

CT813x

Integrated Omnipolar TMR Digital Latches

Features

- Sensitivity with B_{OP} Range: 0.9 mT to 7.0 mT
- Ultra-low Power Consumption: ~110 nA @ V_{DD} = 1.8 V and f_S = 2 Hz
- Supply Voltage Range: 1.7 V to 5.5 V
- Sensor Polarity: Omnipolar
- Digital CMOS Outputs:
 - o Push-pull
 - o Open Drain
- Under-Voltage Lockout (UVLO)
- Package Options:
 - o 3-Lead SOT23
 - \circ 4-lead LGA, 1.45 × 1.45 × 0.44 mm

Applications

- IoT Devices
- Smartphones, Tablets and Laptops
- Door or Lid Closure
- Reed Switch Replacement
- Tamper-proofing for Utility Smart Meters
- Fluid Level Sensing/Detection
- Proximity Detection
- Motor Controllers
- · Gimbals for Camera Systems in Drones/UAVs
- Industrial Machinery/Robots
- Medical Devices

Product Description

The CT813x series of omnipolar Tunnel Magnetoresistance (TMR) digital latches are designed for consumer and industrial applications. They are based on Crocus Technology's patented XtremeSense® TMR technology with integrated CMOS process to provide a monolithic solution for superior sensing performance. The CT813x digital latches offer stable magnetic operation over the operating temperature range.

This product family has very low power consumption as low as 110 nA which is ideal for battery-operated products where minimal current consumption is required. It supports magnetic fields down to 0.9 mT for applications where there is a large air gap requirement.

For applications that require a very small form factor and low profile, the CT813x is assembled in a 4-lead LGA package. It is also available in an industry standard package 3-lead SOT-23 to support high volume manufacturing for industrial markets.

Ordering Information

Part Number	Operating Temperature Range	Sensor Type	Output	B _{OP} (mT)	B _{RP} (mT)	f _S	Package	Packing Method
CT8131BV-IL4	-40°C to +85°C	Omnipolar	Open	±3.0	±2.0	2 Hz	4-lead LGA	Tape & Reel
CT8131BV-HL4	-40°C to +125°C	Ommpolar	Drain	15.0	12.0	2112	4-lead LGA	Tape & Neel
CT8131BV-IS3	-40°C to +85°C	Omnipolar	Open	±3.0	±2.0	2 Hz	3-lead	Tape & Reel
CT8131BV-HS3	-40°C to +125°C	Ommpoiai	Drain	±3.0	12.0	2 112	SOT23	rape α Neer
CT8132BH-IL4	-40°C to +85°C	Omninolar	Duck sull	±3.0	±2.0	10 kHz	4-lead LGA	Tone & Deel
CT8132BH-HL4	-40°C to +125°C	Omnipolar	Push-pull	±3.0	±2.0	10 KHZ	4-lead LGA	Tape & Reel
CT8132BH-IS3	-40°C to +85°C	Omninolar	Duck sull	13.0	±2.0	10 kHz	3-lead	Tono ⁹ Dool
CT8132BH-HS3	-40°C to +125°C	Omnipolar	Push-pull	±3.0	±2.0	10 KHZ	SOT23	Tape & Reel
CT8132BL-IS3	-40°C to +85°C	Omninolar	Push-pull	±3.0	±2.0	250 Hz	3-lead	Tono 9 Dool
CT8132BL-HS3	-40°C to +125°C	Omnipolar	i i usii-puii	±3.0	±2.0	250 HZ	SOT23	Tape & Reel
CT8132BV-IL4	-40°C to +85°C	Omnipolar	Duch pull	±3.0	±2.0	2 Hz	4-lead LGA	Tape & Reel
CT8132BV-HL4	-40°C to +125°C	Ommpoiai	mnipolar Push-pull	±3.0	±2.0	2112	4-lead LGA	Tape & Neel
CT8132BV-IS3	-40°C to +85°C	Omnipolar	Push-pull	±3.0	±2.0	2 Hz	3-lead	Tape & Reel
CT8132BV-HS3	-40°C to +125°C	Ommpoiai	r usii-puii	±3.0	12.0	2112	SOT23	rape α Neer
CT8132DM-IS3	-40°C to +85°C	Omnipolar	Push-pull	±1.5	±1.0	2.5 kHz	3-lead	Tape & Reel
CT8132DM-HS3	-40°C to +125°C	Ommpoiai	r usii-puii	±1.5	±1.0	2.3 KI IZ	SOT23	Tape & Neel
CT8132EK-IS3	-40°C to +85°C	Omnipolar	Push-pull	±7.0	±5.0	10 Hz	3-lead	Tape & Reel
CT8132EK-HS3	-40°C to +125°C	Ommpoiai	Fusii-puii	±1.0	13.0	10 112	SOT23	Tape & Neel
CT8132SK-IL4	-40°C to +85°C	Omnipolar	Push-pull	±0.9	±0.5	10 Hz	4-lead LGA	Tape & Reel
CT8132SK-HL4	-40°C to +125°C	Ommpoiar	rusii-puli	IU.S	±0.5	10 112	4-lead LGA	таре о пеет
CT8132SK-IS3	-40°C to +85°C	Omnipolar	Duch-null	±0.9	±0.5	10 Hz	3-lead	Tane & Peol
CT8132SK-HS3	-40°C to +125°C	Ommpoiar	Push-pull	±0.8	±0.5	10 HZ	SOT23	Tape & Reel
CT8132SL-IS3	-40°C to +85°C	Omninolar	Push-pull	±0.9	±0.5	250 Hz	3-lead	Tape & Reel
CT8132SL-HS3	-40°C to +125°C	Omnipolar Pus	i usii-puli	±0.8	10.5	230 112	SOT23	Tape & Neel

Block Diagram

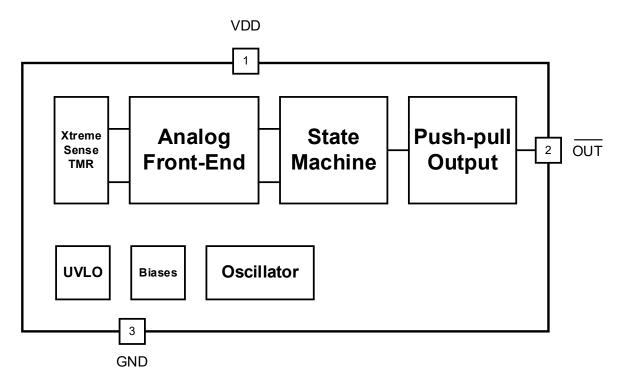


Figure 1. CT8132 with Push-pull Output Block Diagram for 3-lead SOT23 Package

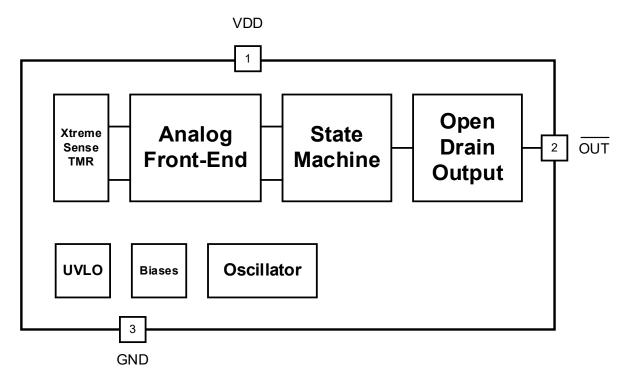


Figure 2. CT8131 with Open Drain Output Block Diagram for 3-lead SOT23 Package

SOT23 Pin Configuration

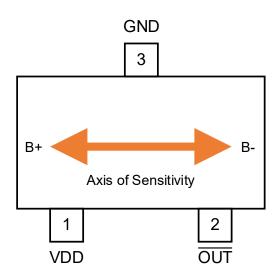
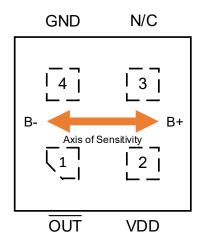



Figure 3. CT813x: 3-Lead SOT23 Package for Digital Output

Pin Definitions

Pin #	Pin Name	Pin Description
1	VDD	Supply Voltage
2	OUT	Output Signal (Active LOW)
3	GND	Ground

LGA Pin Configuration

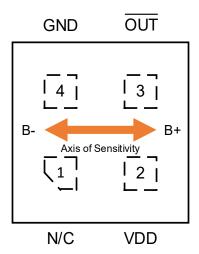


Figure 4. CT8131: 4-Lead LGA Package with Digital Output, Top View

Figure 5. CT8132: 4-Lead LGA Package with Digital Output, Top View

Pin Definitions

Pin#	CT8131	CT8132	Pin Description
1	OUT		Output Signal for Open Drain (Active LOW)
		N/C	N/C – No Connect
2	VDD	VDD	Supply Voltage
3	N/C	OUT	N/C – No Connect Output Signal for Push-pull (Active LOW)
4	GND	GND	Ground

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the CT813x. The CT813x products may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Crocus Technology does not recommend exceeding or designing to absolute maximum ratings.

Symbol	Parameter			Min.	Max.	Unit
V _{DD}	Supply Voltage			-0.3	6.0	V
V _{OUT_PP}	Push-pull Output (Active Lo	OW)		-0.3	V _{DD} + 0.3*	V
Vout_od	Open Drain Output (Active	LOW)		-0.3	6.0	V
V _{I/O}	Input/Output Pins Maximur	n Voltage		-0.3	V _{DD} + 0.3*	V
I _{IN} / I _{OUT}	Input and Output Current				±20.0	mA
В	Maximum External Magnet	tic Field	CT8132Sx		±60	Т
Вмах	@ T _A = +25°C		CT813xBx, CT8132DM, CT8132EK		±200	mT
	Electrostatic Discharge	Human B	ody Model (HBM) per JESD22-A114	±4.0		
ESD	Electrostatic Discharge Protection Level	Charged C101	Device Model (CDM) per JESD22-	0.5		kV
TJ	Junction Temperature		-40	+150	°C	
T _{STG}	Storage Temperature		-65	+150	°C	
TL	Lead Soldering Temperatu	ire, 10 Sec	onds		+260	°C

^{*}The lower of V_{DD} + 0.3 V or 6.0 V.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual operation of the CT813x. Recommended operating conditions are specified to ensure optimal performance to the specifications. Crocus Technology does not recommend exceeding or designing to absolute maximum ratings.

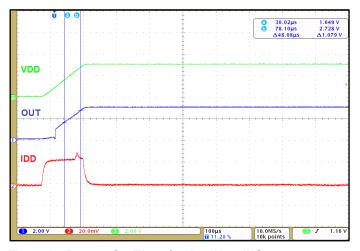
Symbol	Parameter		Min.	Тур.	Max.	Unit
V_{DD}	Supply Voltage Range		1.7	3.3	5.5	V
V _{OUT}	OUT Voltage Range		0		V_{DD}	V
Вор	Operating Magnetic Flux	CT8132Sx			±45	mT
Іоит	OUT Current				±3.0	mA
C _{BYP}	Bypass Capacitor			1.0		μF
т.	Operating Ambient Temperature	Industrial	-40	+25	+85	°C
T _A	Operating Ambient Temperature Extended Industrial		-40	+25	+125	

Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout and is determined in accordance to JEDEC standard JESD51 for a four (4) layer 2s2p FR-4 printed circuit board (PCB) with 2 oz. of copper (Cu). Special attention must be paid to not exceed junction temperature T_{J(MAX)} at a given ambient temperature T_A.

Symbol	Parameter	Min.	Тур.	Max.	Unit
θја	Junction-to-Ambient Thermal Resistance, SOT23-3		202		°C/W
θ JA	Junction-to-Ambient Thermal Resistance, LGA-4		165		°C/W

Electrical Specifications


General Parameters

Unless otherwise specified: V_{DD} = 1.7 V to 5.5 V, C_{BYP} = 1.0 μF and T_A = -40°C to +125°C. Typical values are V_{DD} = 3.3 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Push-pull	Output					
Vон	Output Voltage High OUT (1)	I _{OUT} = -2 mA	$0.9 \times V_{DD}$			V
V _{OL}	Output Voltage LOW OUT (1)	I _{OUT} = +2 mA			$0.1 \times V_{DD}$	V
Open Dra	in Output					
Vон	Output Voltage High (1)				5.5	V
V_{OL}	Output Voltage Low	I _{OUT} ≤ 20 mA	0		0.5	V
I _{LEAK}	High Output Leakage Current (1)	$V_{OH} = 5.5 \text{ V}, B_{OP} = 0$		20		рА
Timings						
ton	Power-On Time (1)	$V_{DD} \ge 1.7 \text{ V}$		50	75	μs
tactive	Active Mode Time (1)			2.6		μs
Protection	า					
V	Under Voltage Leekeut (1)	Rising V _{DD}		1.60	1.64	V
Vuvlo	Under-Voltage Lockout (1)	Falling V _{DD}	1.44	1.53		V
V _{UV_HYS}	UVLO Hysteresis (1)			70		mV

⁽¹⁾ Guaranteed by design and characterization; not tested in production.

Typical Timing Characteristics

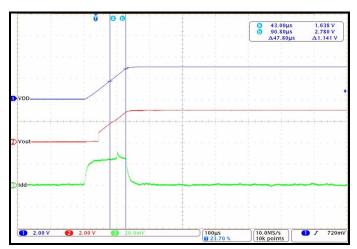


Figure 7. Power-On Time for Open Drain Output

CT8131BV Electrical & Magnetic Specifications

Unless otherwise specified: V_{DD} = 1.7 V to 5.5 V, C_{BYP} = 1.0 μF and T_A = -40°C to +125°C. Typical values are V_{DD} = 3.3 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{DD(AVG)}	Average Supply Current	t ≥ 10 s		140	900	nA
I _{DD(AVG)_1.8V}	Average Supply Current @ V _{DD} = 1.8 V	$t \ge 10 \text{ s}, V_{DD} = 1.8 \text{ V}$		110	900	nA
fs ₁	Sampling Frequency		1	2	4	Hz
t _{IDLE1}	Idle Mode Time	fs = 2 Hz	250	500	1000	ms
Вори	Operate Point, B-		+2.3	+3.0	+3.8	mT
Bops	Operate Point, B+		-3.8	-3.0	-2.3	mT
Brpn	Release Point, B-		+1.4	+2.0	+2.7	mT
B _{RPS}	Release Point, B+		-2.7	-2.0	-1.4	mT
Внуѕт	Hysteresis		0.5	1.0		mT

CT8132BH Electrical & Magnetic Specifications

Unless otherwise specified: V_{DD} = 1.7 V to 5.5 V, C_{BYP} = 1.0 μF and T_A = -40°C to +125°C. Typical values are V_{DD} = 3.3 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{DD(AVG)}	Average Supply Current	t ≥ 10 s		45	57	μΑ
IDD(AVG)_1.8V	Average Supply Current @ V _{DD} = 1.8 V	t ≥ 10 s, V _{DD} = 1.8 V		41	47	μΑ
fs	Sampling Frequency		6	10	14	kHz
t _{IDLE}	Idle Mode Time	f _S = 10 kHz	71	100	167	μs
Bopn	Operate Point, B-		+2.3	+3.0	+3.8	mT
B _{OPS}	Operate Point, B+		-3.8	-3.0	-2.3	mT
B _{RPN}	Release Point, B-		+1.4	+2.0	+2.7	mT
B _{RPS}	Release Point, B+		-2.7	-2.0	-1.4	mT
B _{HYST}	Hysteresis		0.5	1.0		mT

CT8132BL Electrical & Magnetic Specifications

Unless otherwise specified: V_{DD} = 1.7 V to 5.5 V, C_{BYP} = 1.0 μF and T_A = -40°C to +125°C. Typical values are V_{DD} = 3.3 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{DD(AVG)}	Average Supply Current	t ≥ 10 s		1.3	3.0	μΑ
I _{DD(AVG)_1.8V}	Average Supply Current @ V _{DD} = 1.8 V	$t \ge 10 \text{ s}, V_{DD} = 1.8 \text{ V}$		1.1	2.0	μΑ
fs	Sampling Frequency		150	250	350	Hz
tidle	Idle Mode Time	fs = 250 Hz	2.8	4.0	6.7	ms
B _{OPN}	Operate Point, B-		+2.3	+3.0	+3.8	mT
Bops	Operate Point, B+		-3.8	-3.0	-2.3	mT
Brpn	Release Point, B-		+1.4	+2.0	+2.7	mT
B _{RPS}	Release Point, B+		-2.7	-2.0	-1.4	mT
B _{HYST}	Hysteresis		0.5	1.0		mT

CT8132BV Electrical & Magnetic Specifications

Unless otherwise specified: V_{DD} = 1.7 V to 5.5 V, C_{BYP} = 1.0 μF and T_A = -40°C to +125°C. Typical values are V_{DD} = 3.3 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{DD(AVG)}	Average Supply Current	t ≥ 10 s		140	900	nA
I _{DD(AVG)_1.8V}	Average Supply Current @ V _{DD} = 1.8 V	$t \ge 10 \text{ s}, V_{DD} = 1.8 \text{ V}$		110	700	nA
fs	Sampling Frequency		1	2	4	Hz
t _{IDLE}	Idle Mode Time	fs = 2 Hz	250	500	1000	ms
Вори	Operate Point, B-		+2.3	+3.0	+3.8	mT
Bops	Operate Point, B+		-3.8	-3.0	-2.3	mT
B _{RPN}	Release Point, B-		+1.4	+2.0	+2.7	mT
B _{RPS}	Release Point, B+		-2.7	-2.0	-1.4	mT
Внуѕт	Hysteresis		0.5	1.0		mT

Typical Magnetic Characteristics for CT813xBV, CT8132BH and CT8132BL

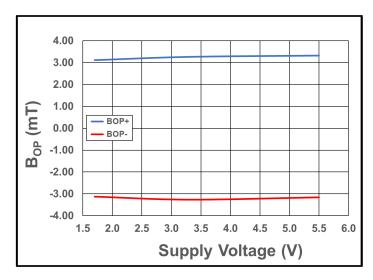


Figure 8. B_{OP-} (Red) and B_{OP+} (Blue) vs. Supply Voltage at $T_A = +25^{\circ}C$

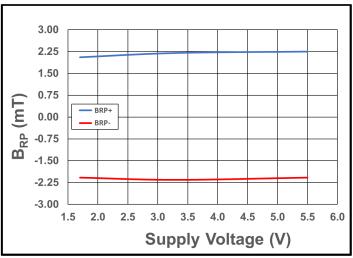


Figure 9. B_{RP} . (Red) and B_{RP+} (Blue) vs. Supply Voltage at $T_A = +25^{\circ}C$

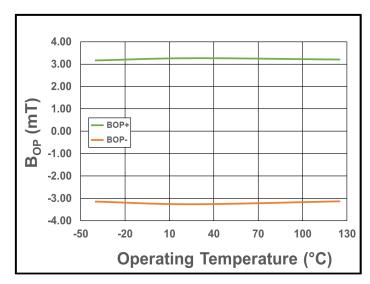


Figure 10. B_{OP} (Orange) and B_{OP} (Green) vs. Temperature at V_{DD} = 3.3 V

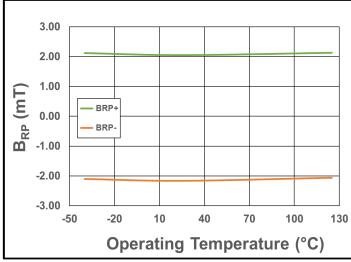
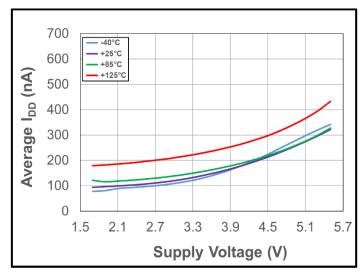



Figure 11. B_{RP-} (Orange) and B_{RP+} (Green) vs. Temperature at V_{DD} = 3.3 V

Typical Electrical Characteristics for CT813xBV

700 VDD = 2.7 V 600 VDD = 3.0 V Average Ipp (nA) - VDD = 3.3 V 500 - VDD = 3.6 V VDD = 5.0 V 400 300 200 100 0 -50 -20 10 70 40 100 130 160 Temperature (°C)

Figure 12. Average Supply Current vs. Supply Voltage vs. Temperature

Figure 13. Average Supply Current vs. Temperature vs. Supply Voltage

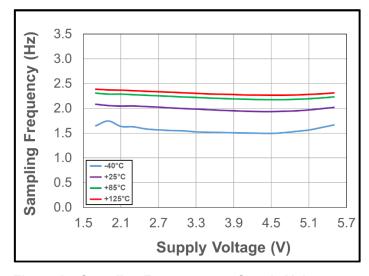
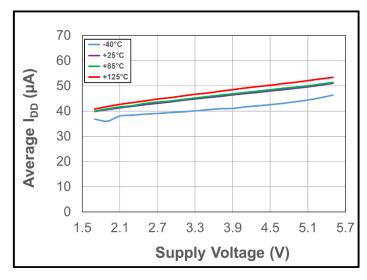



Figure 14. Sampling Frequency vs. Supply Voltage vs. Temperature

Typical Electrical Characteristics for CT8132BH

105 VDD = 2.7 V 90 VDD = 3.0 V Average I_{DD} (µA) - VDD = 3.3 V 75 - VDD = 3.6 V VDD = 5.0 V 60 45 30 15 0 -50 -20 10 40 70 100 130 160 Temperature (°C)

Figure 15. Average Supply Current vs. Supply Voltage vs. Temperature

Figure 16. Average Supply Current vs. Temperature vs. Supply Voltage

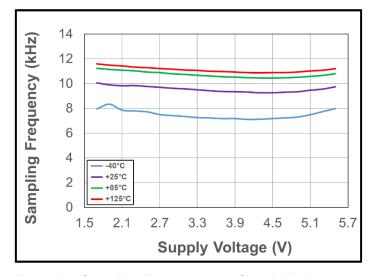


Figure 17. Sampling Frequency vs. Supply Voltage vs. Temperature

Typical Electrical Characteristics for CT8132BL

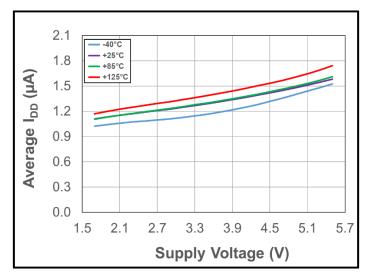


Figure 18. Average Supply Current vs. Supply Voltage vs. Temperature

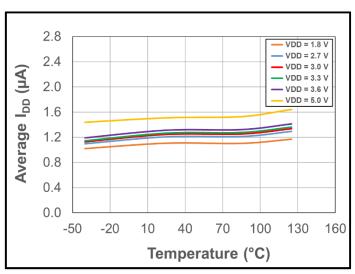
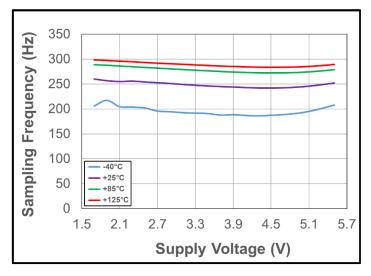
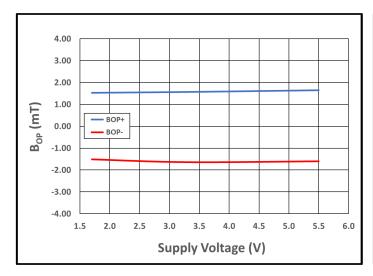


Figure 19. Average Supply Current vs. Temperature vs. Supply Voltage

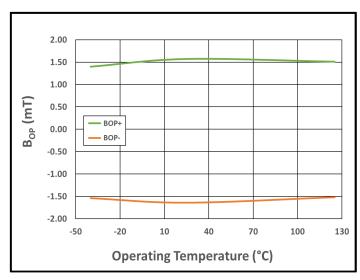


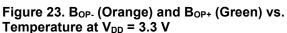

Figure 20. Sampling Frequency vs. Supply Voltage vs. Temperature

CT8132DM Electrical & Magnetic Specifications

Unless otherwise specified: V_{DD} = 1.7 V to 5.5 V, C_{BYP} = 1.0 μF and T_A = -40°C to +125°C. Typical values are V_{DD} = 3.3 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{DD(AVG)}	Average Supply Current	t ≥ 10 s		11.5	15.0	μA
IDD(AVG)_1.8V	Average Supply Current @ V _{DD} = 1.8 V	$t \ge 10 \text{ s}, V_{DD} = 1.8 \text{ V}$		10.5	12.0	μΑ
fs	Sampling Frequency		1.5	2.5	3.5	kHz
t _{IDLE}	Idle Mode Time	f _S = 2.5 kHz	285	400	667	μs
Вори	Operate Point, B-		+1.1	+1.5	+1.9	mT
Bops	Operate Point, B+		-1.9	-1.5	-1.1	mT
B _{RPN}	Release Point, B-		+0.6	+1.0	+1.4	mT
Brps	Release Point, B+		-1.4	-1.0	-0.6	mT
Внуѕт	Hysteresis		0.3	0.5		mT


Typical Magnetic Characteristics for CT8132DM



3.00 2.25 1.50 0.75 B_{RP} (mT) - BRP+ 0.00 -0.75 -1.50 -2.25 -3.00 1.5 2.0 2.5 3.5 4.0 4.5 5.0 5.5 6.0 Supply Voltage (V)

Figure 21. B_{OP-} (Red) and B_{OP+} (Blue) vs. Supply Voltage at T_A = +25°C

Figure 22. B_{RP-} (Red) and B_{RP+} (Blue) vs. Supply Voltage at T_A = +25°C

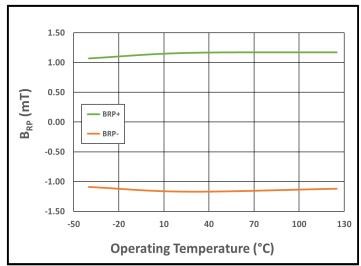
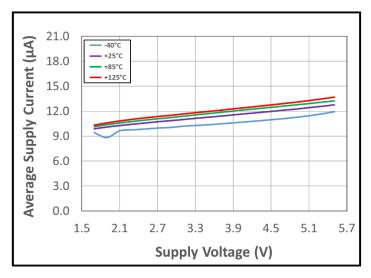



Figure 24. B_{RP-} (Orange) and B_{RP+} (Green) vs. Temperature at V_{DD} = 3.3 V

Typical Electrical Characteristics for CT8132DM

28.0 Average Supply Current (μΑ) VDD = 2.7 V 24.0 -VDD = 3.0 V -VDD = 3.3 V 20.0 -VDD = 3.6 V ---VDD = 5.0 V 16.0 12.0 8.0 4.0 0.0 -50 -20 10 40 70 100 130 160 Supply Voltage (V)

Figure 25. Average Supply Current vs. Supply Voltage vs. Temperature

Figure 26. Average Supply Current vs. Temperature vs. Supply Voltage

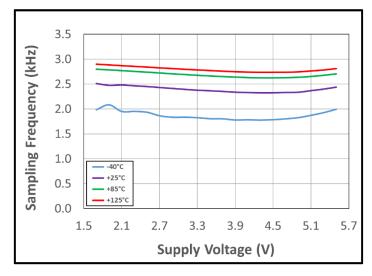


Figure 27. Sampling Frequency vs. Supply Voltage vs. Temperature

CT8132EK Electrical & Magnetic Specifications

Unless otherwise specified: V_{DD} = 1.7 V to 5.5 V, C_{BYP} = 1.0 μF and T_A = -40°C to +125°C. Typical values are V_{DD} = 3.3 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{DD(AVG)}	Average Supply Current	t ≥ 10 s		190	900	nA
IDD(AVG)_1.8V	Average Supply Current @ V _{DD} = 1.8 V	$t \ge 10 \text{ s}, V_{DD} = 1.8 \text{ V}$		145	700	nA
fs	Sampling Frequency		6	10	14	Hz
t _{IDLE}	Idle Mode Time	f _S = 10 Hz	71	100	166	ms
Вори	Operate Point, B-		+6.2	+7.0	+7.8	mT
Bops	Operate Point, B+		-7.8	-7.0	-6.2	mT
B _{RPN}	Release Point, B-		+4.2	+5.0	+6.0	mT
Brps	Release Point, B+		-6.0	-5.0	-4.2	mT
Внуѕт	Hysteresis		1.2	2.0		mT

Typical Magnetic Characteristics for CT8132EK

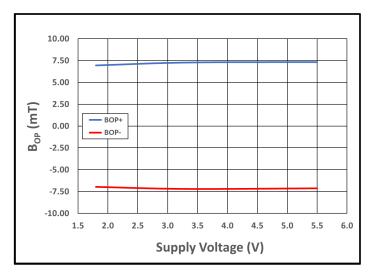


Figure 28. B_{OP} (Red) and B_{OP} (Blue) vs. Supply Voltage at $T_A = +25$ °C

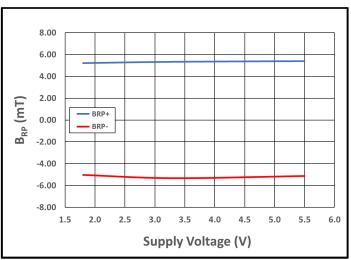


Figure 29. B_{RP} (Red) and B_{RP} (Blue) vs. Supply Voltage at T_A = +25°C

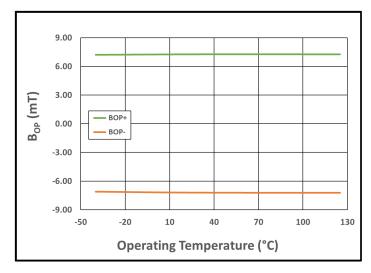


Figure 30. B_{OP} (Orange) and B_{OP} (Green) vs. Temperature at V_{DD} = 3.3 V

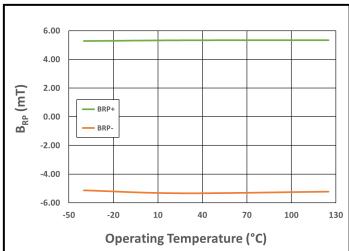
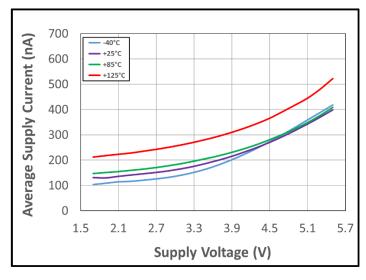



Figure 31. B_{RP-} (Orange) and B_{RP+} (Green) vs. Temperature at V_{DD} = 3.3 V

Typical Electrical Characteristics for CT8132EK

700 Average Supply Current (nA) -VDD = 1.8 V -VDD = 2.7 V 600 -VDD = 3.0 V -VDD = 3.3 V 500 -VDD = 3.6 V -VDD = 5.0 V 400 300 200 100 -50 -20 10 40 70 100 130 160 Temperature (°C)

Figure 32. Average Supply Current vs. Supply Voltage vs. Temperature

Figure 33. Average Supply Current vs. Temperature vs. Supply Voltage

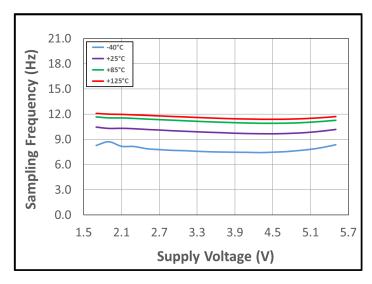


Figure 34. Sampling Frequency vs. Supply Voltage vs. Temperature

CT8132SK Electrical & Magnetic Specifications

Unless otherwise specified: V_{DD} = 1.7 V to 5.5 V, C_{BYP} = 1.0 μF and T_A = -40°C to +125°C. Typical values are V_{DD} = 3.3 V and T_A = +25°C.

Symbol	Parameter	Conditions		Тур.	Max.	Unit
I _{DD(AVG)}	Average Supply Current	t ≥ 10 s		190	900	nA
IDD(AVG)_1.8V	Average Supply Current @ V _{DD} = 1.8 V	$t \ge 10 \text{ s}, V_{DD} = 1.8 \text{ V}$		145	700	nA
fs	Sampling Frequency		6	10	14	Hz
t _{IDLE}	Idle Mode Time	f _S = 10 Hz	71	100	166	ms
Вори	Operate Point, B-		+0.7	+0.9	+1.2	mT
Bops	Operate Point, B+		-1.2	-0.9	-0.7	mT
B _{RPN}	Release Point, B-		+0.3	+0.5	+0.7	mT
B _{RPS}	Release Point, B+		-0.7	-0.5	-0.3	mT
Внуѕт	Hysteresis		0.3	0.4		mT

CT8132SL Electrical & Magnetic Specifications

Unless otherwise specified: V_{DD} = 1.7 V to 5.5 V, C_{BYP} = 1.0 μF and T_A = -40°C to +125°C. Typical values are V_{DD} = 3.3 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{DD(AVG)}	Average Supply Current	t ≥ 10 s		1.3	3.0	μA
I _{DD(AVG)_1.8V}	Average Supply Current @ V _{DD} = 1.8 V	$t \ge 10 \text{ s}, V_{DD} = 1.8 \text{ V}$		1.1	2.0	μΑ
fs	Sampling Frequency		150	250	350	Hz
t _{IDLE}	Idle Mode Time	fs = 250 Hz	2.8	4.0	6.7	ms
B _{OPN}	Operate Point, B-		+0.7	+0.9	+1.2	mT
Bops	Operate Point, B+		-1.2	-0.9	-0.7	mT
B _{RPN}	Release Point, B-		+0.3	+0.5	+0.7	mT
B _{RPS}	Release Point, B+		-0.7	-0.5	-0.3	mT
Внуѕт	Hysteresis		0.3	0.4		mT

Typical Magnetic Characteristics for CT8132SK and CT8132SL

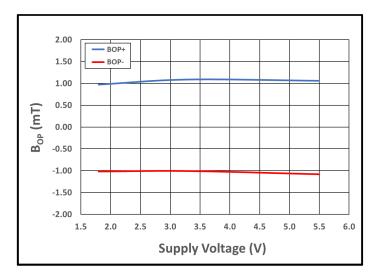


Figure 35. B_{OP} . (Red) and B_{OP} + (Blue) vs. Supply Voltage at $T_A = +25$ °C

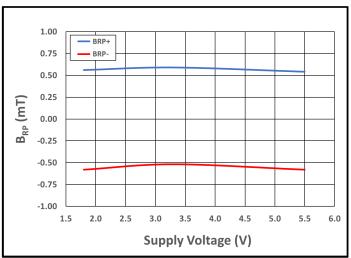


Figure 36. B_{RP-} (Red) and B_{RP+} (Blue) vs. Supply Voltage at $T_A = +25^{\circ}C$

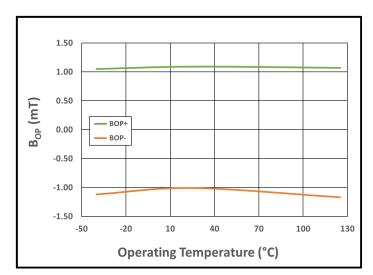


Figure 37. B_{OP} (Orange) and B_{OP+} (Green) vs. Temperature at V_{DD} = 3.3 V

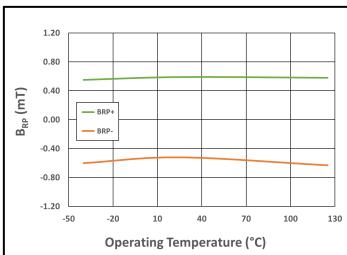
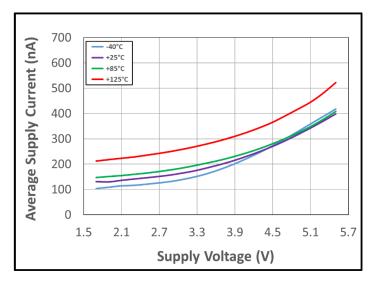



Figure 38. B_{RP-} (Orange) and B_{RP+} (Green) vs. Temperature at V_{DD} = 3.3 V

Typical Electrical Characteristics for CT8132SK

700 Average Supply Current (nA) -VDD = 1.8 V -VDD = 2.7 V 600 -VDD = 3.0 V -VDD = 3.3 V 500 -VDD = 3.6 V -VDD = 5.0 V 400 300 200 100 -50 -20 10 40 70 100 130 160 Temperature (°C)

Figure 39. Average Supply Current vs. Supply Voltage vs. Temperature

Figure 40. Average Supply Current vs. Temperature vs. Supply Voltage

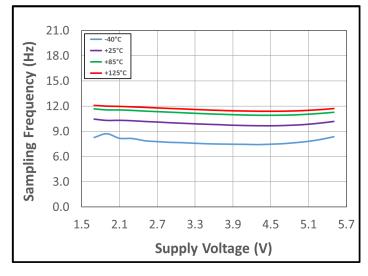


Figure 41. Sampling Frequency vs. Supply Voltage vs. Temperature

Typical Electrical Characteristics for CT8132SL

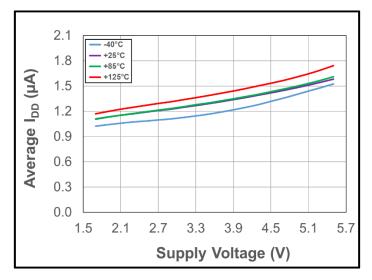


Figure 42. Average Supply Current vs. Supply Voltage vs. Temperature

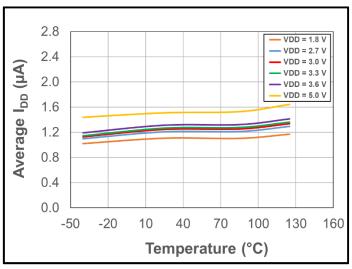


Figure 43. Average Supply Current vs. Temperature vs. Supply Voltage

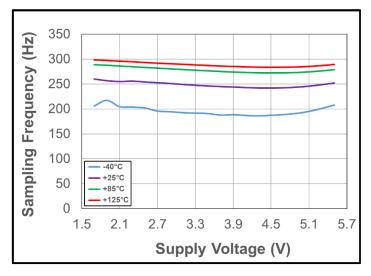


Figure 44. Sampling Frequency vs. Supply Voltage vs. Temperature

Circuit Description

Overview

The CT813x is a product family of omnipolar TMR magnetic latches that supports a wide operating voltage range of 1.7 V to 5.5 V and is capable of providing two (2) digital output configurations: open drain or push-pull. These omnipolar TMR digital latches are designed to consume a minimal amount of current which is ideal for battery-operated products. It also supports a wide range of sensitivity levels for various applications.

Under-Voltage Lockout (UVLO)

The Under-Voltage Lock-out protection circuitry of the CT813x is activated when the supply voltage (V_{DD}) falls below 1.53 V. The CT813x remains in a low quiescent state and the \overline{OUT} output is not valid until V_{DD} rises above the UVLO threshold (1.60 V).

Power-On Time (ton)

The Power-On Time (t_{ON}) of 50 µs is the amount of time required by the CT813x to start up, power-on and acquire the first sample. The chip is fully powered up and operational from the moment the supply voltage passes the rising UVLO point (1.60 V). This time includes the ramp up time and the settling time (within 10% of steady-state voltage under an applied magnetic field) after the power supply have reach the minimum V_{DD} .

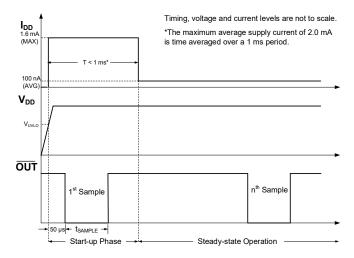


Figure 45. CT813x Power-On Timing Diagram

Omnipolar Magnetic Flux

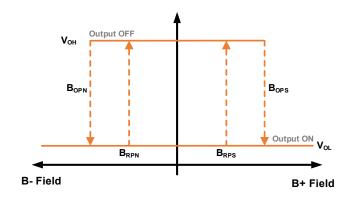


Figure 46. CT813x Output Behavior vs. Magnetic Field

Table 1. CT8131 Open Drain Output Behavior

Magnetic Field	Condition	Output	
Positive Field	B > B _{OPS}	Low (ON)	
	0 < B < B _{RPS}	High-Z (OFF)	
Negative Field	B < B _{OPN}	Low (ON)	
	0 > B > B _{RPN}	High-Z (OFF)	

Table 2. CT8132 Push-pull Output Behavior

Magnetic Field	Condition	Output
Positive Field	B > B _{OPS}	Low (ON)
	0 < B < B _{RPS}	High (OFF)
Negative Field	B < B _{OPN}	Low (ON)
	0 > B > B _{RPN}	High (OFF)

Applications Information

A decoupling capacitor, C_{BYP} , between the supply voltage (VDD) and ground (GND) is required to lower the noise going into the CT8131 as well as providing isolation from the other circuits. The decoupling capacitor should be placed close to the TMR digital latch. A typical capacitor value of 1.0 μ F (ceramic) will be sufficient. A pull-up resistor of 47 $k\Omega$ connected from the \overline{OUT} to the system voltage (V_{SYS}) is required for the CT8131.

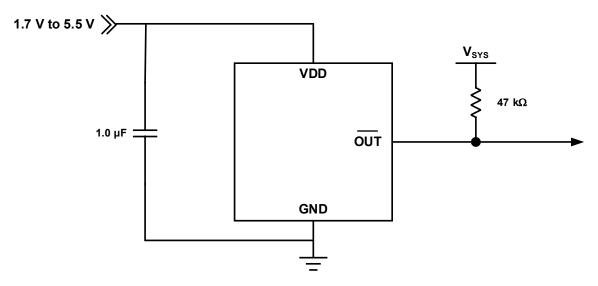


Figure 47. CT8131 Application Block Diagram

Similar to the CT8131, the CT8132 products require a 1.0 μ F (ceramic) bypass capacitor to be connected between the supply voltage and ground.

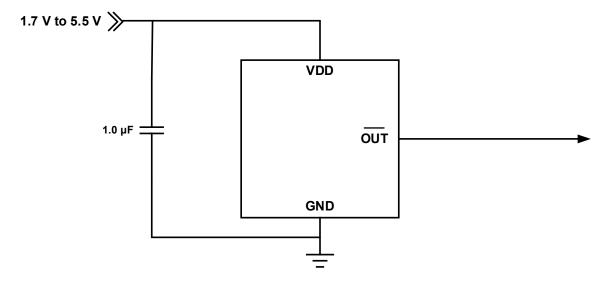
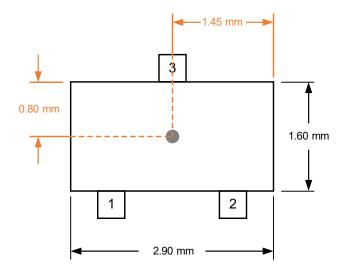



Figure 48. CT8132 Application Block Diagram

Applications Information

The XtremeSense TMR sensor location for the CT813x products are shown in Figure 49 and Figure 50. The dimensions shown in both figures are typical values.

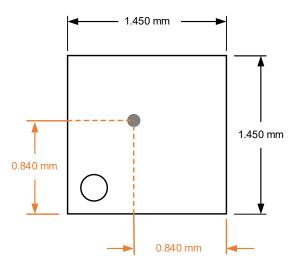
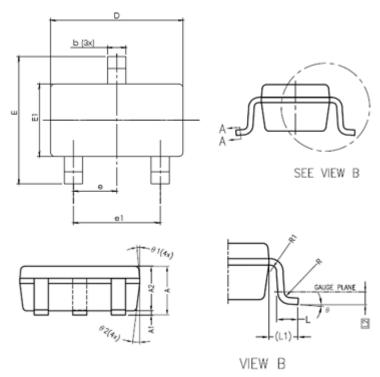
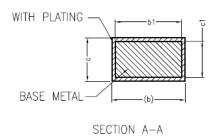



Figure 49. XtremeSense TMR Sensor Location for Figure 50. XtremeSense TMR Sensor Location for CT813x products in 3-lead SOT23 Package

CT813x products in 4-lead LGA Package

SOT23-3 Package Drawing and Dimensions



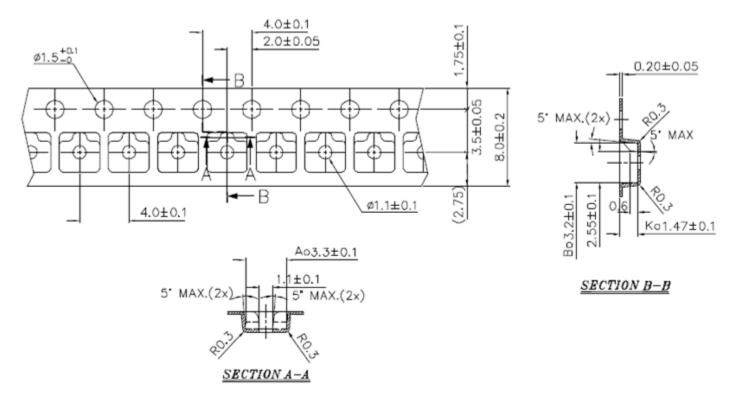
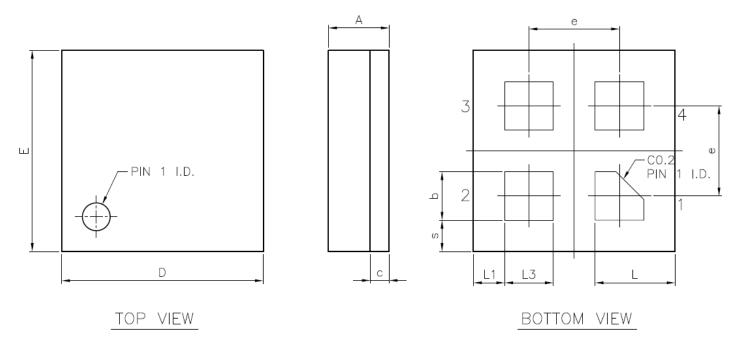

Figure 51. 3-Lead SOT23 Package Drawing

Table 3. CT813x 3-Lead SOT23 Package Dimensions

Cymbol	Dimensions in Millimeters (mm)							
Symbol	Min.	Тур.	Max.					
Α	1.05	1.20	1.35					
A1	0.00	0.10	0.15					
A2	1.00	1.10	1.20					
b	0.30	-	0.50					
b1	0.30	0.35	0.45					
С	0.08	-	0.22					
c1	0.08	0.13	0.20					
D	2.80	2.90	3.00					
E	2.60	2.80	3.00					
E1	1.50	1.60	1.70					
е		0.95 BSC						
e1		1.90 BSC						
L	0.35	0.43 0.60						
L1		0.50 REF						
L2		0.25 BSC						
R	0.10	=	-					
R1	0.10	-	0.25					
θ	0°	4°	8°					
θ1	5°	6°	15°					
θ2	5°	8°	15°					

Crocus Technology provides package drawings as a service to customers considering or planning to use Crocus products in their designs. Drawings may change without notice. Please note the revision and date of the data sheet and contact a Crocus Technology representative to verify or obtain the most recent version. The package specifications do not expand the terms of Crocus Technology's worldwide terms and conditions, specifically the warranty therein, which covers Crocus Technology's products.

SOT23 Tape & Pocket Drawing and Dimensions



NOTES:

- 1. Material: Conductive Polystyrene
- 2. Dimensions in mm.
- 3. 10 sprocket hole pitch cumulative tolerance ± 0.20 mm.
- 4. Camber bot to exceed 1 mm in 100 mm.
- 5. Pocket position relative to sprocket hole measured as true position of pocket and not pocket hole.
- 6. (S.R. Ω /sq) means surface electric resistivity of the carrier tape.

Figure 52. Tape and Pocket Drawing for SOT23 Package

LGA-4 Package Drawing and Dimensions

NOTES:

- 1. All dimensions are in millimeters.
- 2. Pin A1 ID is marked by ink or laser.

Figure 53. 4-Lead LGA Package Drawing

Table 4. CT813x 4-Lead LGA Package Dimensions

Symbol	Dimensions in Millimeters (mm)							
Syllibol	Min.	Typ.	Max.					
Α	0.386	0.436	0.486					
b	0.300	0.350	0.400					
С	-	0.136 REF	-					
D	1.400	1.450	1.500					
E	1.400	1.450	1.500					
е	•	0.650	-					
L	0.525	0.575	0.625					
L1	0.175	0.225	0.275					
L3	0.300	0.350	0.400					
S	0.175	0.225	0.275					

Crocus Technology provides package drawings as a service to customers considering or planning to use Crocus products in their designs. Drawings may change without notice. Please note the revision and date of the data sheet and contact a Crocus Technology representative to verify or obtain the most recent version. The package specifications do not expand the terms of Crocus Technology's worldwide terms and conditions, specifically the warranty therein, which covers Crocus Technology's products.

LGA-4 Tape & Pocket Drawing and Dimensions

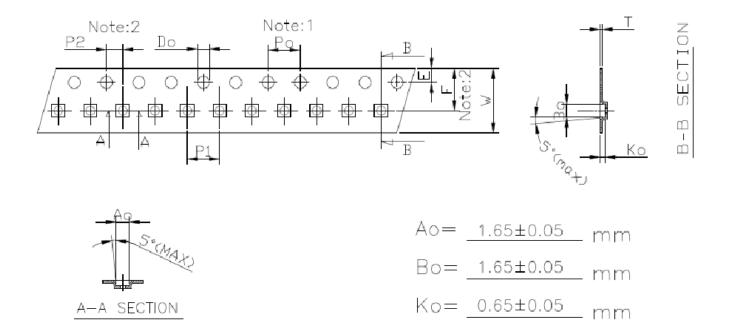


Figure 54. Tape and Pocket Drawing for LGA-4 Package

Table 5. LGA-4 Tape and Pocket Dimensions

Symbol	Specification
Po	4.00 mm ± 0.10 mm
P1	4.00 mm ± 0.10 mm
P2	2.00 mm ± 0.05 mm
Do	1.50 mm ± 0.10 mm
D1	1.10 mm ± 0.05 mm
E	1.75 mm ± 0.10 mm
F	$3.50~\text{mm}\pm0.05~\text{mm}$
10Po	40.00 mm ± 0.10 mm
W	8.00 mm ± 0.20 mm
T	$0.25~\text{mm} \pm 0.02~\text{mm}$

Notes:

- 1. 10 Sprocket hole pitch cumulative tolerance is ± 0.10 mm.
- 2. Pocket position is relative to sprocket hole measured as true position of pocket and not pocket hole.
- 3. Ao and Bo measured on a place of 0.3 mm above the bottom of the pocket to top surface of the carrier.
- 4. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 5. Carrier camber shall not more than 1 mm per 100 mm through a length of 250 mm.

Package Information

Table 6. CT813x Package Information

Part Number	Package Type	# of Leads	Package Quantity	Lead Finish	Eco Plan (1)	MSL Rating (2)	Operating Temperature ⁽³⁾	Device Marking
CT8131BV-IL4	LGA	4	3,000	Sn	Green & RoHS	3	-40°C to +85°C	L YZ
CT8131BV-HL4	LGA	4	3,000	Sn	Green & RoHS	3	-40°C to +125°C	L YZ
CT8131BV-IS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	JD YWWS
CT8131BV-HS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	JD YWWS
CT8132BH-IL4	LGA	4	3,000	Sn	Green & RoHS	3	-40°C to +85°C	YZ
CT8132BH-HL4	LGA	4	3,000	Sn	Green & RoHS	3	-40°C to +125°C	YZ
CT8132BH-IS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	MG YWWS
CT8132BH-HS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	MG YWWS
CT8132BL-IS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	MB YWWS
CT8132BL-HS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	MB YWWS
CT8132BV-IL4	LGA	4	3,000	Sn	Green & RoHS	3	-40°C to +85°C	M YZ
CT8132BV-HL4	LGA	4	3,000	Sn	Green & RoHS	3	-40°C to +125°C	M YZ
CT8132BV-IS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	MA YWWS
CT8132BV-HS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	MA YWWS
CT8132DM-IS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	MD YWWS
CT8132DM-HS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	MD YWWS
CT8132EK-IS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	MF YWWS
CT8132EK-HS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	MF YWWS
CT8132SK-IL4	LGA	4	3,000	Au	Green & RoHS	3	-40°C to +85°C	P YZ
CT8132SK-HL4	LGA	4	3,000	Au	Green & RoHS	3	-40°C to +125°C	P YZ
CT8132SK-IS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	MC YWWS
CT8132SK-HS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	MC YWWS
CT8132SL-IS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	ME YWWS
CT8132SL-HS3	SOT23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	ME YWWS

⁽¹⁾ RoHS is defined as semiconductor products that are compliant to the current EU RoHS requirements. It also will meet the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Green is defined as the content of Chlorine (CI), Bromine (Br) and Antimony Trioxide based flame retardants satisfy JS709B low halogen requirements of ≤ 1,000 ppm.

⁽²⁾ MSL Rating = Moisture Sensitivity Level Rating as defined by JEDEC standard classifications.

⁽³⁾ Package will withstand ambient temperature range of -40°C to +150°C and storage temperature range of -65°C to +150°C.

⁽⁴⁾ Device Marking for SOT23 is defined as XZ YWWS where XZ = part number, Y = year, WW = work week and S = sequential number. LGA is defined as X where X = part number and YZ = date code information.

Disclaimer: The contents of this document are provided for informational purposes only. CROCUS TECHNOLOGY, INC. AND CROCUS TECHNOLOGY SA (COLLECTIVELY "CROCUS") MAKE NO REPRESENTATIONS OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Crocus reserves the right to make changes to the specifications and product descriptions, and/or to discontinue or make changes to its products at any time without notice. Crocus's products have not been designed, tested, or manufactured for use and should not be used in applications where the failure, malfunction or inaccuracy of the Products carries a risk of death or serious bodily injury or damage to tangible property, including, but not limited to, life support systems, nuclear facilities, military, aircraft navigation or communication, emergency systems, harsh environments, or other applications with a similar degree of potential hazard.

Product Status Definition

Data Sheet Identification Product Status		Definition			
Objective	Proposed New Product Idea or In Development	Data sheet contains design target specifications and are subject to change without notice at any time.			
Preliminary	First Production	Data sheet contains preliminary specifications obtained by measurements of early samples. Follow-on data will be published at a later date as more test data is acquired. Crocus reserves the right to make changes to the data sheet at any time.			
None	Full Production	Data sheet contains final specifications for all parameters. Crocus reserves the right to make changes to the data sheet at any time.			
Obsolete	Not in Production	Data sheet for a product that is no longer in production at Crocus. It is for reference only.			