

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Product Description

The CT811 and CT812 are integrated unipolar magnetic latches that are designed for consumer and industrial switching applications. It is based on Crocus Technology's patented Magnetic Logic Unit™ (MLU™) technology with integrated CMOS process to provide a monolithic solution for superior sensing performance.

This unipolar magnetic latch features an industry leading low power consumption as low as 230 nA. It is capable of handling large air gap applications with low magnetic fields down to 1.5 mT with best in class high frequency performance. For design flexibility, the CT811 and CT812 are offered in active-low open drain and push-pull configurations respectively. These latches are available in a 3-lead TO-92S package and a low profile yet small form factor 3-lead SOT-23 package, providing cost effective and space-saving solutions for high volume manufacturing.

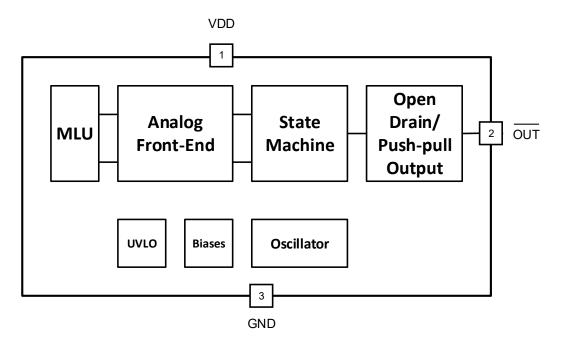
SOT-23 Package

TO-92S Package

Features and Benefits

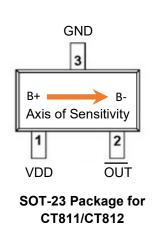
- High sensitivity, B_{OP} as low as 1.5 mT
- Resistant to mechanical stress
- Ultra-low power consumption as low as 230 nA
- Digital CMOS push-pull and open drain options
- Low profile and small form factor packaging
- RoHS Compliant

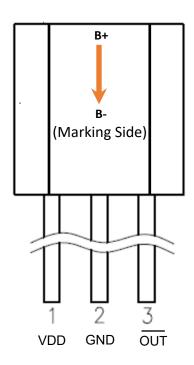
Application Examples


- IoT devices
- Smartphones, tablets, and laptops
- Door or lid closure detection
- Reed switch replacement
- Motor controllers
- Proximity detection
- Power switch or open-close detection
- Tamper-proofing for utility meters
- Fluid level detection

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Figure 1: CT81x Block Diagram


CT81x (SOT23 Package) Block Diagram



Digital Unipolar TMR Latch for Consumer & Industrial Applications

Figure 2: Package Pin-out with Axis of Sensitivity Diagrams

TO-92S Package for CT811/CT812

Table 1: Pin-out Information

Pin # for SOT23 Package	Pin # of TO-92S Package	Pin Name	Pin Description
1	1	VDD	Supply Voltage
2	3	OUT	Output Signal (Active LOW).
3	2	GND	Ground

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Table 2: Absolute Maximum Ratings

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{DD}	-0.3	4.0	V
Push-pull Output (Active LOW)	V _{OUT_PP}	-0.3	V _{DD} + 0.3	V
Open Drain Output Voltage (Active LOW)	V _{OUT_OD}	-0.3	5.5	V
Input and Output Current	I _{IN} / I _{OUT}	-10	+10	mA
Junction temperature	TJ	-40	+125	°C
Storage temperature	T _{STG}	-65	+150	°C
Soldering temperature	T _{SOL}		+260	°C
ESD Level, Human Body Model per JESD22-A114	V _{ESD_HBM}	±4.0		kV

Table 3: Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for the actual device operation. Recommended operating conditions are specified to ensure optimal performance to the data sheet specifications. Crocus Technology does not recommend exceeding them or designing to absolute maximum ratings.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	V_{DD}		2.7	3.0	3.6	V
Output Voltage	V _{OUT}				3.6	V
Operating Magnetic Flux	В				12	mT
Ambient Temperature		SOT23 Package	-40	+25	+125	°C
Ambient Temperature	T _A	TO-92S Package	-40	+25	+85	°C

Table 4: Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout and is determined in accordance to JEDEC standard JESD51 for a four (4) layer 2s2p FR-4 printed circuit board (PCB). Special attention must be paid not to exceed junction temperature $T_{J(MAX)}$ at a given ambient temperature.

Parameter	Symbol	Min	Тур	Max	Unit
Junction-to-Ambient Thermal Resistance for SOT23 Package	$\theta_{JA(SOT23)}$		202		°C/W
Junction-to-Ambient Thermal Resistance for TO-932S Package	θ _{JA(TO-92S)}		160		°C/W

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Table 5: Electrical Characteristics for CT81x

Unless otherwise specified: V_{DD} = 2.7 V to 3.6 V, T_A = -40°C to +125°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Power-On Time	t _{ON}	V _{DD} > 2.7 V		500		μs
Under-voltage Lockout Threshold, Rising V _{DD}	V _{UVLO_RISE}	Rising V _{DD}		2.20	2.60	V
Under-voltage Lockout Threshold, Falling V _{DD}	V _{UVLO_FALL}	Falling V _{DD}	1.90	2.15		V
Under-voltage Lockout Hysteresis	V _{UV_HYST}			50		mV
Push-Pull Output						
Output Voltage High OUT	V _{OH}	I _{OUT} = -2 mA	$0.9 \times V_{DD}$			V
Output Voltage Low OUT	V _{OL}	I _{OUT} = +2 mA			$0.1 \times V_{DD}$	V
Current for OUT	I _{OUT}			±2		mA
Open Drain Output						
High Level Output Voltage	V _{OH}				5.5	V
Low Level Output Voltage	V _{OL}	I _{OUT} ≤ 20 mA	0		0.5	V
High Impedance Output Leakage Current ⁽¹⁾	I _{LEAK}	V _{OH} = 5.5 V, B = 0		20		рА

⁽¹⁾ Guaranteed by design and bench characterization.

Typical Timing Characteristics for CT81x

 V_{DD} = 3.0 V and T_A = +25°C, C_{DD} = 1.0 μF (unless otherwise specified).

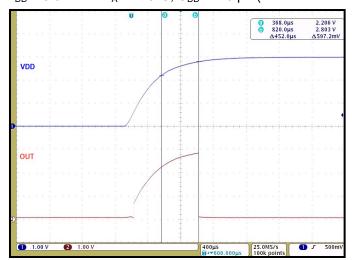
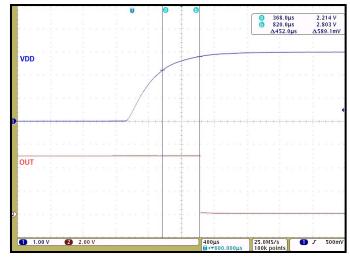



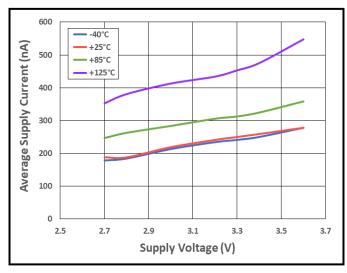
Figure 3. Power-On Time for Push-pull Output (V_{DD} and \overline{OUT})

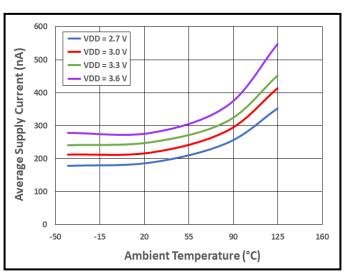
Figure 4. Power-On Time for Open Drain Output (V_{DD} and \overline{OUT})

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Table 6: Electrical & Magnetic Characteristics for CT811DK & CT812DK

Unless otherwise specified: V_{DD} = 2.7 V to 3.6 V, T_A = -40°C to +125°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Average Supply Current	I _{DD(AVG)}	t = 10 s		230	700	nA
Sampling Frequency	f _S		6	10	14	Hz
Active Mode Time	t _{ACT}			1.4		μs
Idle Mode Time	t _{IDLE}		71	100	167	ms
Operate Point	B _{OP}		1.3	1.5	1.8	mT
Release point	B _{RP}		0.8	1.0	1.3	mT
Hysteresis	B _{HYST}	B _{HYST} = B _{OP} - B _{RP}	0.3	0.5		mT


Digital Unipolar TMR Latch for Consumer & Industrial Applications

Typical Electrical Characteristics for CT811DK

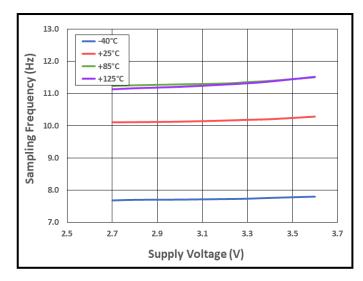

 V_{DD} = 3.0 V and T_A = +25°C, C_{DD} = 1.0 μF (unless otherwise specified).

Figure 5. Average Supply Current vs. Supply Voltage vs. Temperature

Figure 6. Average Supply Current vs. Temperature vs. Supply Voltage

Figure 7. Sampling Frequency vs. Supply Voltage vs. Temperature

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Typical Magnetic Characteristics for CT811DK

 V_{DD} = 3.0 V and T_A = +25°C, C_{DD} = 1.0 μF (unless otherwise specified).

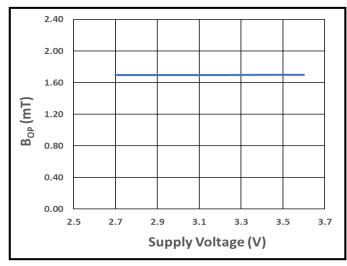


Figure 8. B_{OP} vs. Supply Voltage at +25°C

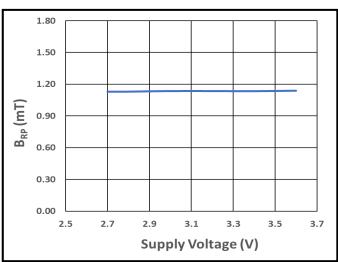
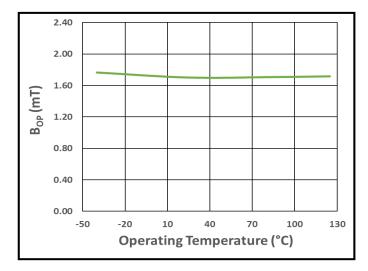
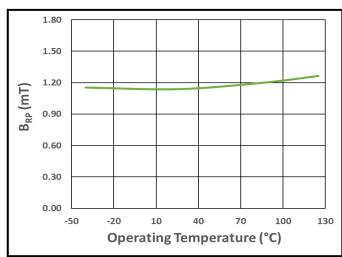




Figure 9. B_{RP} vs. Supply Voltage at +25°C

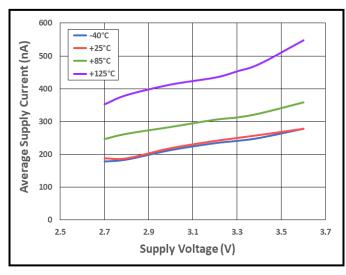
Figure 10. B_{OP} vs. Operating Temperature at V_{DD} = 3.0 V

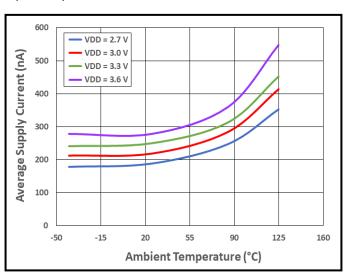
Figure 11. B_{RP} vs. Operating Temperature at V_{DD} = 3.0 V

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Table 7: Electrical & Magnetic Characteristics for CT811BK & CT812BK

Unless otherwise specified: V_{DD} = 2.7 V to 3.6 V, T_A = -40°C to +125°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Average Supply Current	I _{DD(AVG)}	t = 10 s		230	700	nA
Sampling Frequency	f _S		6	10	14	Hz
Active Mode Time	t _{ACT}			1.4		μs
Idle Mode Time	t _{IDLE}		71	100	167	ms
Operate Point	B _{OP}		2.7	3.0	3.8	mT
Release point	B _{RP}		1.8	2.0	2.7	mT
Hysteresis	B _{HYST}	B _{HYST} = B _{OP} - B _{RP}	0.5	1.0		mT


Digital Unipolar TMR Latch for Consumer & Industrial Applications

Typical Electrical Characteristics for CT811BK & CT812BK

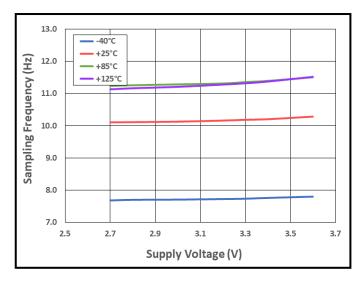

 V_{DD} = 3.0 V and T_A = +25°C, C_{DD} = 1.0 μF (unless otherwise specified).

Figure 12. Average Supply Current vs. Supply Voltage vs. Temperature

Figure 13. Average Supply Current vs. Temperature vs. Supply Voltage

Figure 14. Sampling Frequency vs. Supply Voltage vs. Temperature

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Typical Magnetic Characteristics for CT811BK & CT812BK

 V_{DD} = 3.0 V and T_A = +25°C, C_{DD} = 1.0 μF (unless otherwise specified).

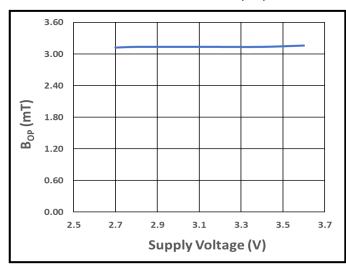


Figure 15. B_{OP} vs. Supply Voltage at +25°C

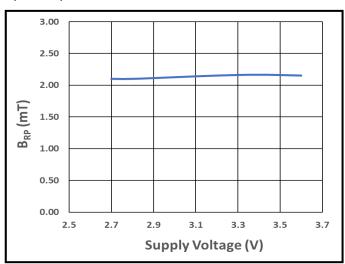
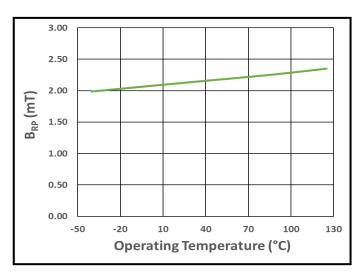



Figure 16. B_{RP} vs. Supply Voltage at +25°C

Figure 17. B_{OP} vs. Operating Temperature at V_{DD} = 3.0 V

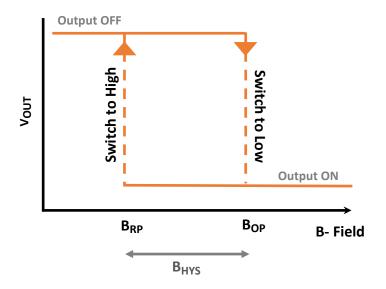


Figure 18. B_{RP} vs. Operating Temperature at V_{DD} = 3.0 V

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Figure 19: Unipolar Magnetic Flux

Output Behavior versus Magnetic Field

Characteristic	Conditions	Output
Positive Field	B > B _{OP}	High-Z (OFF)
Null or Weak Magnetic Field	B < B _{RP}	High-Z (OFF)
Negative Field	B > B _{OP}	Low (ON)

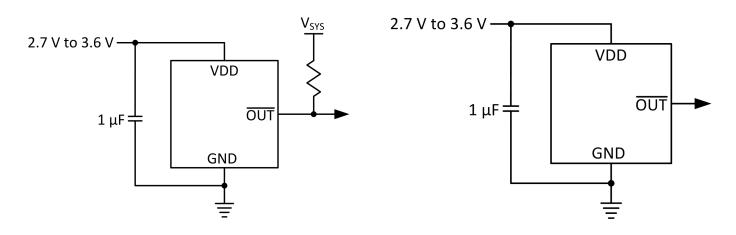
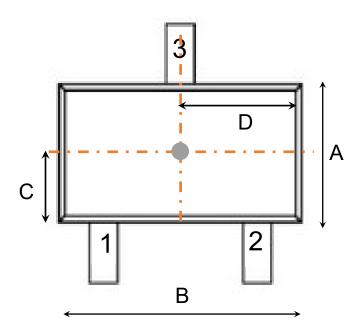

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Figure 20: Application Circuits

A decoupling capacitor (C_{DD}) between the supply voltage and ground is required with placement close to the magnetic switch. A typical capacitor value of 1.0 μ F (Ceramic) will suffice. For the open drain output, maximum V_{SYS} should not exceed 5.5 V.

CT811DK & CT811BK Open Drain Output


CT812BK Digital Output

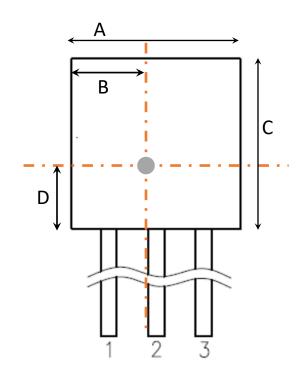

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Figure 21: MLU Sensor Location

SOT23 Package

TO-92S Package

Symbols	Nominal Dimensions (mm)
А	4.52
В	1.90
С	4.57
D	1.30

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Table 8: Order Guide

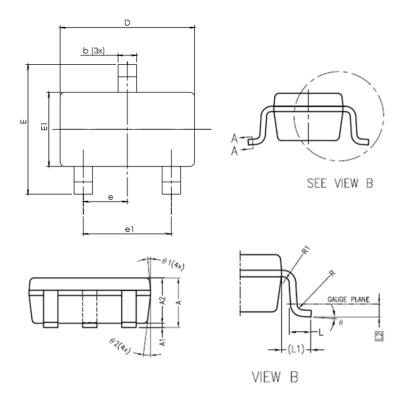
Part Number	Polarity	Output Type	B _{OP}	B_RP	I _{DD(AVG)}	Switching Frequency	Description
CT811BK-IT3	Unipolar	Open Drain	3.0 mT	2.0 mT	230 nA	10 Hz	Unipolar magnetic latch TO-92S Package, Tape & Reel packaging
CT811DK-HS3	Unipolar	Open Drain	1.5 mT	1.0 mT	230 nA	10 Hz	Unipolar magnetic latch SOT-23 Package, Tape & Reel packaging
CT812BK-HS3	Unipolar	Push-pull	3.0 mT	2.0 mT	230 nA	10 Hz	Unipolar magnetic latch SOT-23 Package, Tape & Reel packaging
CT812BK-IT3							Unipolar magnetic latch TO-92S Package, Tape & Reel packaging
CT812DK-IS3	Unipolar	Push-pull	1.5 mT	1.0 mT	230 nA	10 Hz	Unipolar magnetic latch SOT-23 Package, Tape & Reel packaging

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Table 9. Packaging Information

Orderable Part Number	Package Type	Pins	Package Quantity	Lead Finish	Eco Plan ⁽¹⁾	MSL Rating ⁽²⁾	Operating Temperature ⁽⁴⁾	Device Marking ⁽³⁾
CT811BK-IT3	TO-92S	3	1,000	Sn	Green & RoHS	N/A	-40°C to +85°C	EH YWWZ
CT811DK-HS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	EG YWWS
CT811DK-IS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	EG YWWS
CT812BK-HS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	DH YWWS
CT812BK-IS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	DH YWWS
CT812BK-IT3	TO-92S	3	1,000	Sn	Green & RoHS	N/A	-40°C to +85°C	DH YWWZ
CT812DK-IS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	DG YWWS

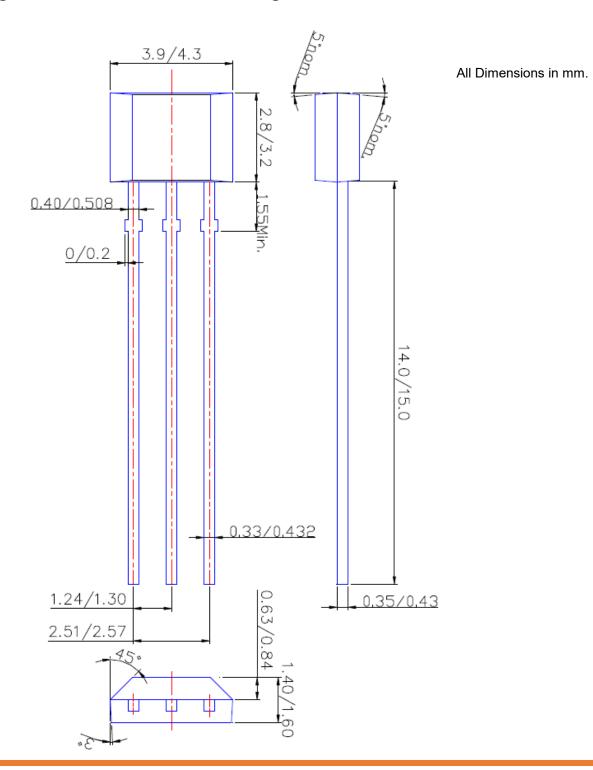
⁽¹⁾ RoHS is defined as semiconductor products that are compliant to the current EU RoHS requirements. It also will meet the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Green is defined as the content of Chlorine (CI), Bromine (Br) and Antimony Trioxide based flame retardants satisfy JS709B low halogen requirements of ≤ 1,000 ppm.


⁽²⁾ MSL Rating = Moisture Sensitivity Level Rating as defined by JEDEC industry standard classifications.

⁽³⁾ Device Marking for SOT23 is defined as Ex (or Dx) YWWS where Ex = part number, Y = year, WW = work week and S = sequential number. Device Marking for TO-92S is defined as Ex (or Dx) YWWZ where Ex = part number, Y = year, WW = work week and Z = sequential number.

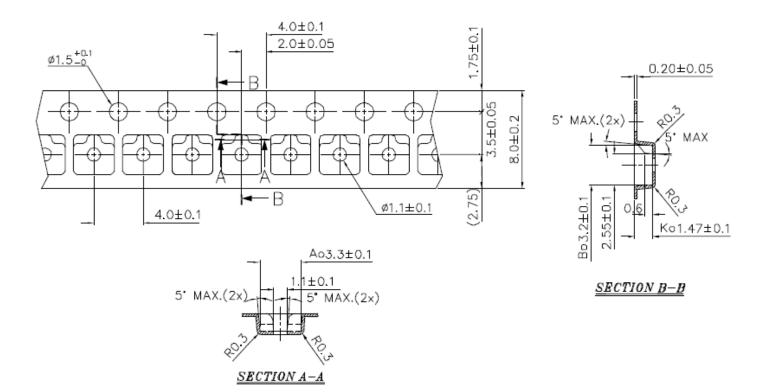
Digital Unipolar TMR Latch for Consumer & Industrial Applications

Figure 22: 3-Lead SOT-23 Package Dimensions



		DIMENS	SIONS IN MILL	IMETERS		
	SYMBOLS	MIN	NOM	MAX		
	A	1.05	1.20	1.35		
Δ	A1	0.00	0.10	0.15		
	A2	1.00	1.10	1.20		
	b	0.30		0.50		
	b1	0.30	0.35	0.45		
	С	0.08		0.22		
	c1	0.08	0.13	0.20		
	D	2.80	2.90	3.00		
	Ε	2.60	2.80	3.00		
	E1	1.50	1.60	1.70		
	е		0.95 BSC	:		
	e1		1.90 BSC			
	L	0.35	0.43	0.60		
	L1		0.60 REF			
	L2		0.25 BSC.			
	R	0.10				
	R1	0.10		0.25		
	0	0.	4.	8.		
	01	5*	6*	15*		
	θ2	5*	8.	15"		

Digital Unipolar TMR Latch for Consumer & Industrial Applications


Figure 23: 3-Lead TO-92S Package Dimensions

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Figure 24: Tape & Pocket Dimensions for SOT23 Package

Notes:

- 1. Material: Conductive Polystyrene
- 2. Dimensions in mm.
- 3. 10 sprocket hole pitch cumulative tolerance ±0.2.
- 4. Camber not to exceed 1 mm in 100 mm.
- 5. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.
- 6. (S.R. Ω /sq) means surface electric resistivity of the carrier tape.

Digital Unipolar TMR Latch for Consumer & Industrial Applications

Disclaimer: The contents of this document are provided for informational purposes only. CROCUS TECHNOLOGY, INC. AND CROCUS TECHNOLOGY SA (COLLECTIVELY "CROCUS") MAKE NO REPRESENTATIONS OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Crocus reserves the right to make changes to the specifications and product descriptions, and/or to discontinue or make changes to its products at any time without notice. Crocus's products have not been designed, tested, or manufactured for use and should not be used in applications where the failure, malfunction or inaccuracy of the Products carries a risk of death or serious bodily injury or damage to tangible property, including, but not limited to, life support systems, nuclear facilities, military, aircraft navigation or communication, emergency systems, harsh environments, or other applications with a similar degree of potential hazard.

© 2018 Crocus Technology, Inc. and Crocus Technology SA. All rights reserved. Crocus Technology, Intelligence in Sensing, MLU, and combinations thereof are trademarks of Crocus Technology, Inc. and Crocus Technology SA.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:

Click to view products by Crocus manufacturer:

Other Similar products are found below:

ACHS-7194-500E ACHS-7193-500E ACHS-7193-000E ACHS-7194-000E G-MRCO-017 A1104LUA-T HGPRDT005A AH1808-P-A
AH277AZ4-AG1 AH373-WG-7 AV-10379 AV-10448 A1211LUA-T SS41C AH1803-WG-7 AH1804-FA-7 AH1806-P-B AH1894-Z-7
MA700GQ-P ATS601LSGTN-HT-WU4-T ATS601LSGTN-LT-WU4-T TLE4917 TLE4946-1L 50017859-003 TY-13101 TLE4976L
AH1751-WG-7-A SS85CA BU52002GUL-E2 MAX13366GTE/V+ A1128LUA-T AH173-WG-7-B MA702GQ-P BU52003GUL-E2
AH277AZ4-BG1 TLE49614MXTSA1 AH3376-P-B TLE4941 AH3382-P-B AH3372-W-7 AH9250-W-7 AH211Z4-AG1 AH9251-W-7
AH3373-W-7 AH3377-W-7 AH3360-FT4-7 AH3376-W-7 TLE4961-3M AS5601-ASOT TLE4941-1