramp up time and the settling time (within 10% of steady-state voltage under an applied magnetic field) after the power supply has reached the minimum V_{CC} .

Response Time (tresponse)

The Response Time (tresponse) of 300 ns for the CT427 is the time interval between the following terms:

- 1. When the primary current signal reaches 90% of its final value.
- 2. When the chip reaches 90% of its output corresponding to the applied current.

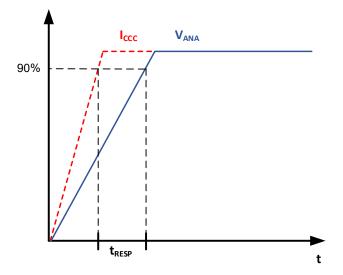


Figure 40. CT427 Response Time Curve

Rise Time (trise)

The CT427's rise time, t_{RISE} , is the time interval of when it reaches 10% and 90% of the full-scale output voltage. The t_{RISE} of the CT427 is 200 ns.

Propagation Delay (tdelay)

The Propagation Delay (t_{DELAY}) is the time difference between these two events:

- 1. When the primary current reaches 20% of its final value
- 2. When the chip reaches 20% of its output corresponding to the applied current.

The CT427 has a propagation delay of 250 ns.

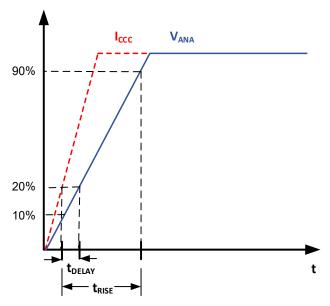


Figure 41. CT427 Propagation Delay and Rise Time Curve

Under-Voltage Lockout (UVLO)

The Under-Voltage Lock-out protection circuitry of the CT427 is activated when the supply voltage (V_{CC}) falls below 2.45 V. The CT427 remains in a low quiescent state until V_{CC} rises above the UVLO threshold (2.50 V). In this condition where the V_{CC} is less than 2.45 V and UVLO is triggered, the output from the CT427 is not valid and the $\overline{\text{FLT}}$ pin will go LOW. Once the V_{CC} rises above 2.50 V then the UVLO is cleared, and the $\overline{\text{FLT}}$ pin will be HIGH.

Fault# Interrupt (FLT)

The CT427 generates an active LOW digital fault signal via the $\overline{\text{FLT}}$ pin to interrupt the microcontroller to indicate a fault event has been triggered. It is an open drain output and requires a pull-up resistor with a value of 100 k Ω tied

to V_{CC} and a 1.0 nF capacitor is connected to ground. A fault signal will interrupt the host system for these events:

- OCD
- UVLO

The FLT signal will be asserted LOW whenever one of the above fault events occur. In the case of an UVLO event, the FLT pin will stay LOW until the fault is cleared and then go HIGH.

If the FLT is not used, then a 1.0 nF capacitor must be connected from the pin to ground.

Immunity to Common Mode Fields

The CT427 is housed in custom plastic packages that utilize a "U-shaped" lead-frame to reduce the common mode fields generated as current flows through the CCC. With the "U-shaped" lead-frame, the stray fields cancel one another thus reducing electro-magnetic interference (EMI).

Also, good PCB layout of the CT427 will optimize performance and reduce EMI. Please see the Applications Information section in this data sheet for recommendations on PCB layout.

Creepage and Clearance

Two important terms as it relates to isolation provided by the package are: creepage and clearance. Creepage is defined as the shortest distance across the surface of the package from one side the leads to the other side of the leads. The definition for clearance is the shortest distance between the leads of opposite side through the air. Figure 42 illustrates the creepage and clearance for the SOIC-8 package of the CT427.

Creepage = 4.96 mm

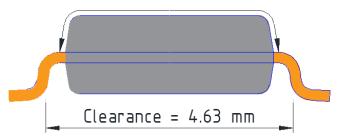


Figure 42. The Creepage and Clearance for the CT427's SOIC-8 package

Applications Information

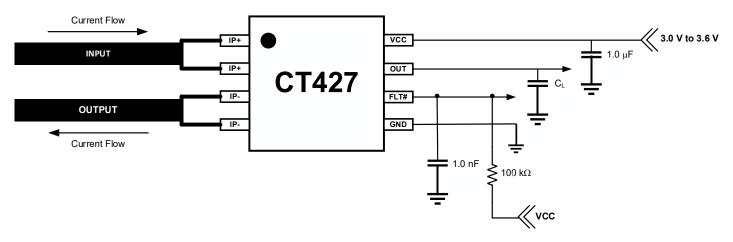


Figure 43. CT427 Application Block Diagram

Application

The CT427 is an integrated contact current sensor that can be used in many applications from measuring current in power supplies to motor control to over-current fault protection. It is a plug-and-play solution in that no calibration is required and it outputs to a microcontroller a simple linear analog output voltage which corresponds to a current measurement value.

It is designed to support an operating voltage range of 3.3 V to 3.6 V, but it is ideal to use a 3.3 V power supply where the output tolerance is less than ±5%.

Bypass Capacitor

A single 1.0 μ F capacitor is needed for the VCC pin to reduce the noise from the power supply and other circuits. This capacitor should be placed as close as possible to the CT427 to minimize inductance and resistance between the two devices.

FLT Resistor and Capacitor

For the CT427, the FLT# pin is an open drain output. It requires a pull-up resistor value of 100 $k\Omega$ to be connected from the pin to V_{CC} and also a 1.0 nF capacitor to be connected from the pin to ground.

If the FLT# pin function is not needed in the application, then a 1.0 nF capacitor must be connected from the pin to ground.

Recommended PCB Layout

Since the CT427 can measure up to 65 A of current, special care must be taken in the printed circuit board

(PCB) layout of the CT427 and the surrounding circuitry. It is recommended that the CCC pins be connected to as much copper area as possible. It is also recommended that 2 oz. or heavier copper be used for PCB traces when the CT427 is used to measure up to 30 A of current. Additional layers of the PCB should also be used to carry current and be connected using the arrangement of vias. Figure 44 and Figure 45 show the recommended the PCB layout for the 20 A and 30 A variants of CT427. For the 65 A variant, it is recommended that 4 oz. of copper be used for the PCB traces.

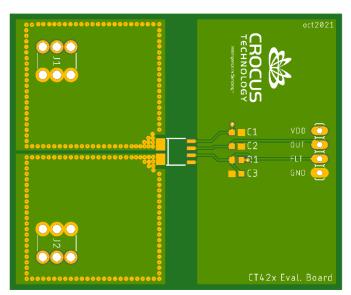


Figure 44. Recommended PCB Layout for the 20 A to 65 A variants of the CT427.

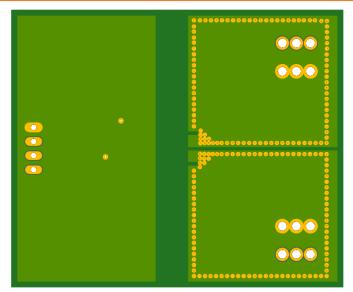
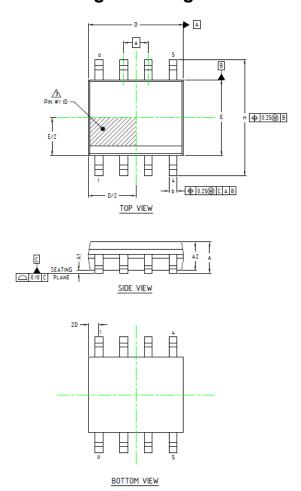



Figure 45. Recommended PCB Layout (Bottom Layer) for the 20 A to 65 A variants of the CT427.

SOIC-8 Package Drawing and Dimensions

END VIEW

DETAIL A

NOTES

- 1. ALL DIMENSIONS IN MM.
- 2. PACKAGE SURFACE FINISHING:
- 2.1. TOP: MATTE (CHARMILLES #18~30)
- 2.2. BOTTOM: MATTE (CHARMILLES #12~27)
- THE PIN #1 IDENTIFIER MUST BE LOCATED WITHIN THE ZONE INDICATED.
- 4. LEAD COPLANARITY SHOULD BE 0 TO 0.10MM MAX.
- 5. JEDEC REFERENCE : MS-012.

Figure 46. SOIC-8 Package Drawing

Table 2. CT427 SOIC-8 Package Dimensions

Cumbal	Dime	ensions in Millimeters (mm)				
Symbol	Min.	Тур.	Max.			
A1	0.10	0.18	0.25			
b	0.36	0.41	0.46			
С	0.19	0.22	0.25			
D	4.80	4.89	4.98			
E	3.81	3.90	3.99			
е		1.27 BSC				
Н	5.80	6.00	6.20			
h	0.25	0.37	0.50			
L	0.41	-	1.27			
Α	1.52	1.62	1.72			
α	0°	-	8°			
ZD		0.53 REF				
A2	1.37	1.47	1.57			

Crocus Technology provides package drawings as a service to customers considering or planning to use Crocus products in their designs. Drawings may change without notice. Please note the revision and date of the data sheet and contact a Crocus Technology representative to verify or obtain the most recent version. The package specifications do not expand the terms of Crocus Technology's worldwide terms and conditions, specifically the warranty therein, which covers Crocus Technology's products.

SOIC-8 Tape & Pocket Drawing and Dimensions

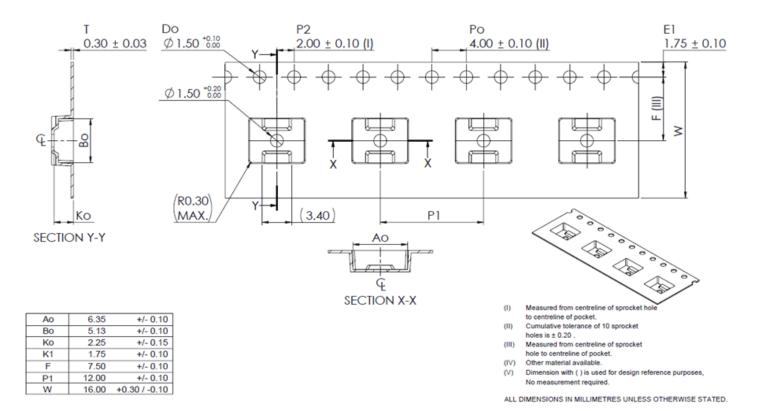


Figure 47. SOIC-8 Package Drawing

Package Information

Table 3. CT427 Package Information

Part Number	Package Type	# of Leads	Quantity per Reel	Lead Finish	MSL Rating (2)	Operating Temperature ⁽³⁾	Device Marking ⁽⁴⁾
CT427-ESN820DR	SOIC	8	2,000	Sn	3	-40°C to +85°C	CT427 S820DR YYWWLL
CT427-HSN820DR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 S820DR YYWWLL
CT427-ASN820DR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 AS820DR YYWWLL
CT427-ESN820MR	SOIC	8	2,000	Sn	3	-40°C to +85°C	CT427 S820MR YYWWLL
CT427-HSN820MR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 S820MR YYWWLL
CT427-ASN820MR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 AS820MR YYWWLL
CT427-ESN830DR	SOIC	8	2,000	Sn	3	-40°C to +85°C	CT427 S830DR YYWWLL
CT427-HSN830DR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 S830DR YYWWLL
CT427-ASN830DR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 AS830DR YYWWLL
CT427-ESN830MR	SOIC	8	2,000	Sn	3	-40°C to +85°C	CT427 S830MR YYWWLL
CT427-HSN830MR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 S830MR YYWWLL
CT427-ASN830MR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 AS830MR YYWWLL
CT427-ESN850DR	SOIC	8	2,000	Sn	3	-40°C to +85°C	CT427 S850DR YYWWLL

Part Number	Package Type	# of Leads	Quantity per Reel	Lead Finish	MSL Rating (2)	Operating Temperature ⁽³⁾	Device Marking ⁽⁴⁾
CT427-HSN850DR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 S850DR YYWWLL
CT427-ASN850DR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 AS850DR YYWWLL
CT427-ESN850MR	SOIC	8	2,000	Sn	3	-40°C to +85°C	CT427 S850MR YYWWLL
CT427-HSN850MR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 S850MR YYWWLL
CT427-ASN850MR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 AS850MR YYWWLL
CT427-ESN865DR	SOIC	8	2,000	Sn	3	-40°C to +85°C	CT427 S865DR YYWWLL
CT427-HSN865DR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 S865DR YYWWLL
CT427-ASN865DR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 AS865DR YYWWLL
CT427-ESN865MR	SOIC	8	2,000	Sn	3	-40°C to +85°C	CT427 S865MR YYWWLL
CT427-HSN865MR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 S865MR YYWWLL
CT427-ASN865MR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT427 AS865MR YYWWLL

⁽¹⁾ RoHS is defined as semiconductor products that are compliant to the current EU RoHS requirements. It also will meet the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Green is defined as the content of Chlorine (CI), Bromine (Br) and Antimony Trioxide based flame retardants satisfy JS709B low halogen requirements of ≤ 1,000 ppm.

⁽²⁾ MSL Rating = Moisture Sensitivity Level Rating as defined by JEDEC standard classifications.

⁽³⁾ Package will withstand ambient temperature range of -40°C to +125°C and storage temperature range of -65°C to +150°C.

⁽⁴⁾ Device Marking for CT427 is defined as CT427 S8xxZR YYWWLL where the first 2 lines = part number, YY = year, WW = work week and LL = lot code.

Device Marking

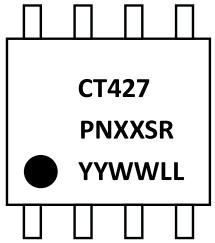
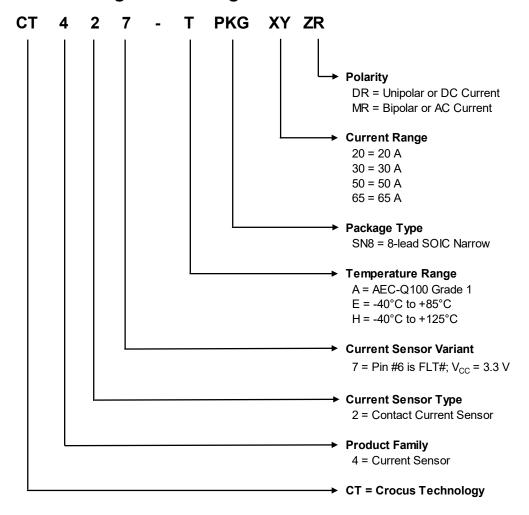



Figure 48. CT427 Device Marking for 8-lead Package

Row No.	Code	Definition			
3	•	Pin 1 Indicator			
1	CT427	Crocus Part Number			
2	Р	Package Type			
2	Ν	Number of Pins			
2	XX	Maximum Current Rating			
2	SR	Current Range			
3	YY	Calendar Year			
3	WW	Work Week			
3	LL	Lot Code			

Table 4. CT427 Device Marking Definition for 8-lead SOIC Package

Part Ordering Number Legend

Disclaimer: The contents of this document are provided for informational purposes only. CROCUS TECHNOLOGY, INC. AND CROCUS TECHNOLOGY SA (COLLECTIVELY "CROCUS") MAKE NO REPRESENTATIONS OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Crocus reserves the right to make changes to the specifications and product descriptions, and/or to discontinue or make changes to its products at any time without notice. Crocus's products have not been designed, tested, or manufactured for use and should not be used in applications where the failure, malfunction or inaccuracy of the Products carries a risk of death or serious bodily injury or damage to tangible property, including, but not limited to, life support systems, nuclear facilities, military, aircraft navigation or communication, emergency systems, harsh environments, or other applications with a similar degree of potential hazard.