

CT450

XtremeSense® TMR 1 MHz Bandwidth Contactless Current Sensor with <1% Total Error

Features

- Integrated Contactless Current/Field Sensing Ranges:
 - o 0 mT to +6 mT
 - o -6 mT to +6 mT
 - o 0 mT to +12 mT
 - o -12 mT to +12 mT
 - o 0 mT to +24 mT
 - -24 mT to +24 mT
- Linear Analog Output Voltage
- Total Error Output $\leq \pm 1.0\%$, -40°C to +125°C
- 1 MHz Bandwidth
- Response Time < 300 ns
- Reference Voltage Output for Unipolar/Bipolar Field Measurements
- VOUT VREF Error < 1.0% FS (Max.)
- Supply Voltage: 4.75 V to 5.50 V
- Low Noise Performance
- Filter Pin to Reduce Noise on Output
- AEC-Q100 Grade 1
- Package Options:
 - 8-lead SOIC
 - 8-lead TSSOP Package

Applications

- Solar/Power Inverters
- Battery Management Systems
- Smart Fuse Over-Current Detection
- Industrial Equipment
- Power Utility Meters
- Power Conditioner
- DC/DC Converters

Product Description

The CT450 is a high bandwidth and low noise integrated contactless current sensor that uses Crocus Technology's patented XtremeSense TMR technology to enable high accuracy current measurements for many consumer, enterprise, and industrial applications. It supports six (6) field ranges where the CT450 senses and translates the magnetic field into a linear analog output voltage. It achieves a total error output of less than $\pm 1.0\%$ over voltage and temperature.

It has less than 300 ns output response time while the current consumption is about 6.0 mA. The CT450 is equipped with a filter function to reduce the noise on the output pin.

The CT450 is housed in an 8-lead SOIC package and a very low profile, industry standard 8-lead TSSOP package that are both "green" and RoHS compliant.

Part Ordering Information

Part Number	Auto Grade	Field Range	Operating Temperature Range	Package	Packing Method
CT450-H06DRSN08	-			8-lead SOIC	
CT450-A06DRSN08	Grade 1	0 mT to +6 mT		4.89 x 6.00 x 1.62 mm	
CT450-H06DRTS08	-	0 1111 10 +0 1111		8-lead TSSOP	
CT450-A06DRTS08	Grade 1			3.00 x 6.40 x 1.10 mm	
CT450-H06MRSN08	-			8-lead SOIC	
CT450-A06MRSN08	Grade 1	-6 mT to +6 mT		4.89 x 6.00 x 1.62 mm	
CT450-H06MRTS08	-	-0111110 +01111		8-lead TSSOP	
CT450-A06MRTS08	Grade 1			3.00 x 6.40 x 1.10 mm	
CT450-H12DRSN08	-			8-lead SOIC	
CT450-A12DRSN08	Grade 1	0 mT to +12 mT		4.89 x 6.00 x 1.62 mm	
CT450-H12DRTS08	-	0 1111 10 + 12 1111		8-lead TSSOP	
CT450-A12DRTS08	Grade 1		-40°C to +125°C	3.00 x 6.40 x 1.10 mm	Tape & Reel
CT450-H12MRSN08	-		-40 C to +125 C	8-lead SOIC	Tape & Reel
CT450-A12MRSN08	Grade 1	-12 mT to +12 mT		4.89 x 6.00 x 1.62 mm	
CT450-H12MRTS08	-	-121111 10 +121111		8-lead TSSOP	
CT450-A12MRTS08	Grade 1			3.00 x 6.40 x 1.10 mm	
CT450-H24DRSN08	-			8-lead SOIC	
CT450-A24DRSN08	Grade 1	0 mT to ±24 mT		4.89 x 6.00 x 1.62 mm	
CT450-H24DRTS08	-	0 mT to +24 mT		8-lead TSSOP	
CT450-A24DRTS08	Grade 1			3.00 x 6.40 x 1.10 mm	
CT450-H24MRSN08	-			8-lead SOIC	
CT450-A24MRSN08	Grade 1	-24 mT to +24 mT		4.89 x 6.00 x 1.62 mm	
CT450-H24MRTS08		-24 IIII 10 +24 IIII		8-lead TSSOP	
CT450-A24MRTS08	Grade 1			3.00 x 6.40 x 1.10 mm	

Evaluation Board Ordering Information

Part Number	Magnetic Field Range	Operating Temperature Range	Package
CTD450-06U	0 mT to +6 mT		
CTD450-06B	-6 mT to +6 mT		
CTD450-12U	0 mT to +12 mT	-40°C to +125°C	8-lead SOIC
CTD450-12B	-12 mT to +12 mT	-40 C t0 +125 C	4.89 x 6.00 x 1.62 mm
CTD450-24U	0 mT to +24 mT		
CTD450-24B	-24 mT to +24 mT		

Block Diagram

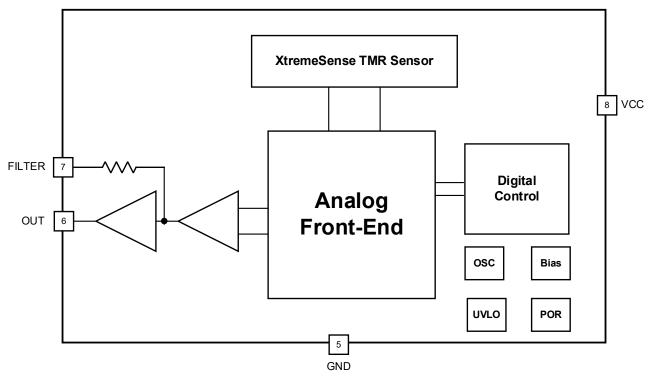


Figure 1. CT450 Functional Block Diagram for SOIC-8

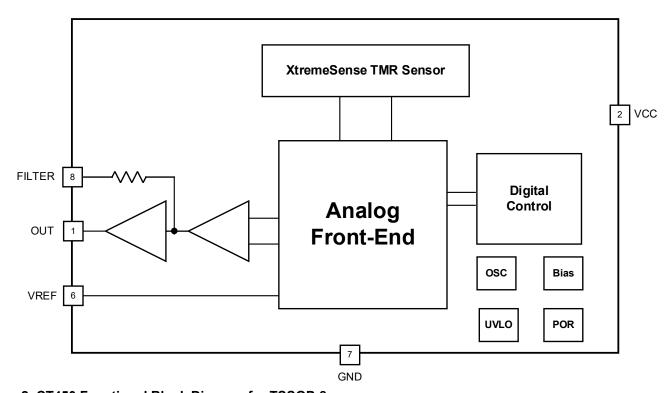


Figure 2. CT450 Functional Block Diagram for TSSOP-8

CT450 Application Diagram

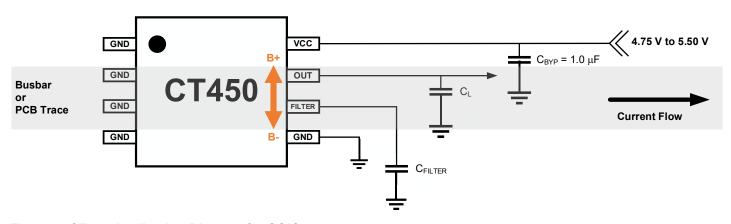


Figure 3. CT450 Application Diagram for SOIC-8

Table 1. Recommended External Components

Component	Description	Vendor & Part Number	Parameter	Min.	Тур.	Max.	Unit
Свур	1.0 μF, X5R or Better	Murata GRM155C81A105KA12	C1		1.0		μF
C _{FILTER}	Various, X5R or Better	Murata	C2		Table 3		pF

CT450 Application Diagram

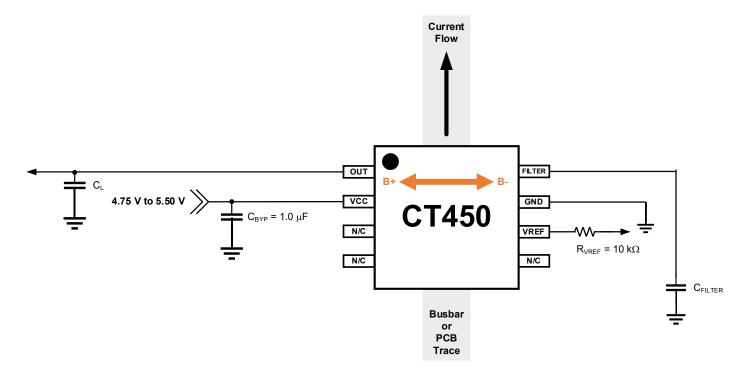


Figure 4. CT450 Application Diagram for TSSOP-8

Table 2. Recommended External Components

Component	Description	Vendor & Part Number	Parameter	Min.	Тур.	Max.	Unit
Свур	1.0 µF, X5R or Better	Murata GRM155C81A105KA12	C1		1.0		μF
CFILTER	Various, X5R or Better	Murata	C2		Table 3		pF
Rvref	10 kΩ Resistor	Various	R2		10		kΩ

CT450 SOIC-8 Pin Configuration

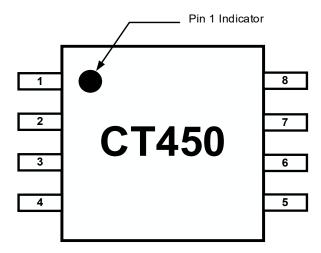


Figure 5. CT450 Pin-out Diagram for 8-lead SOIC Package (Top-Down View)

Pin Definition

Pin #	Pin Name	Pin Description
1		
2		
3	GND	Ground.
4		
5		
6	FILTER	Filter pin to improve noise performance by connecting an external capacitor to set the cut-off frequency.
		No connect if the FILTER pin is not used.
7	OUT	Analog output voltage that represents the measured current/field.
8	VCC	Supply voltage.

CT450 TSSOP-8 Pin Configuration

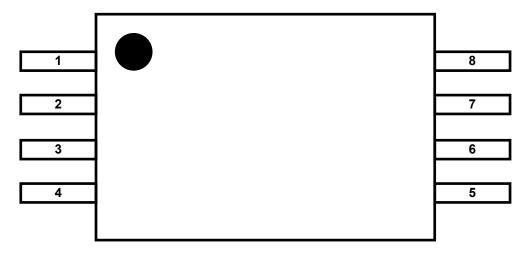


Figure 6. CT450 Pin-out Diagram for 8-lead TSSOP Package (Top-Down View)

Pin Definition

Pin #	Pin Name	Pin Description
1	OUT	Analog output voltage that represents the measured current/field.
2	VCC	Supply voltage.
3		
4	N/C	No connect (Do Not Use).
5		
6	VREF	Reference voltage output. If not used, then do not connect.
7	GND	Ground.
8	FILTER	Filter pin to improve noise performance by connecting an external capacitor to set the cut-off frequency.
		No connect if the FILTER pin is not used.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the CT450 and may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
Vcc	Supply Voltage		-0.3	6.0	V
V _{I/O}	Analog Input/Output Pins	s Maximum Voltage	-0.3	V _{CC} + 0.3*	V
ESD	Electrostatic Discharge	Human Body Model (HBM) per JESD22-A114	2.0		137
ESD	Protection Level Charged Device Model (CDM) per JESD22-C101		0.5		kV
TJ	Junction Temperature		-40	+150	°C
T _{STG}	Storage Temperature		-65	+155	°C
TL	Lead Soldering Tempera	ture, 10 Seconds		+260	°C

^{*}The lower of V_{CC} + 0.3 V or 6.0 V.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual operation of the CT450. Recommended operating conditions are specified to ensure optimal performance to the specifications. Crocus Technology does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter		Min.	Тур.	Max.	Unit
Vcc	Supply Voltage Range		4.75	5.00	5.50	V
V _{OUT}	OUT Voltage Range		0		V_{CC}	V
Іоит	OUT Current				±1.0	mA
т.	On anoting Ambient Temperature	Industrial	-40	+25	+85	°C
TA	Operating Ambient Temperature Extended Industrial		-40	+25	+125	

Electrical Specifications

General Parameters

Unless otherwise specified: V_{CC} = 4.75 V to 5.50 V, T_A = -40°C to +125°C, C_{BYP} = 1.0 μF . Typical values are V_{CC} = 5.00 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Power Su	pplies				•	
Icc	Supply Current	f _{BW} = 1 MHz No load, B _{OP} = 0 mT		6.0	9.0	mA
Іоит	OUT Maximum Drive Capability	OUT covers 10% to 90% of V _{CC} span.	-1.0		+1.0	mA
C _{L_OUT}	OUT Capacitive Load				100	pF
R _{L_} out	OUT Resistive Load			100		kΩ
RFILTER	Internal Filter Resistance (1)			15		kΩ
I _{VREF}	VREF Maximum Drive Capability	TSSOP-8 only	-50		+50	μΑ
C _{L_} VREF	VREF Capacitive Load	TSSOP-8 only			10	pF
R _{L_VREF}	VREF Resistive Load	TSSOP-8 only		100		kΩ
Analog O	utput (OUT)					
Vout	OUT Voltage Linear Range	V _{SIG_AC} = ±2.00 V V _{SIG_DC} = +4.00 V	0.50		4.50	V
Vout_sat	Output High Saturation Voltage	V _{OUT} , T _A = +25°C	V _{CC} – 0.30	V _{CC} – 0.25		V
Reference	Voltage (VREF) for TSSOP-8 Or	nly		•		•
\/	Deference Veltage	Unipolar Field		0.50		V
V_{REF}	Reference Voltage	Bipolar Field		2.50		\ \ \
Fault Outp	out (FLT) for TSSOP-8 Only					
V _{FLT} #_OL	FLT Voltage LOW	I _{FLT} #_OUT ≤ 20 mA	0		0.5	V
ILEAK_FLT#	High Impedance Output Leakage Current	V _{FLT#_OH} = V _{CC}		5		μΑ
RPU	FLT Pull-up Resistor			100		kΩ
Timings						
ton	Power-On Time	V _{CC} ≥ 4.0 V		100	200	μs
t _{RISE}	Rise Time (1)	$B_{OP} = B_{OP(MAX)},$		200		ns
t _{RESPONSE}	Response Time (1)	T _A = +25°C, C _L = 100 pF		300		ns
tDELAY	Propagation Delay (1)			250		ns
Protection	1					
\/. n = -	Under Voltage Leeksut	Rising V _{CC}		2.50		V
V _{UVLO}	Under-Voltage Lockout	Falling Vcc		2.45		V
V _{UV_HYS}	UVLO Hysteresis			50		mV

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics

 V_{CC} = 5.00 V and T_A = +25°C and C_{BYP} = 1.0 μF (unless otherwise specified)

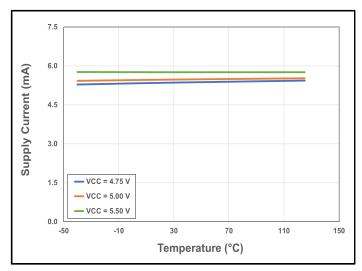


Figure 7. CT450 Supply Current vs. Temperature vs. Supply Voltage

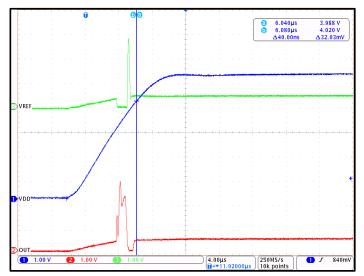


Figure 8. CT450 Startup Waveforms for $V_{QQ} = 0.50 \text{ V}$ (Unipolar Field)

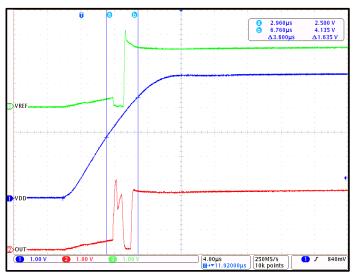


Figure 9. CT450 Startup Waveforms for V_{OQ} = 2.50 V (Bipolar Field)

Electrical Characteristics (continued)

 V_{CC} = 5.00 V and T_A = +25°C and C_{BYP} = 1.0 μF (unless otherwise specified)

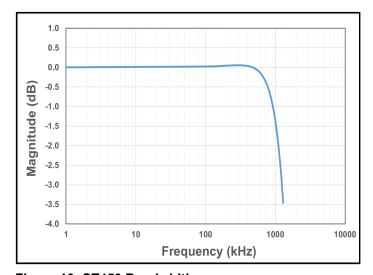


Figure 10. CT450 Bandwidth

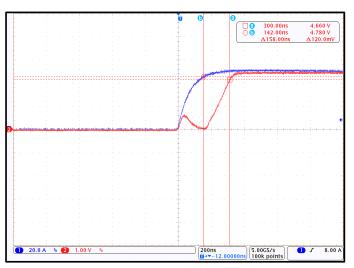


Figure 11. CT450 Response Time; B_{OP} = 12 mT and C_L = 220 pF (Blue = I_{CCC}, Red = V_{OUT})

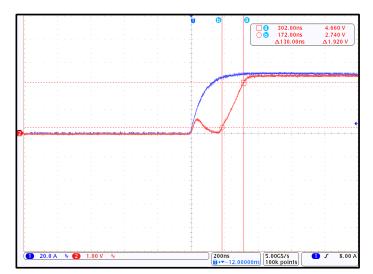


Figure 12. CT450 Rise Time; B_{OP} = 12 mT and C_L = 220 pF (Blue = I_{CCC} , Red = V_{OUT})

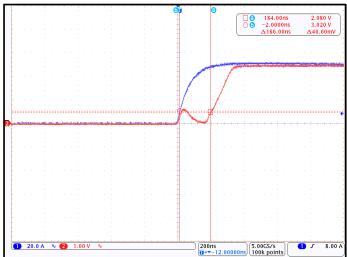


Figure 13. CT450 Propagation Delay; B_{OP} = 12 mT and C_L = 220 pF (Blue = I_{CCC} , Red = V_{OUT})

CT450-x08DR: 0 mT to +6 mT

Unless otherwise specified: V_{CC} = 4.75 V to 5.50 V, T_A = -40°C to +125°C, C_{BYP} = 1.0 μF . Typical values are V_{CC} = 5.00 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
B _{RNG}	Magnetic Field Range		0		+6	mT
Voq	Voltage Output Quiescent	$T_A = +25^{\circ}C, B_{OP} = 0 \text{ mT}$	0.495	0.500	0.505	V
S	Sensitivity	Brng(MIN) < Bop < Brng(MAX)		666.7		mV/mT
f _{BW}	Bandwidth (1)	Small Signal = -3 dB		1.0		MHz
0	Noise (1)	T _A = +25°C, f _{BW} = 100 kHz		1.63		mV _{RMS}
e _N	Noise	1A - +25 C, IBW - 100 KHZ		2.45		μT _{RMS}
OUT Accu	racy Performance					
Еоит	Total Output Error	$B_{OP} = B_{RNG(MAX)}$		±0.7	±1.0	% FS
ELIN	Non-Linearity Error (1)	$B_{OP} = B_{RNG(MAX)},$ $T_A = -40^{\circ}C$ to +125°C		±0.2		% FS
Esens	Sensitivity Error (1)	$B_{OP} = B_{RNG(MAX)},$ $T_A = -40$ °C to +125°C		±0.3		% FS
V	Officet Voltage (1)	$B_{OP} = 0 \text{ mT},$		±10.0		mV
V _{OFFSET}	Offset Voltage (1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.3		% FS
V _{OUT} – V _{RE}	F Accuracy Performance (T	SSOP-8 only)				
Eout-vref	VOUT – VREF Error	$B_{OP} = B_{RNG(MAX)}, V_{CC} = 5.0 \text{ V}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±1.0	% FS
Vout - Vref	OUT – VREF Offset Voltage	V _{CC} = 5.0 V T _A = -40°C to +125°C		±5.0		mV
Lifetime D	rift					
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	B _{OP} = B _{OP(MAX)}		±1.0		% FS

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT450-x06DR

 V_{CC} = 5.0 V and T_A = +25°C and C_{BYP} = 1.0 μF (unless otherwise specified)

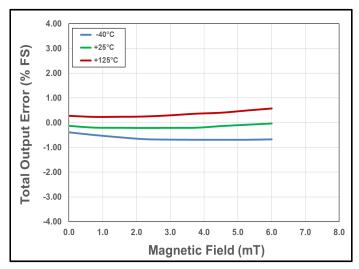


Figure 14. Total Output Error vs. Current vs. Temperature

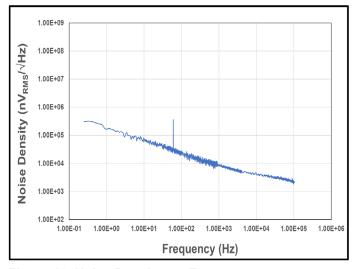


Figure 16. Noise Density vs. Frequency

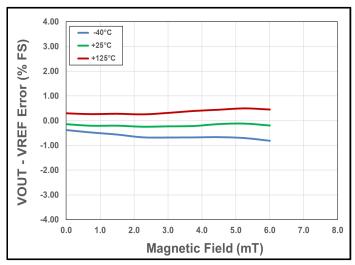


Figure 15. VOUT – VREF Error vs. Current vs. Temperature for TSSOP-8 Variant

CT450-x06MR: -6 mT to +6 mT

Unless otherwise specified: V_{CC} = 4.75 V to 5.50 V, T_A = -40°C to +125°C, C_{BYP} = 1.0 μF . Typical values are V_{CC} = 5.00 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
B _{RNG}	Magnetic Field Range		-6		+6	mT			
Voq	Voltage Output Quiescent	$T_A = +25^{\circ}C$, $B_{OP} = 0 \text{ mT}$	2.490	2.500	2.510	V			
S	Sensitivity	B _{RNG(MIN)} < B _{OP} < B _{RNG(MAX)}		333.3		mV/mT			
f_{BW}	Bandwidth (1)	Small Signal = -3 dB		1.0		MHz			
0	Noise (1)	T _A = +25°C, f _{BW} = 100 kHz		0.92		mV _{RMS}			
e _N	Noise	1A - +25 C, IBW - 100 KI IZ		2.77		μT _{RMS}			
OUT Accu	racy Performance								
Еоит	Total Output Error	$B_{OP} = B_{RNG(MAX)}$		±0.5	±1.0	% FS			
ELIN	Non-Linearity Error (1)	$B_{OP} = B_{RNG(MAX)},$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.1		% FS			
E _{SENS}	Sensitivity Error (1)	$B_{OP} = B_{RNG(MAX)},$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.3		% FS			
V	Officet Voltage (1)	$B_{OP} = 0 \text{ mT},$		±8.0		mV			
V _{OFFSET}	Offset Voltage (1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.2		% FS			
V _{OUT} – V _{RE}	F Accuracy Performance (T	SSOP-8 only)							
Eout-vref	VOUT – VREF Error	$B_{OP} = B_{RNG(MAX)}, V_{CC} = 5.0 \text{ V}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±1.0	% FS			
V _{OUT} - V _{REF}	OUT – VREF Offset Voltage	$V_{CC} = 5.0 \text{ V}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		±5.0		mV			
Lifetime D	Lifetime Drift								
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	B _{OP} = B _{OP(MAX)}		±1.0		% FS			

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT450-x06MR

 V_{CC} = 5.0 V and T_A = +25°C and C_{BYP} = 1.0 μF (unless otherwise specified)

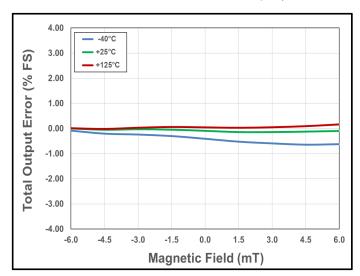


Figure 17. Total Output Error vs. Current vs. Temperature

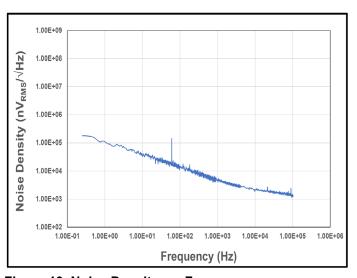


Figure 19. Noise Density vs. Frequency

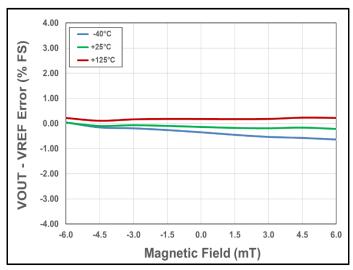


Figure 18. VOUT – VREF Error vs. Current vs. Temperature for TSSOP-8 Variant

CT450-x12DR: 0 mT to +12 mT

Unless otherwise specified: V_{CC} = 4.75 V to 5.50 V, T_A = -40°C to +125°C, C_{BYP} = 1.0 μF . Typical values are V_{CC} = 5.00 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
B _{RNG}	Magnetic Field Range		0		+12	mT				
Voq	Voltage Output Quiescent	$T_A = +25^{\circ}C, B_{OP} = 0 mT$	0.495	0.500	0.505	V				
S	Sensitivity	B _{RNG(MIN)} < B _{OP} < B _{RNG(MAX)}		333.3		mV/mT				
f _{BW}	Bandwidth (1)	Small Signal = -3 dB		1.0		MHz				
0	Noise (1)	T _A = +25°C, f _{BW} = 100 kHz		1.30		mV _{RMS}				
e _N	Noise	1A - +25 C, IBW - 100 KHZ		3.90		μT _{RMS}				
OUT Accu	racy Performance									
Еоит	Total Output Error	Bop = B _{RNG(MAX)}		±0.7	±1.0	% FS				
ELIN	Non-Linearity Error (1)	$B_{OP} = B_{RNG(MAX)},$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.2		% FS				
E _{SENS}	Sensitivity Error (1)	$B_{OP} = B_{RNG(MAX)},$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.3		% FS				
\/	Offset Voltage (1)	$B_{OP} = 0 \text{ mT},$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		±9.0		mV				
V _{OFFSET}	Oliset Voltage (*)			±0.2		% FS				
V _{OUT} – V _{RE}	F Accuracy Performance (T	SSOP-8 only)								
Eout-vref	VOUT – VREF Error	$B_{OP} = B_{RNG(MAX)}, V_{CC} = 5.0 \text{ V}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±1.0	% FS				
Vout - Vref	OUT – VREF Offset Voltage	$V_{CC} = 5.0 \text{ V}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		±5.0		mV				
Lifetime D	Lifetime Drift									
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	$B_{OP} = B_{OP(MAX)}$		±1.0		% FS				

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT450-x12DR

 V_{CC} = 5.0 V and T_A = +25°C and C_{BYP} = 1.0 μF (unless otherwise specified)

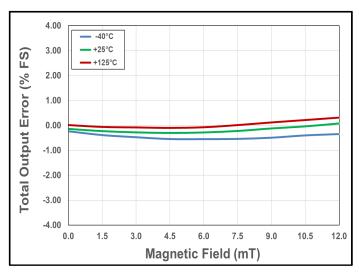


Figure 20. Total Output Error vs. Current vs. Temperature

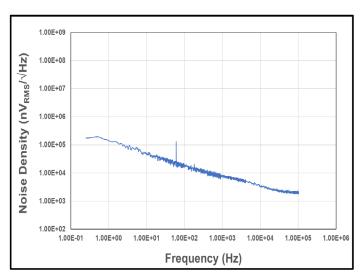


Figure 22. Noise Density vs. Frequency

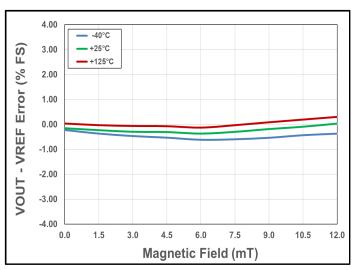


Figure 21. VOUT – VREF Error vs. Current vs. Temperature for TSSOP-8 Variant

CT450-x12MR: -12 mT to +12 mT

Unless otherwise specified: V_{CC} = 4.75 V to 5.50 V, T_A = -40°C to +125°C, C_{BYP} = 1.0 μF . Typical values are V_{CC} = 5.00 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
B _{RNG}	Magnetic Field Range		-12		+12	mT
Voq	Voltage Output Quiescent	$T_A = +25^{\circ}C, B_{OP} = 0 \text{ mT}$	2.490	2.500	2.510	V
S	Sensitivity	Brng(MIN) < Bop < Brng(MAX)		166.7		mV/mT
f _{BW}	Bandwidth (1)	Small Signal = -3 dB		1.0		MHz
e _N	Noise (1)	T _A = +25°C, f _{BW} = 100 kHz		0.75		mV _{RMS}
		,		4.50		μT _{RMS}
OUT Accu	racy Performance					
Еоит	Total Output Error	$B_{OP} = B_{RNG(MAX)}$		±0.5	±1.0	% FS
ELIN	Non-Linearity Error (1)	$B_{OP} = B_{RNG(MAX)},$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.1		% FS
E _{SENS}	Sensitivity Error (1)	$B_{OP} = B_{RNG(MAX)},$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.3		% FS
V	Officet Voltage (1)	$B_{OP} = 0 \text{ mT},$		±7.0		mV
V _{OFFSET}	Offset Voltage (1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.2		% FS
V _{OUT} – V _{RE}	F Accuracy Performance (T	SSOP-8 only)				
Eout-vref	VOUT – VREF Error	$B_{OP} = B_{RNG(MAX)}, V_{CC} = 5.0 \text{ V}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±1.0	% FS
Vout - Vref	OUT – VREF Offset Voltage	$V_{CC} = 5.0 \text{ V}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		±5.0		mV
Lifetime D	rift					
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	B _{OP} = B _{OP(MAX)}		±1.0		% FS

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT450-x12MR

 V_{CC} = 5.0 V and T_A = +25°C and C_{BYP} = 1.0 μF (unless otherwise specified)

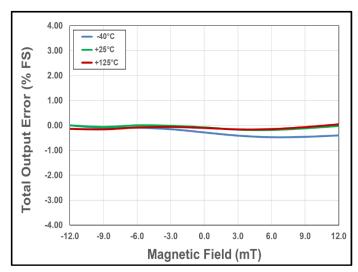
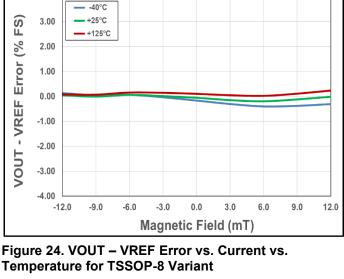



Figure 23. Total Output Error vs. Current vs. **Temperature**

4.00

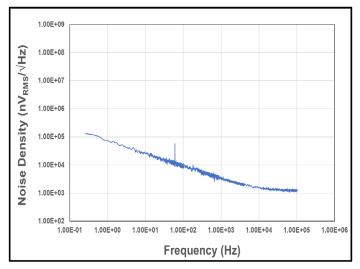


Figure 25. Noise Density vs. Frequency

CT450-x24DR: 0 mT to +24 mT

Unless otherwise specified: V_{CC} = 4.75 V to 5.50 V, T_A = -40°C to +125°C, C_{BYP} = 1.0 μF . Typical values are V_{CC} = 5.00 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
B _{RNG}	Magnetic Field Range		0		+24	mT
Voq	Voltage Output Quiescent	$T_A = +25^{\circ}C, B_{OP} = 0 \text{ mT}$	0.495	0.500	0.505	V
S	Sensitivity	Brng(MIN) < Bop < Brng(MAX)		166.7		mV/mT
f _{BW}	Bandwidth (1)	Small Signal = -3 dB		1.0		MHz
	Noise (1)	T _A = +25°C, f _{BW} = 100 kHz		0.46		mV _{RMS}
e _N	Noise	1A - +25 C, IBW - 100 KHZ		2.77		μT _{RMS}
OUT Accu	racy Performance					
Еоит	Total Output Error	Bop = B _{RNG(MAX)}		±0.7	±1.5	% FS
ELIN	Non-Linearity Error (1)	$B_{OP} = B_{RNG(MAX)},$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.3		% FS
Esens	Sensitivity Error (1)	$B_{OP} = B_{RNG(MAX)},$ $T_A = -40$ °C to +125°C		±0.3		% FS
\/	Off +) / - + (1)	$B_{OP} = 0 \text{ mT},$		±8.0		mV
V _{OFFSET}	Offset Voltage (1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.2		% FS
V _{OUT} – V _{RE}	Accuracy Performance (T	SSOP-8 only)				
Eout-vref	VOUT – VREF Error	$B_{OP} = B_{RNG(MAX)}, V_{CC} = 5.0 \text{ V}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±1.0	% FS
Vout - Vref	OUT – VREF Offset Voltage	$V_{CC} = 5.0 \text{ V}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		±5.0		mV
Lifetime D	rift					
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	$B_{OP} = B_{OP(MAX)}$		±1.0		% FS

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT450-x24DR

 V_{CC} = 5.0 V and T_A = +25°C and C_{BYP} = 1.0 μF (unless otherwise specified)

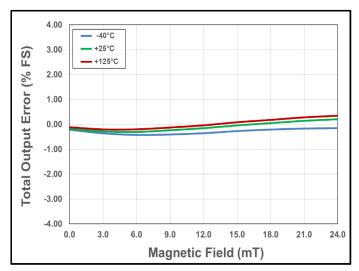


Figure 26. Total Output Error vs. Current vs. Temperature

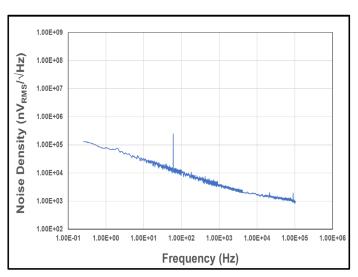


Figure 28. Noise Density vs. Frequency

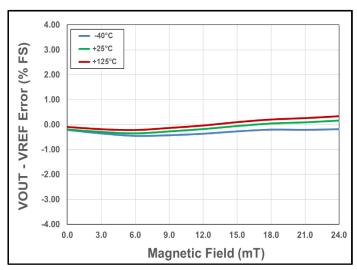


Figure 27. VOUT – VREF Error vs. Current vs. Temperature for TSSOP-8 Variant

CT450-x24MR: -24 mT to +24 mT

Unless otherwise specified: V_{CC} = 4.75 V to 5.50 V, T_A = -40°C to +125°C, C_{BYP} = 1.0 μF . Typical values are V_{CC} = 5.00 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
B _{RNG}	Magnetic Field Range		-24		+24	mT
Voq	Voltage Output Quiescent	$T_A = +25^{\circ}C, B_{OP} = 0 mT$	2.490	2.500	2.510	V
S	Sensitivity	B _{RNG(MIN)} < B _{OP} < B _{RNG(MAX)}		83.3		mV/mT
f _{BW}	Bandwidth (1)	Small Signal = -3 dB		1.0		MHz
0	Noise (1)	T _A = +25°C, f _{BW} = 100 kHz		0.38		mV _{RMS}
e _N	Noise	1A - +25 C, IBW - 100 KHZ		4.56		μT _{RMS}
OUT Accu	racy Performance					
Еоит	Total Output Error	$B_{OP} = B_{RNG(MAX)}$		±0.5	±1.0	% FS
ELIN	Non-Linearity Error (1)	$B_{OP} = B_{RNG(MAX)},$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.2		% FS
E _{SENS}	Sensitivity Error (1)	$B_{OP} = B_{RNG(MAX)},$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.3		% FS
\/	Officet Voltage (1)	$B_{OP} = 0 \text{ mT},$		±7.0		mV
V _{OFFSET}	Offset Voltage (1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±0.2		% FS
V _{OUT} – V _{RE}	F Accuracy Performance (T	SSOP-8 only)				
Eout-vref	VOUT – VREF Error	$B_{OP} = B_{RNG(MAX)}, V_{CC} = 5.0 \text{ V}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±1.0	% FS
Vout - Vref	OUT – VREF Offset Voltage	$V_{CC} = 5.0 \text{ V}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		±5.0		mV
Lifetime D	rift					
E _{TOT_DRIFT}	Total Output Error Lifetime Drift (1)	B _{OP} = B _{OP(MAX)}		±1.0		% FS

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT450-x24MR

 V_{CC} = 5.0 V and T_A = +25°C and C_{BYP} = 1.0 μF (unless otherwise specified)

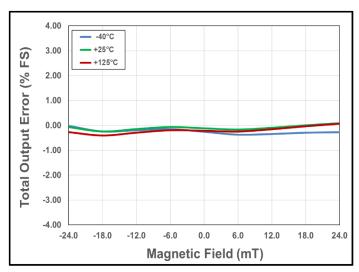


Figure 29. Total Output Error vs. Current vs. Temperature

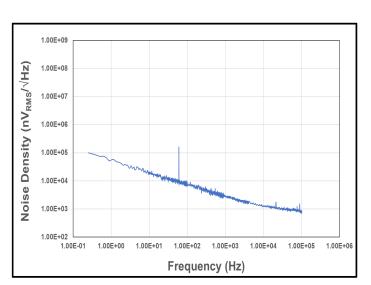


Figure 31. Noise Density vs. Frequency



Figure 30. VOUT – VREF Error vs. Current vs. Temperature for TSSOP-8 Variant

Circuit Description

Overview

The CT450 is a very high accuracy contactless current sensor that can sense magnetic fields from 6 mT to 24 mT. It has very high sensitivity and a wide dynamic range with excellent accuracy (very low total output error) across temperature. This current sensor supports six (6) field ranges:

- 0 mT to +6 mT
- -6 mT to +6 mT
- 0 mT to +12 mT
- -12 mT to +12 mT
- 0 mT to 24 mT
- -24 mT to +24 mT

When current is flowing through a busbar above or below the CT450, the XtemeSense TMR sensor inside the chip senses the field which in turn generates a differential voltage signals that then goes through the Analog Front-End (AFE) to output a current measurement as low as $\pm 1.0\%$ full-scale (FS) total output error (E_{OUT}).

The chip is designed to enable a very fast response time of 300 ns for the current measurement from the OUT pin as the bandwidth for the CT450 is 1.0 MHz. Even with a high bandwidth, the chip consumes a minimal amount of power.

Linear Output Magnetic Field Measurement

The CT450 provides a continuous linear analog output voltage which represents the magnetic field generated by the current flowing through the busbar. The output voltage range of OUT is from 0.50 V to 4.50 V with a V_{QQ} of 0.50 V and 2.50 V for unidirectional and bidirectional fields, respectively. Figure 32 illustrates the output voltage range of the OUT pin as a function of the measured field.

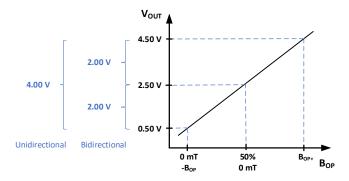


Figure 32. Linear Output Voltage Range (OUT) vs. Measured Magnetic Field (B_{OP})

Voltage Reference Function (VREF)

The CT450 in TSSOP-8 package has a reference voltage (VREF) pin that may be used as an output voltage reference for AC or DC field/current measurements. The VREF pin should be connected to a buffer circuit.

If the VREF is not used, then it should be left unconnected.

Filter Function (FILTER)

The CT450 in SOIC-8 package has a pin for the FILTER function which will enable it to improve the noise performance by changing the cut-off frequency. The bandwidth of the CT450 is 1.0 MHz, however by adding a capacitor to the FILTER pin which, will be in series with an internal resistance of approximately 15 k Ω , will set the cut-off frequency to reduce the noise. Table 3 shows the capacitor values required to achieve four (4) cut-off frequencies.

Table 3. R-C Filter Options for FILTER Pin

Cut-off Frequency	C _{FILTER} (pF)	Capacitor Part Number
100 kHz	91	GRM0225C1C910JA02
250 kHz	33	GRM0225C1C330JA02
500 kHz	16	GRM0225C1C160JA03
1.0 MHz	5	GRM0225C1C5R0CA03

If the FILTER pin is not used, then it should be left unconnected (No Connect).

Total Output Error

The Total Output Error is the difference between the magnetic field measured by CT450 and the actual field, relative to the actual field. It is equivalent to the ratio between the difference of the ideal and actual voltage to the ideal sensitivity multiplied by the magnetic field due to current flowing through the busbar. The equation below defines the Total Output Error (E_{OUT}) for the CT450:

$$E_{OUT} = \frac{V_{OUT_IDEAL}(B_{OP}) - V_{OUT}(B_{OP})}{S_{IDEAL} \times B_{OP}(FS)}$$

The E_{OUT} incorporates all sources of error and is a function of the sensed magnetic field (B_{OP}) from CT450. At high field levels, the E_{OUT} will be dominated by the sensitivity error whereas at low fields, the dominant characteristic is the offset voltage. Figure 33 shows the behavior of E_{OUT} versus B_{OP}. When B_{OP} goes 0 from both

directions, the curves exhibit asymptotic behavior i.e., E_{OUT} approaches infinity.

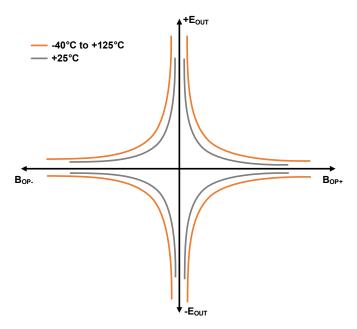


Figure 33. Total Output Error (E_{OUT}) vs. Field (B_{OP})

The CT450 achieves a total output error (E_{OUT}) that is less than $\pm 1.0\%$ of Full-Scale (FS) over supply voltage and temperature. It is designed with innovative and proprietary TMR sensors and circuit blocks to provide very accurate magnetic field measurements regardless of the operating conditions.

Power-On Time (ton)

The Power-On Time (t_{ON}) of 100 µs is the amount of time required by CT450 to start up, fully power the chip and becoming fully operational from the moment the supply voltage is greater than the UVLO voltage. This time includes the ramp up time and the settling time (within 10% of steady-state voltage under an applied magnetic field) after the power supply have reach the minimum V_{CC} .

Response Time (tresponse)

The Response Time (t_{RESPONSE}) of 300 ns for the CT450 is the time interval between the following terms:

- 1. When the primary field/current signal reaches 90% of its final value,
- 2. When the chip reaches 90% of its output corresponding to the applied field/current.

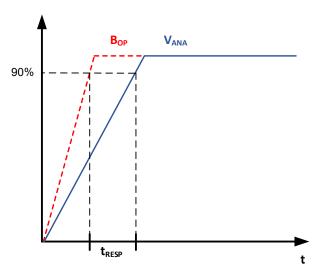


Figure 34. CT450 Response Time Curve

Rise Time (trise)

The CT450's rise time, t_{RISE} , is the time interval of when it reaches 10% and 90% of the full-scale output voltage. The t_{RISE} of the CT450 is 200 ns.

Propagation Delay (tdelay)

The Propagation Delay (t_{DELAY}) is the time difference between these two events:

- 1. When the primary current reaches 20% of its final value
- 2. When the chip reaches 20% of its output corresponding to the applied field/current.

The CT450 has a propagation delay of 250 ns.

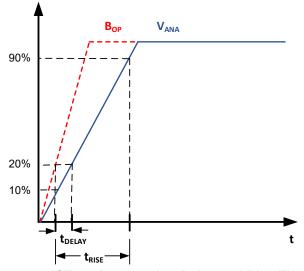


Figure 35. CT450 Propagation Delay and Rise Time Curve

Under-Voltage Lockout (UVLO)

The Under-Voltage Lock-out protection circuitry of the CT450 is activated when the supply voltage (V_{CC}) falls below 2.45 V. The CT450 remains in a low quiescent state until V_{CC} rises above the UVLO threshold (2.50 V). In this condition where the V_{CC} is less than 2.45 V and UVLO is triggered, the output from the CT450 is not valid and the FLT pin will go LOW. Once the V_{CC} rises above 4.0 V then the UVLO is cleared, and the FLT pin will be HIGH.

CT450 Calibration Guide

Introduction

All current sensors, no matter how expensive they are, or what materials they use, or even if they were factory calibrated, are susceptible to deviations from their Ideal Transfer Line.

To extract the absolute best performance from any current sensing system, calibration is required.

Ideal Transfer Line

Ideally, the sensor output follows a straight line, has a fixed slope, and crosses a fix offset point. This allows the user to apply a straightforward linear equation to extract the "physical" value being measured. In the case of a current sensor:

$$Current = \frac{Voltage - b}{a}$$

where a: slope and b: offset of the ideal curve. In a perfect sensor, both a and b coefficients can be simply looked up on the datasheet.

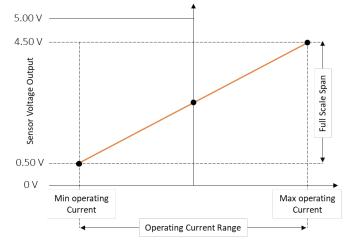


Figure 36. Ideal Transfer Line

Any deviation from this Ideal Line are considered sensor errors. More specifically Accuracy Errors as they related in the case of Crocus Technology's sensors to Gain and Offset errors.

Offset Error

Based on the Ideal Transfer Line, when no current is applied, the voltage output of the sensor should be equal to 2.50 V. On the datasheet, the user can find the spread (i.e. min-max) values of offsets of Crocus Technology's products.

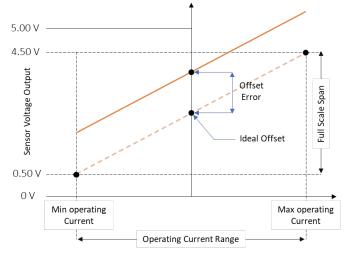


Figure 37. Exaggerated Offset Error

Gain Error

The Ideal Transfer Line shows a line that reaches $4.50 \, \text{V}$ at the maximum operating current and $0.50 \, \text{V}$ at the minimum. The datasheet also shows the spread of the gain found on the sensors.

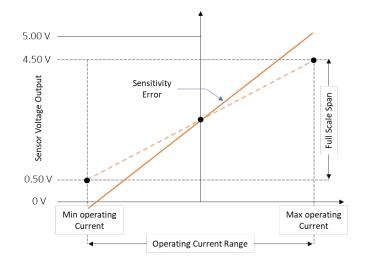


Figure 38. Exaggerated Gain Error

Calibration

Different methods can be applied for offset and/or gain correction. The complexity of these methods lead to different calibration results. The higher the complexity the better the error correction is.

Simple Offset Correction

Offset calibration is achieved simply by storing the voltage output of the sensor at zero flowing current.

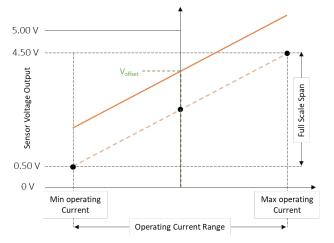


Figure 39. Simple Offset Calibration

This stored value V_{OFFSET} becomes the coefficient "b" in the linear transfer function:

$$Current = \frac{Voltage - b}{a}$$

Simple Gain Correction

Basic Gain calibration can be achieved by applying a known current value (A_1) and measure the sensor output voltage value (V_1)

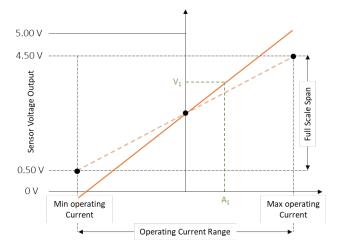


Figure 40. Simple Gain Calibration

The following equation is used to calculate the slope coefficient "a":

$$a = \frac{V_1 - V_{OFFSET}}{A_1}$$

Recommended Offset and Gain Correction

For bi-directional current applications, the steps below are recommended for users trying to perform the best error correction of gain and offset.

- Apply a known current value (A₁) and measure voltage output (V₁)
- 2. Apply a "second current value" (A_2) and measure the voltage output (V_2)
- 3. Calculate the slope using the following equation.

It is recommended that the applied currents A_1 and A_2 are the absolute maximum and minimum operating current the sensor will see during its normal operations.

Also, $A_1 = -A_2$ for bi-directional current sensing.

$$a = \frac{V_1 - V_2}{A_1 - A_2} \qquad b = \frac{V_1 + V_2}{2}$$

Figure 41. Gain Calibration

Both calculated coefficients "a" and "b" are then used to calculate the current:

$$Current = \frac{Voltage - b}{a}$$

Applications Information

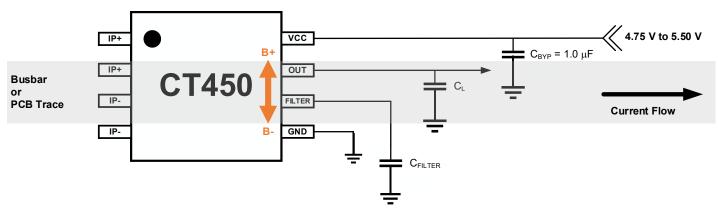


Figure 42. Application Diagram of CT450 Sensing Current of Busbar Above It or PCB Trace Underneath It

Application

The CT450 is an integrated contactless current sensor that can be used in many applications from measuring current in solar inverters and other high-current applications. The chip outputs to a microcontroller a simple linear analog output voltage which corresponds to a magnetic field (current) measurement value. A second output called FLT# (in the TSSOP-8 variant) alerts the host system to any fault event that may occur in the CT450. Figure 42 is an application diagram of how CT450 in SOIC-8 package would be implemented in a system.

It is designed to support an operating voltage range of 4.75 V to 5.50 V, but it is ideal to use a 5.00 V power supply where the output tolerance is less than ±5%.

Current Sensing

The CT450 can sense and therefore measure the current by either placing a current-carrying busbar above or under the device. The busbar should be placed crosswise or over the pins of the package for the CT450 (in SOIC-8) to measure the current. The chip is also sensitive enough to measure the current from a PCB trace that is routed underneath it.

Bypass Capacitor

A single 1.0 μ F capacitor is needed for the VCC pin to reduce the noise from the power supply and other circuits. This capacitor should be placed as close as possible to the CT450 to minimize inductance and resistance between the two devices.

VREF Resistors (TSSOP-8)

In designs where the VREF pin of the CT450 in TSSOP-8 is used, a 10 k Ω resistor must be connected as close to the pin as possible in series with a load.

If the VREF pin is not needed in the application, then this pin should not be connected and be left floating.

Recommended PCB Layout

The CT450 is able to sense the field generated by the current flowing through a Printed Circuit Board (PCB) trace or busbar. Figure 43 shows the schematic for the CTD450 which is evaluation board for the CT450.

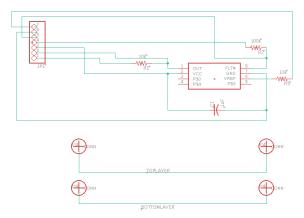


Figure 43. CTD450 Evaluation Board Schematic

The PCB layout of the CTD450 is shown in Figure 44 where the CT450 can sense the current through the PCB trace on the top layer (red trace) or bottom layer (blue trace) of a 4-layer PCB. The width of the PCB trace and

the thickness of the copper used will dictate the amount of current that it can carry. Please use Crocus' Contactless Current Sensor Calculator: <u>tools.crocustechnology.com</u> to set the parameters to determine the amount of current the PCB trace (or busbar) can support.

In some applications the isolation voltage is an important requirement. If the PCB trace is implemented on the top layer and the clearance between the trace and the IC pads is 1.25 mm, then it will provide greater than 2.0 kV of isolation between the trace and the TSSOP pins.

For the implementation of the current trace on the bottom layer, a distance of 1.60 mm between the IC pads on the top side of the PCB to the bottom layer of the trace will yield an isolation voltage that is greater than 5.0 kV.

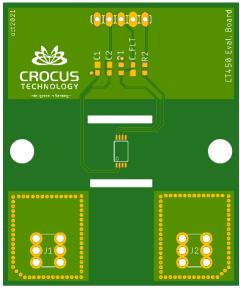


Figure 44. CTD450 Evaluation Board PCB Layout

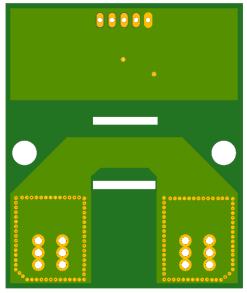


Figure 45. CTD450 Evaluation Board PCB Layout

XtremeSense TMR Current Sensor Location

The XtremeSense TMR current sensor location of the CT450 for the x and y dimensions are shown in Figure 46 and z dimension in Figure 47 for the SOIC-8 package. Similarly, Figure 48 and Figure 49 for the TSSOP-8 package. All dimensions in the figures below are nominal.

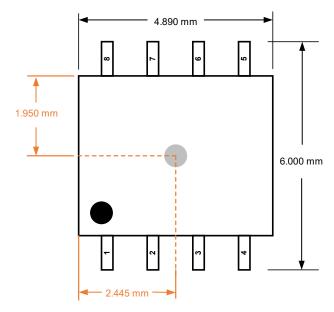


Figure 46. XtremeSense TMR Current Sensor Location in x-y Plane for CT450 in SOIC-8 Package

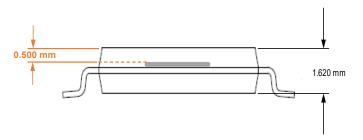


Figure 47. XtremeSense TMR Current Sensor Location in z Dimension for CT450 in SOIC-8 Package

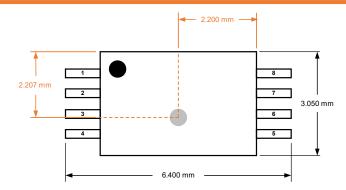


Figure 48. XtremeSense TMR Current Sensor Location in x-y Plane for CT450 in TSSOP-8 Package

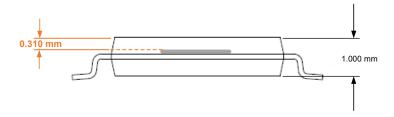
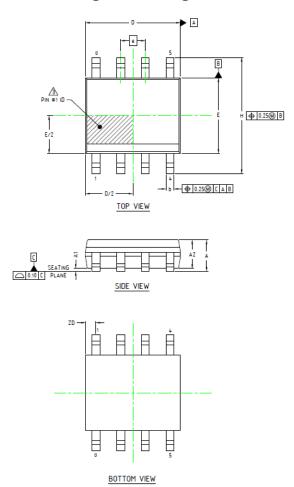
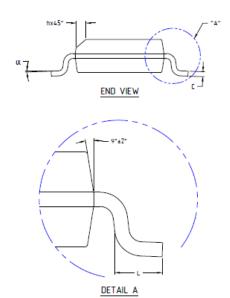




Figure 49. XtremeSense TMR Current Sensor Location in z Dimension for CT450 in TSSOP-8 Package

SOIC-8 Package Drawing and Dimensions

NOTES

- 1. ALL DIMENSIONS IN MM.
- 2. PACKAGE SURFACE FINISHING:
- 2.1. TOP: MATTE (CHARMILLES #18~30)
 2.2. BOTTOM: MATTE (CHARMILLES #12~27)
- THE PIN #1 IDENTIFIER MUST BE LOCATED WITHIN THE ZONE INDICATED.
- 4. LEAD COPLANARITY SHOULD BE 0 TO 0.10MM MAX.
- 5. JEDEC REFERENCE: MS-012.

Figure 50. SOIC-8 Package Drawing

Table 4. CT450 SOIC-8 Package Dimensions

Symbol	Dimensions in Millimeters (mm)							
Symbol	Min.	Тур.	Max.					
A1	0.10	0.18	0.25					
b	0.36	0.41	0.46					
С	0.19	0.22	0.25					
D	4.80	4.89	4.98					
E	3.81	3.90	3.99					
е		1.27 BSC						
Н	5.80	6.00	6.20					
h	0.25	0.37	0.50					
L	0.41	•	1.27					
Α	1.52	1.62	1.72					
α	0°	-	8°					
ZD		0.53 REF						
A2	1.37	1.47	1.57					

Crocus Technology provides package drawings as a service to customers considering or planning to use Crocus products in their designs. Drawings may change without notice. Please note the revision and date of the data sheet and contact a Crocus Technology representative to verify or obtain the most recent version. The package specifications do not expand the terms of Crocus Technology's worldwide terms and conditions, specifically the warranty therein, which covers Crocus Technology's products.

SOIC-8 Tape & Pocket Drawing and Dimensions

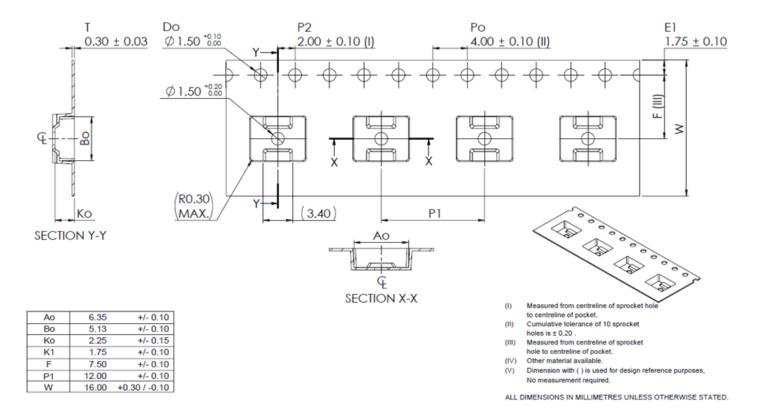


Figure 51. SOIC-8 Package Drawing

TSSOP-8 Package Drawing and Dimensions

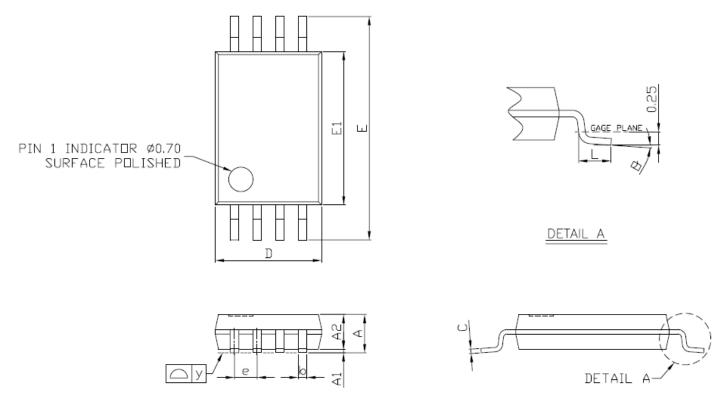


Figure 52. TSSOP-8 Package Drawing

Table 5. CT450 TSSOP-8 Package Dimensions

Symbol	Dimens	sions in Millimeters	s (mm)
Symbol	Min.	Тур.	Max.
Α	1.05	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
b	0.25	-	0.30
С	-	0.127	-
D	2.90	3.05	3.10
E	6.20	6.40	6.60
E1	4.30	4.40	4.50
е	-	0.65	-
L	0.50	0.60	0.70
у	-	=	0.076
θ	0°	4°	8°

Crocus Technology provides package drawings as a service to customers considering or planning to use Crocus products in their designs. Drawings may change without notice. Please note the revision and date of the data sheet and contact a Crocus Technology representative to verify or obtain the most recent version. The package specifications do not expand the terms of Crocus Technology's worldwide terms and conditions, specifically the warranty therein, which covers Crocus Technology's products.

TSSOP-8 Tape & Pocket Drawing and Dimensions

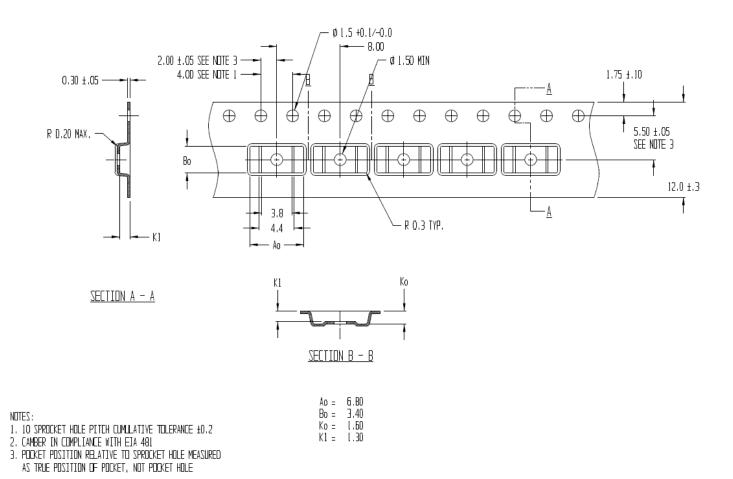


Figure 53. TSSOP-8 Tape and Pocket Drawings

Package Information

Table 6. CT450 Package Information

Part Number	Package Type	# of Leads	Quantity per Reel	Lead Finish	MSL Rating (2)	Operating Temperature (3)	Device Marking ⁽⁴⁾
							CT450
CT450-H06DRSN08	SOIC	8	3,000	Sn	3	-40°C to +125°C	06DR
							YYWWLL
	2010					10001 1000	CT450
CT450-A06DRSN08	SOIC	8	3,000	Sn	3	-40°C to +125°C	A06DR
							YYWWLL
CT450-H06DRTS08	TSSOP	8	3,000	Sn	1	-40°C to +125°C	CT450-06DR YYWWLL
CT450-A06DRTS08	TSSOP	8	3,000	Sn	1	-40°C to +125°C	CT450-A06DR
C1450-A00DK1500	1330F	0	3,000	SII	'	-40 C t0 +125 C	YYWWLL
							CT450
CT450-H06MRSN08	SOIC	8	3,000	Sn	3	-40°C to +125°C	06MR
							YYWWLL
		_		_	_		CT450
CT450-A06MRSN08	SOIC	8	3,000	Sn	3	-40°C to +125°C	A06MR
							YYWWLL
CT450-H06MRTS08	TSSOP	8	3,000	Sn	1	-40°C to +125°C	CT450-06MR YYWWLL
							CT450-A06MR
CT450-A06MRTS08	TSSOP	8	3,000	Sn	1	-40°C to +125°C	YYWWLL
							CT450
CT450-H12DRSN08	SOIC	8	3,000	Sn	3	-40°C to +125°C	12DR
							YYWWLL
							CT450
CT450-A12DRSN08	SOIC	8	3,000	Sn	3	-40°C to +125°C	A12DR
							YYWWLL
CT450-H12DRTS08	TSSOP	8	3,000	Sn	1	-40°C to +125°C	CT450-12DR
	1000.		0,000	0		10 0 10 1 120 0	YYWWLL
CT450-A12DRTS08	TSSOP	8	3,000	Sn	1	-40°C to +125°C	CT450-A12DR
			,				YYWWLL
OTAFO HAOMBONIOO	0010		2.000	0		40°0 t- 1405°0	CT450
CT450-H12MRSN08	SOIC	8	3,000	Sn	3	-40°C to +125°C	12MR
							YYWWLL
CT450-A12MRSN08	SOIC	8	3,000	Sn	3	-40°C to +125°C	CT450 A12MR
014007(12IIII(01400	0010		0,000	On		-40 0 10 1 120 0	YYWWLL
		_		_			CT450-12MR
CT450-H12MRTS08	TSSOP	8	3,000	Sn	1	-40°C to +125°C	YYWWLL
CT450-A12MRTS08	TSSOP	8	3,000	Sn	1	-40°C to +125°C	CT450-A12MR
01400-A12WIN1300	1000F	o o	3,000	JII	'	-40 C t0 +120 C	YYWWLL
							CT450
CT450-H24DRSN08	SOIC	8	3,000	Sn	3	-40°C to +125°C	24DR
							YYWWLL
OT450 404BB31133	2010		0.000	_		4000 : :0=05	CT450
CT450-A24DRSN08	SOIC	8	3,000	Sn	3	-40°C to +125°C	A24DR
		<u> </u>					YYWWLL

Part Number	Package Type	# of Leads	Quantity per Reel	Lead Finish	MSL Rating ⁽²⁾	Operating Temperature ⁽³⁾	Device Marking ⁽⁴⁾
CT450-H24DRTS08	TSSOP	8	3,000	Sn	1	-40°C to +125°C	CT450-24DR YYWWLL
CT450-A24DRTS08	TSSOP	8	3,000	Sn	1	-40°C to +125°C	CT450-A24DR YYWWLL
CT450-H24MRSN08	SOIC	8	3,000	Sn	3	-40°C to +125°C	CT450 24MR YYWWLL
CT450-A24MRSN08	SOIC	8	3,000	Sn	3	-40°C to +125°C	CT450 A24MR YYWWLL
CT450-H24MRTS08	TSSOP	8	3,000	Sn	1	-40°C to +125°C	CT450-24MR YYWWLL
CT450-A24MRTS08	TSSOP	8	3,000	Sn	1	-40°C to +125°C	CT450-A24MR YYWWLL

⁽¹⁾ RoHS is defined as semiconductor products that are compliant to the current EU RoHS requirements. It also will meet the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Green is defined as the content of Chlorine (CI), Bromine (Br) and Antimony Trioxide based flame retardants satisfy JS709B low halogen requirements of ≤ 1,000 ppm.

⁽²⁾ MSL Rating = Moisture Sensitivity Level Rating as defined by JEDEC standard classifications.

⁽³⁾ Package will withstand ambient temperature range of -40°C to +125°C and storage temperature range of -65°C to +150°C.

⁽⁴⁾ Device Marking for CT450 in SOIC-8 is defined as CT450 xxZR YYWWLL where the first 2 lines = part number, and third line is YY = year, WW = work week and LL = lot code. In TSSOP-8 is defined as CT450 xxZR YYWWLL where the first line = part number, and second line is YY = year, WW = work week and LL = lot code.

Device Marking

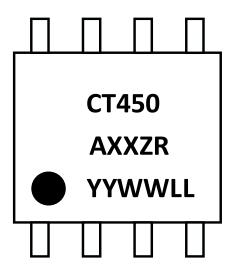


Figure 54. CT450 Device Marking for 8-lead TSSOP Package

Row No.	Code	Definition
3	•	Pin 1 Indicator
1	CT450	Crocus Part Number
2	Α	Automotive Identifier
2	XX	Maximum Field Rating
2	ZR	Polarity
3	YY	Calendar Year
3	WW	Work Week
3	LL	Lot Code

Table 7. CT450 Device Marking Definition for 8-lead SOIC Package

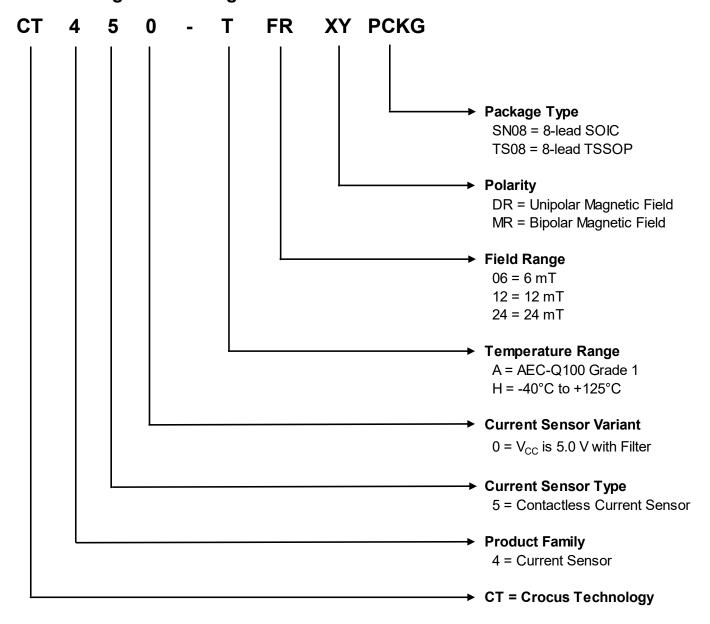



Figure 55. CT450 Device Marking for 8-lead TSSOP Package

Row No.	Code	Definition
1	•	Pin 1 Indicator
2	CT450	Crocus Part Number
2	Α	Automotive Identifier
2	XX	Maximum Magnetic Field Rating
2	ZR	Magnetic Field Range
3	YY	Calendar Year
3	WW	Work Week
3	LL	Lot Code

Table 8. CT450 Device Marking Definition for 8-lead TSSOP Package

Part Ordering Number Legend

Disclaimer: The contents of this document are provided for informational purposes only. CROCUS TECHNOLOGY, INC. AND CROCUS TECHNOLOGY SA (COLLECTIVELY "CROCUS") MAKE NO REPRESENTATIONS OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Crocus reserves the right to make changes to the specifications and product descriptions, and/or to discontinue or make changes to its products at any time without notice. Crocus's products have not been designed, tested, or manufactured for use and should not be used in applications where the failure, malfunction or inaccuracy of the Products carries a risk of death or serious bodily injury or damage to tangible property, including, but not limited to, life support systems, nuclear facilities, military, aircraft navigation or communication, emergency systems, harsh environments, or other applications with a similar degree of potential hazard.