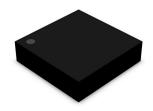


Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications


Product Description

The CT83x Series of integrated omnipolar magnetic latches and analog sensor are designed for consumer and industrial switching applications. It is based on Crocus Technology's patented Magnetic Logic Unit[™] (MLU[™]) technology with integrated CMOS process to provide a monolithic solution for superior sensing performance.

This series of magnetic latches feature an industry leading low power consumption as low as 200 nA. They are capable of handling large air gap applications with low magnetic fields down to 0.9 mT with best in class high frequency performance. The CT83x is offered in active-low push-pull CMOS and open drain configuration for design flexibility. The latches are available in a low profile and small form factor 4-lead LGA and 3-lead SOT-23 packages, providing cost effective and space-saving solutions for high volume manufacturing. Please contact factory for custom solutions.

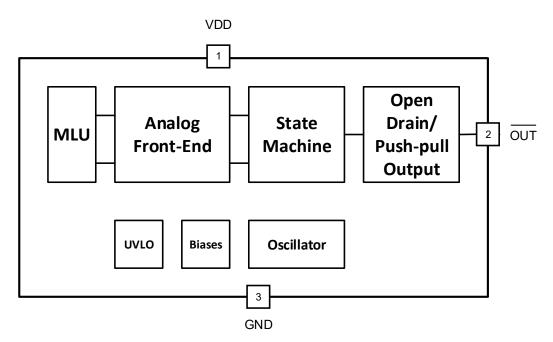
SOT-23 Package

1.40 x 1.40 x 0.44 mm LGA

Features and Benefits

- High sensitivity, B_{OP} as low as 0.9 mT
- Resistant to mechanical stress
- Ultra-low power consumption as low as 200 nA
- Digital CMOS push-pull and open drain options
- Low profile and small form factor packaging
- RoHS Compliant

Application Examples


- IoT devices
- Smartphones, tablets, and laptops
- Door or lid closure detection
- Reed switch replacement
- Motor controllers
- Proximity detection
- Power switch or open-close detection
- Tamper-proofing for utility meters
- Fluid level detection

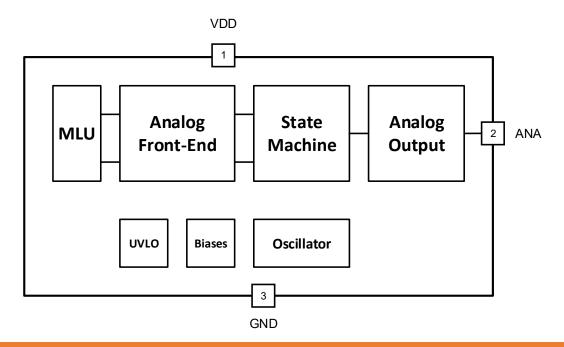
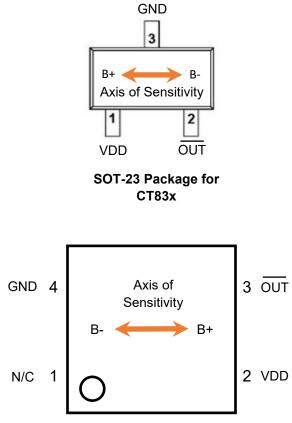

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

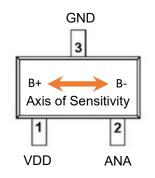
Figure 1: CT83x Block Diagrams

CT83x (SOT23 Package) Block Diagram

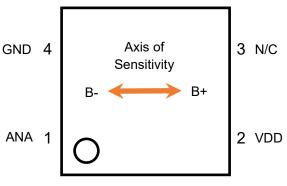
CT834 (SOT23 Package) Block Diagram


2018 Crocus Technology

Document Number CT83x Series Datasheet Rev 1.0



Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications


Figure 2: Package Pin-out with Axis of Sensitivity Diagrams

LGA Package for CT832

SOT-23 Package for CT834DR-IS3

LGA Package for CT834DR-IL1

Table 1: Pin-out Information

Pin # for SOT23 Package CT831/2/4	Pin # for LGA Package CT832BV, CT834	Pin Name	Pin Description
1	2	VDD	Supply Voltage
2	3	OUT ANA N/C	Output Signal (Active LOW) for CT83x. Analog Output for CT834 in SOT23 Package No Connect for CT834 in LGA Package.
3	4	GND	Ground
-	1	ANA (or N/C)	Analog Output for CT834. No Connect for CT832.

2018 Crocus Technology

Document Number CT83x Series Datasheet Rev 1.0

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Table 2: Absolute Maximum Ratings

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{DD}	-0.3	4.0	V
Push-pull Output (Active LOW)	V _{OUT_PP}	-0.3	V _{DD} + 0.3	V
Open Drain Output Voltage (Active LOW)	V _{OUT_OD}	-0.3	5.5	V
Analog Output	V _{ANA}	-0.3	V _{DD} + 0.3	V
Input and Output Current	I _{IN} / I _{OUT}	-10	+10	mA
Junction temperature	TJ	-40	+125	°C
Storage temperature	T _{STG}	-65	+150	°C
Soldering temperature	T _{SOL}		+260	°C
ESD Level, Human Body Model per JESD22-A114	V _{ESD_HBM}	±4.0		kV

Table 3: Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for the actual device operation. Recommended operating conditions are specified to ensure optimal performance to the data sheet specifications. Crocus Technology does not recommend exceeding them or designing to absolute maximum ratings.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{DD}		2.7	3.0	3.6	V
Output Voltage	V _{OUT}				3.6	V
Operating Magnetic Flux	В				12	mT
Ambient Temperature	T _A		-40	+25	+125	°C
Junction Temperature	TJ		-40		+125	°C

Table 4: Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout and is determined in accordance to JEDEC standard JESD51 for a four (4) layer 2s2p FR-4 printed circuit board (PCB). Special attention must be paid not to exceed junction temperature $T_{J(MAX)}$ at a given ambient temperature.

Parameter	Symbol	Min	Тур	Max	Unit
Junction-to-Ambient Thermal Resistance for SOT23 Package	θ _{JA(SOT23)}		202		°C/W
Junction-to-Ambient Thermal Resistance for LGA Package	θ _{JA(LGA)}		165		°C/W

2018 Crocus Technology

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Table 5: Electrical Characteristics for CT83x Series

Unless otherwise specified: V_{DD} = 2.7 V to 3.6 V, T_A = -40°C to +125°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Power-On Time	t _{on}	V _{DD} > 2.7 V		500		μs
Under-voltage Lockout Threshold, Rising V_{DD}	$V_{\text{UVLO}_{\text{RISE}}}$	Rising V_{DD}		2.20	2.60	V
Under-voltage Lockout Threshold, Falling V_{DD}	$V_{\text{UVLO}_{\text{FALL}}}$	Falling V _{DD}	1.90	2.15		V
Under-voltage Lockout Hysteresis	V _{UV_HYST}			50		mV
Push-Pull Output						
Output Voltage High OUT	V _{OH}	I _{OUT} = -2 mA	$0.9\times V_{\text{DD}}$			V
Output Voltage Low OUT	V _{OL}	I _{OUT} = +2 mA			$0.1\times V_{\text{DD}}$	V
Current for OUT	I _{OUT}			±2		mA
Open Drain Output						
High Level Output Voltage	V _{OH}				5.5	V
Low Level Output Voltage	V _{OL}	I _{OUT} ≤ 20 mA	0		0.5	V
High Impedance Output Leakage Current ⁽¹⁾	I _{LEAK}	V _{OH} = 5.5 V, B = 0		20		pА

(1) Guaranteed by design and bench characterization.

Typical Timing Characteristics for CT83x

 V_{DD} = 3.0 V and T_{A} = +25°C, C_{DD} = 1.0 μF (unless otherwise specified).

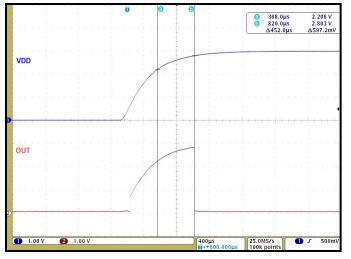


Figure 3. Power-On Time for Push-pull Output (V_{DD} and $\overline{OUT})$

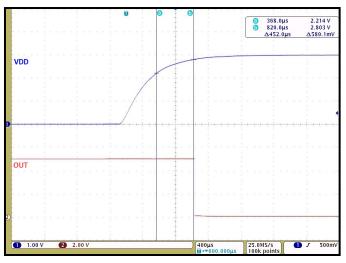


Figure 4. Power-On Time for Open Drain Output (V_{DD} and \overline{OUT})

2018 Crocus Technology

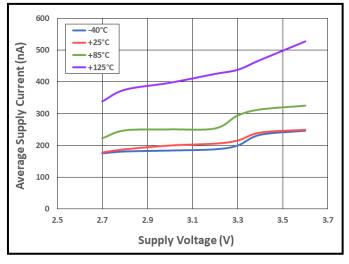
Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Table 6: Electrical & Magnetic Characteristics for CT831BV

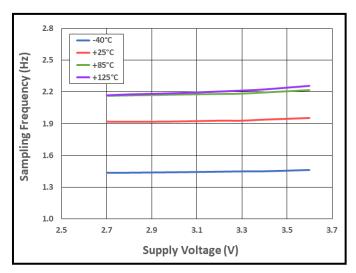
Unless otherwise specified: V_{DD} = 2.7 V to 3.6 V, T_A = -40°C to +125°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Average Supply Current	I _{DD(AVG)}	t ≥ 10 s		200	700	nA
Sampling Frequency	f _S		1	2	4	Hz
Active Mode Time	t _{ACT}			1.40		μs
Idle Mode Time	t _{IDLE}		250	500	1,000	ms
Operate Point	B _{OPS}		2.7	3.0	3.8	mT
Operate Point	B _{OPN}		-3.8	-3.0	-2.7	mT
Release point	B _{RPS}		1.8	2.0	2.7	mT
Release point	B _{RPN}		-2.7	-2.0	-1.8	mT
Hysteresis	B _{HYST}	B _{HYST} = B _{OP} - B _{RP}	0.5	1.0		mT

Table 7: Electrical & Magnetic Characteristics for CT832BV


Unless otherwise specified: V_{DD} = 2.7 V to 3.6 V, T_A = -40°C to +125°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Average Supply Current	I _{DD(AVG)}	t ≥ 10 s		200	700	nA
Sampling Frequency	f _S		1	2	4	Hz
Active Mode Time	t _{ACT}			1.4		μs
Idle Mode Time	t _{IDLE}		250	500	1,000	ms
Operate Point	B _{OPS}		2.7	3.0	3.8	mT
Operate Point	B _{OPN}		-3.8	-3.0	-2.7	mT
Release point	B _{RPS}		1.8	2.0	2.7	mT
Release point	B _{RPN}		-2.7	-2.0	-1.8	mT
Hysteresis	B _{HYST}	B _{HYST} = B _{OP} - B _{RP}	0.5	1.0		mT



Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

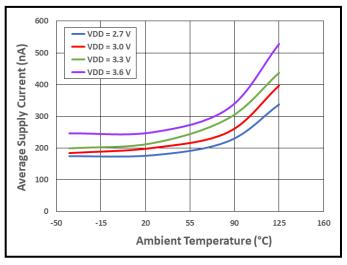

Typical Electrical Characteristics for CT831BV and CT832BV

Figure 5. Average Supply Current vs. Supply Voltage vs. Temperature

Figure 7. Sampling Frequency vs. Supply Voltage vs. Temperature

Figure 6. Average Supply Current vs. Temperature vs. Supply Voltage

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Typical Magnetic Characteristics for CT831BV and CT832BV

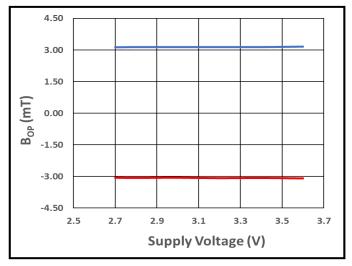


Figure 8. B_{OPN} (Red) and $~B_{OPS}$ (Blue) vs. Supply Voltage at +25°C

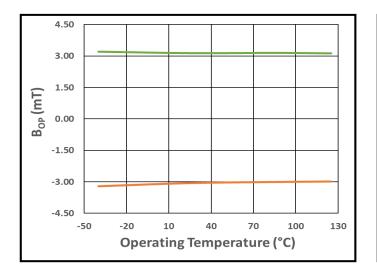


Figure 10. B_{OPN} (Orange) and B_{OPS} (Green) vs. Operating Temperature at V_{DD} = 3.0 V

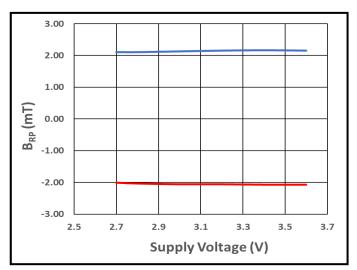


Figure 9. B_{RPN} (Red) and B_{RPS} (Blue) vs. Supply Voltage at +25°C

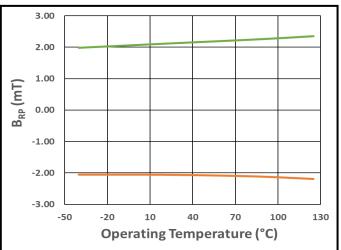


Figure 11. B_{RPN} (Orange) and B_{RPS} (Green) vs. Operating Temperature at V_{DD} = 3.0 V

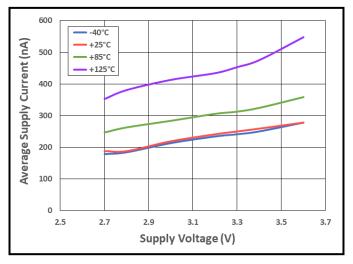
Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Table 8: Electrical & Magnetic Characteristics for CT832SK

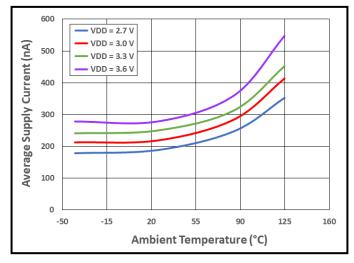
Unless otherwise specified: V_{DD} = 2.7 V to 3.6 V, T_A = -40°C to +125°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Average Supply Current	I _{DD(AVG)}	t ≥ 10 s		230	700	nA
Sampling Frequency	f _s		7	10	13	Hz
Active Mode Time	t _{ACT}			1.4		μs
Idle Mode Time	t _{IDLE}		77	100	143	ms
Operate Point	B _{OPS}		0.8	0.9	1.2	mT
Operate Point	B _{OPN}		-1.2	-0.9	-0.8	mT
Release point	B _{RPS}		0.3	0.5	0.7	mT
Release point	B _{RPN}		-0.7	-0.5	-0.3	mT
Hysteresis	B _{HYST}	B _{HYST} = B _{OP} - B _{RP}	0.3	0.4		mT

Table 9: Electrical & Magnetic Characteristics for CT832EK


Unless otherwise specified: V_{DD} = 2.7 V to 3.6 V, T_A = -40°C to +125°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Average Supply Current	I _{DD(AVG)}	t ≥ 10 s		230	700	nA
Sampling Frequency	f _S		7	10	13	Hz
Active Mode Time	t _{ACT}			1.4		μs
Idle Mode Time	t _{IDLE}		77	100	143	ms
Operate Point	B _{OPS}			7.0		mT
Operate Point	B _{OPN}			-7.0		mT
Release Point	B _{RPS}			5.0		mT
Release Point	B _{RPN}			-5.0		mT
Hysteresis	B _{HYST}	B _{HYST} = B _{OP} - B _{RP}		2.0		mT



Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

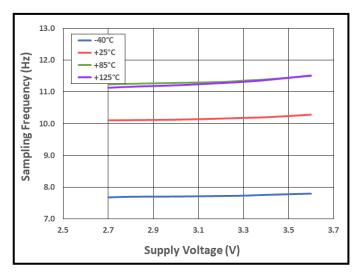

Typical Electrical Characteristics for CT832SK and CT832EK

Figure 12. Average Supply Current vs. Supply Voltage vs. Temperature

Figure 13. Average Supply Current vs. Temperature vs. Supply Voltage

Figure 14. Sampling Frequency vs. Supply Voltage vs. Temperature

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Typical Magnetic Characteristics for CT832SK

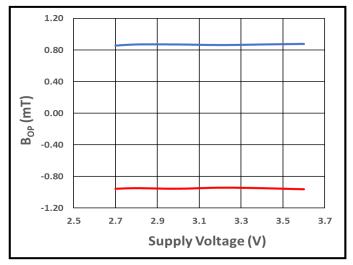


Figure 15. B_{OPN} (Red) and $~B_{\mathsf{OPS}}$ (Blue) vs. Supply Voltage at +25°C

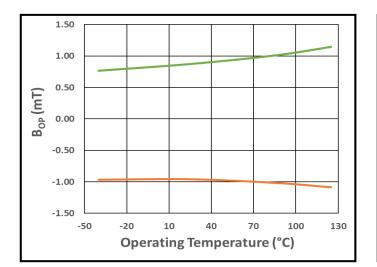


Figure 17. B_{OPN} (Orange) and B_{OPS} (Green) vs. Operating Temperature at V_{DD} = 3.0 V

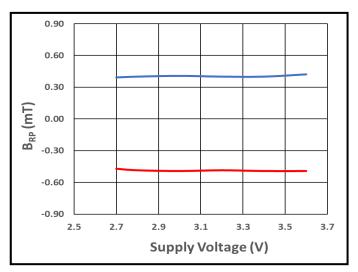


Figure 16. B_{RPN} (Red) and B_{RPS} (Blue) vs. Supply Voltage at +25°C

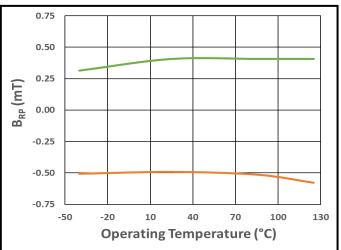


Figure 18. B_{RPN} (Orange) and B_{RPS} (Green) vs. Operating Temperature at V_{DD} = 3.0 V

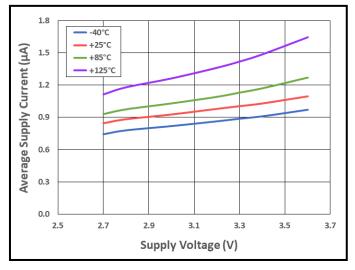
Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Table 10: Electrical & Magnetic Characteristics for CT832SL

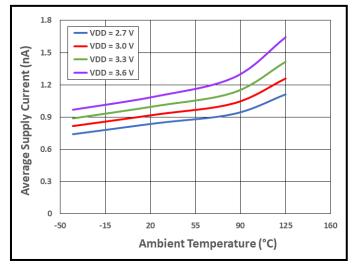
Unless otherwise specified: V_{DD} = 2.7 V to 3.6 V, T_A = -40°C to +125°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Average Supply Current	I _{DD(AVG)}	t ≥ 10 s		1.2	2.5	μA
Sampling Frequency	f _S		165	250	300	Hz
Active Mode Time	t _{ACT}			1.4		μs
Idle Mode Time	t _{IDLE}		3.3	4.0	6.0	ms
Operate Point	B _{OPS}		0.8	0.9	1.2	mT
Operate Point	B _{OPN}		-1.2	-0.9	-0.8	mT
Release point	B _{RPS}		0.3	0.5	0.7	mT
Release point	B _{RPN}		-0.7	-0.5	-0.3	mT
Hysteresis	B _{HYST}	B _{HYST} = B _{OP} - B _{RP}	0.3	0.4		mT

Table 11: Electrical & Magnetic Characteristics for CT832BL


Unless otherwise specified: V_{DD} = 2.7 V to 3.6 V, T_A = -40°C to +125°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Average Supply Current	I _{DD(AVG)}	t ≥ 10 s		1.2	2.5	μA
Sampling Frequency	fs		165	250	300	Hz
Active Mode Time	t _{ACT}			1.4		μs
Idle Mode Time	t _{IDLE}		3.3	4.0	6.0	ms
Operate Point	B _{OPS}		2.7	3.0	3.8	mT
Operate Point	B _{OPN}		-3.8	-3.0	-2.7	mT
Release point	B _{RPS}		1.8	2.0	2.7	mT
Release point	B _{RPN}		-2.7	-2.0	-1.8	mT
Hysteresis	B _{HYST}	$B_{HYST} = B_{OP} - B_{RP}$	0.5	1.0		mT



Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

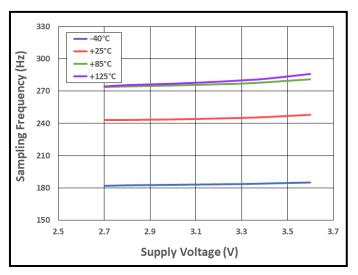

Typical Electrical Characteristics for CT832SL and CT832BL

Figure 19. Average Supply Current vs. Supply Voltage vs. Temperature

Figure 20. Average Supply Current vs. Temperature vs. Supply Voltage

Figure 21. Sampling Frequency vs. Supply Voltage vs. Temperature

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Typical Magnetic Characteristics for CT832SL

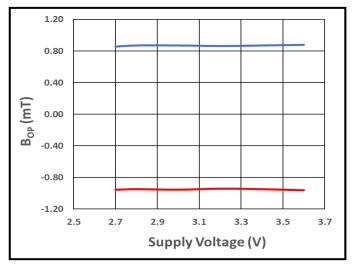


Figure 22. B_{OPN} (Red) and $~B_{\mathsf{OPS}}$ (Blue) vs. Supply Voltage at +25°C

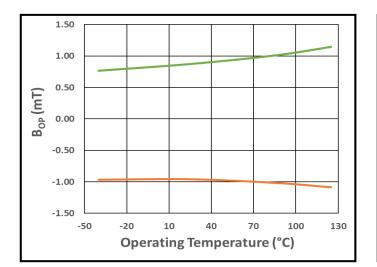


Figure 24. B_{OPN} (Orange) and B_{OPS} (Green) vs. Operating Temperature at V_{DD} = 3.0 V

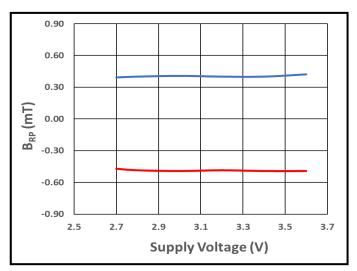


Figure 23. B_{RPN} (Red) and B_{RPS} (Blue) vs. Supply Voltage at +25°C

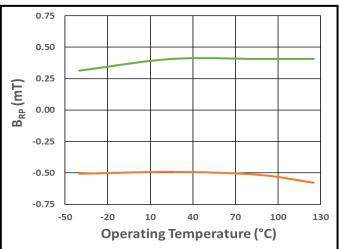


Figure 25. B_{RPN} (Orange) and B_{RPS} (Green) vs. Operating Temperature at V_{DD} = 3.0 V

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Typical Magnetic Characteristics for CT832BL

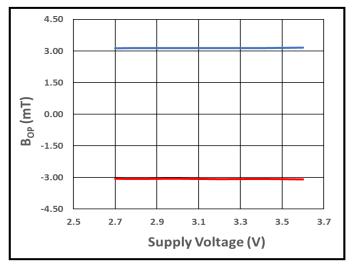


Figure 26. B_{OPN} (Red) and $~B_{\mathsf{OPS}}$ (Blue) vs. Supply Voltage at +25°C

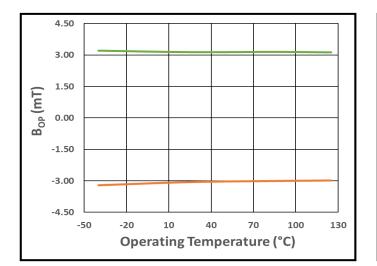


Figure 28. B_{OPN} (Orange) and B_{OPS} (Green) vs. Operating Temperature at V_{DD} = 3.0 V

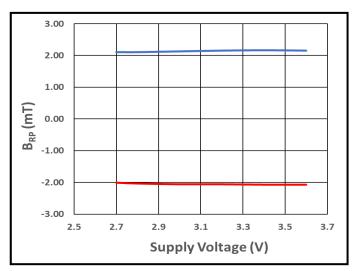


Figure 27. B_{RPN} (Red) and B_{RPS} (Blue) vs. Supply Voltage at +25°C

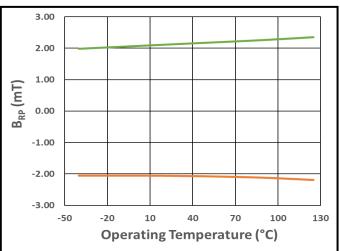
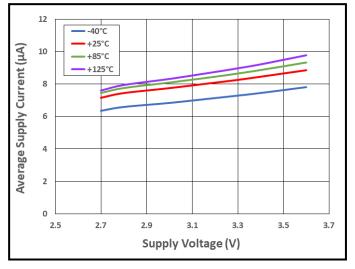


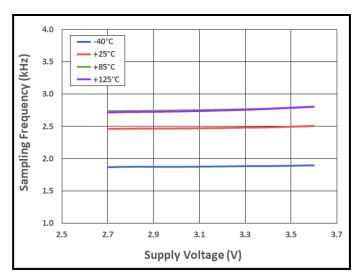
Figure 29. B_{RPN} (Orange) and B_{RPS} (Green) vs. Operating Temperature at V_{DD} = 3.0 V

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Table 12: Electrical & Magnetic Characteristics for CT832DM

Unless otherwise specified: V_{DD} = 2.7 V to 3.6 V, T_A = -40°C to +125°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.


Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Average Supply Current	I _{DD(AVG)}	t ≥ 10 s		8.0	13.0	μA
Sampling Frequency	f _S		1.63	2.50	3.25	kHz
Active Mode Time	t _{ACT}			1.4		μs
Idle Mode Time	t _{IDLE}		308	400	614	μs
Operate Point	B _{OPS}		1.3	1.5	1.8	mT
Operate Point	B _{OPN}		-1.8	-1.5	-1.3	mT
Release point	B _{RPS}		0.8	1.0	1.3	mT
Release point	B _{RPN}		-1.3	-1.0	-0.8	mT
Hysteresis	B _{HYST}	$B_{HYST} = B_{OP} - B_{RP}$	0.3	0.5		mT


Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Typical Electrical Characteristics for CT832DM

 V_{DD} = 3.0 V and T_{A} = +25°C, C_{DD} = 1.0 μF (unless otherwise specified).

Figure 30. Average Supply Current vs. Supply Voltage vs. Temperature

Figure 32. Sampling Frequency vs. Supply Voltage vs. Temperature

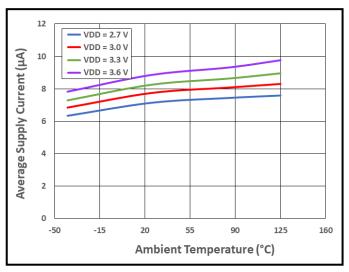


Figure 31. Average Supply Current vs. Temperature vs. Supply Voltage

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Typical Magnetic Characteristics for CT832DM

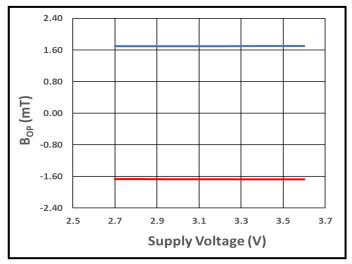


Figure 33. B_{OPN} (Red) and $~B_{\mathsf{OPS}}$ (Blue) vs. Supply Voltage at +25°C

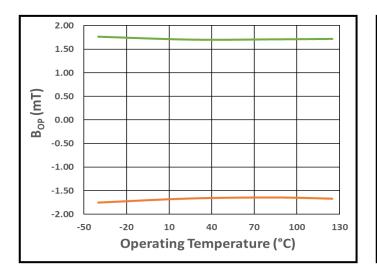


Figure 35. B_{OPN} (Orange) and B_{OPS} (Green) vs. Operating Temperature at V_{DD} = 3.0 V

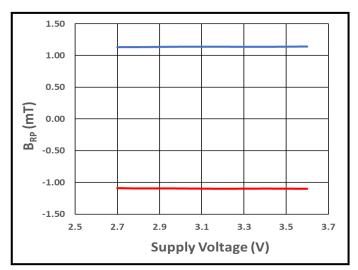


Figure 34. B_{RPN} (Red) and B_{RPS} (Blue) vs. Supply Voltage at +25°C

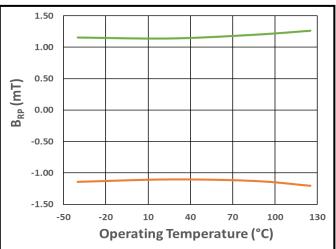
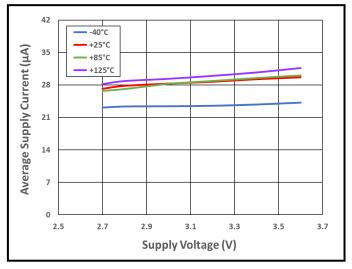


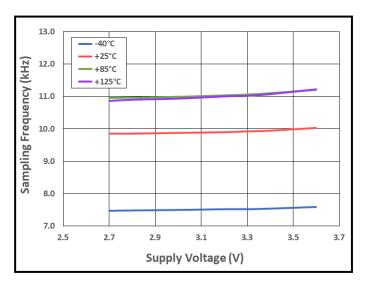
Figure 36. B_{RPN} (Orange) and B_{RPS} (Green) vs. Operating Temperature at V_{DD} = 3.0 V

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Table 13: Electrical & Magnetic Characteristics for CT832BH


Unless otherwise specified: V_{DD} = 2.7 V to 3.6 V, T_A = -40°C to +125°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Average Supply Current	I _{DD(AVG)}	t ≥ 10 s		36		μA
Sampling Frequency	f _S		7	10	13	kHz
Active Mode Time	t _{ACT}			1.4		μs
Idle Mode Time	t _{IDLE}		77	100	143	μs
Operate Point	B _{OPS}		2.7	3.0	3.8	mT
Operate Point	B _{OPN}		-3.8	-3.0	-2.7	mT
Release Point	B _{RPS}		1.8	2.0	2.7	mT
Release Point	B _{RPN}		-2.7	-2.0	-1.8	mT
Hysteresis	B _{HYST}	$B_{HYST} = B_{OP} - B_{RP}$	0.5	1.0		mT



Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Typical Electrical Characteristics for CT832BH

Figure 37. Average Supply Current vs. Supply Voltage vs. Temperature

Figure 39. Sampling Frequency vs. Supply Voltage vs. Temperature

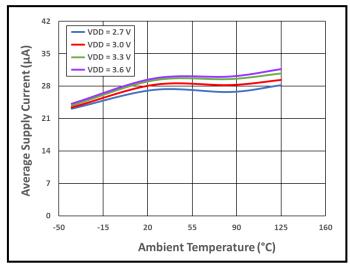


Figure 38. Average Supply Current vs. Temperature vs. Supply Voltage

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Typical Magnetic Characteristics for CT832BH

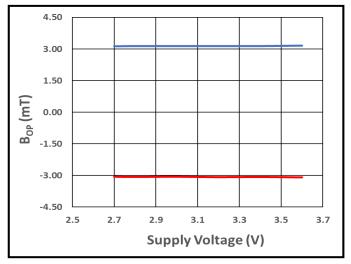


Figure 40. B_{OPN} (Red) and $~B_{\mathsf{OPS}}$ (Blue) vs. Supply Voltage at +25°C

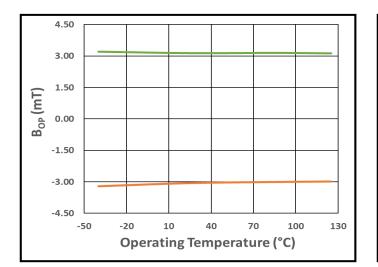


Figure 42. B_{OPN} (Orange) and B_{OPS} (Green) vs. Operating Temperature at V_{DD} = 3.0 V

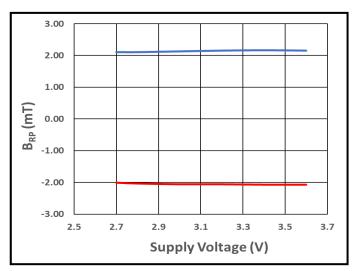


Figure 41. B_{RPN} (Red) and B_{RPS} (Blue) vs. Supply Voltage at +25°C

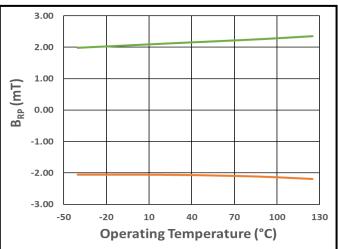
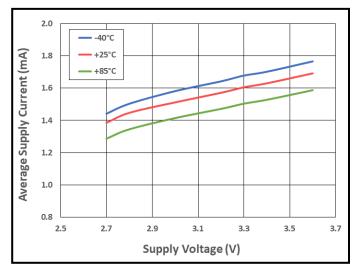
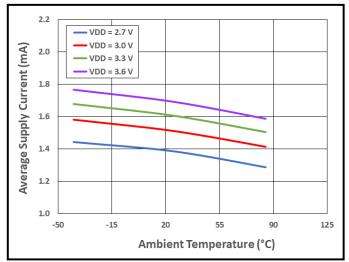


Figure 43. B_{RPN} (Orange) and B_{RPS} (Green) vs. Operating Temperature at V_{DD} = 3.0 V

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications


Table 14: Electrical & Magnetic Characteristics for CT834DR

Unless otherwise specified: V_{DD} = 2.7 V to 3.6 V, T_A = -40°C to +85°C. Typical values are V_{DD} = 3.0 V and T_A = +25°C.


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Temperature	T _A		-40	+25	+85	°C
Average Supply Current	I _{DD(AVG)}	$t \ge 10 \text{ s}$		1.5	2.7	mA
Maximum Drive Capability	I _{DRV(MAX)}	V_{ANA} covers 19% V_{DD} to 81% V_{DD} span	-10		+10	μA
Output Capacitive Load	CL				10	pF
Analog Output Magnetic Field Range	B _{ANA}		±1.0	±1.5		mT
Analog Output Voltage, High	V _{ANA_HIGH}			$0.81 \times V_{\text{DD}}$		V
Analog Output Voltage, Low	V _{ANA_LOW}			$0.19 \times V_{\text{DD}}$		V
Voltage Output Quiescent	V _{OQ}		45	50	55	% V _{DD}
Sensitivity @ T = +25°C	S _{T=25}	T _A = +25°C	176	200	224	mV/V/mT
Sensitivity @ Full Temperature Range	S _{FULL_RANGE}	$T_A = -40$ °C to +85°C	140	200	260	mV/V/mT

Typical Characteristics for CT834DR

 V_{DD} = 3.0 V and T_{A} = +25°C, C_{DD} = 1.0 μF (unless otherwise specified).

Figure 44. Average Supply Current vs. Supply Voltage vs. Temperature

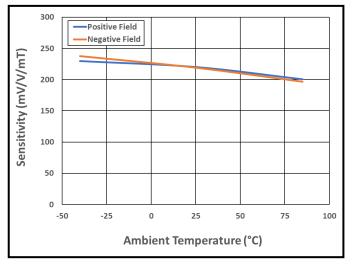
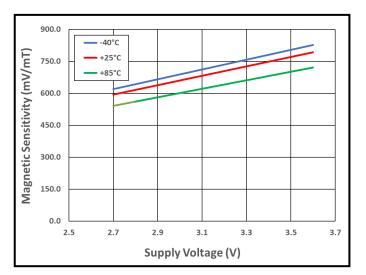


Figure 45. Average Supply Current vs. Temperature vs. Supply Voltage



Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Typical Magnetic Characteristics for CT834DR

Figure 46. Magnetic Sensitivity vs. Temperature for Positive and Negative Fields

Figure 48. Magnetic Sensitivity vs. Supply Voltage vs. Temperature for Positive Field

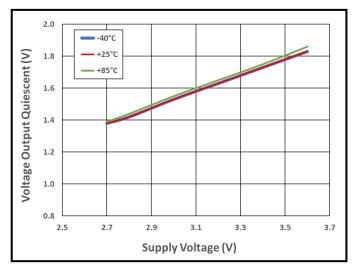
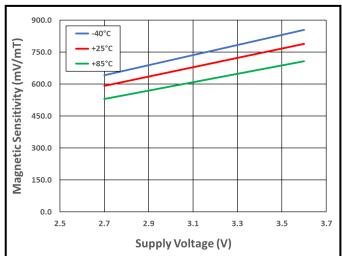



Figure 47. Voltage Output Quiescent (V_{OQ}) vs. Supply Voltage vs. Temperature

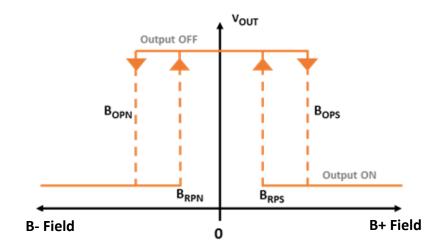
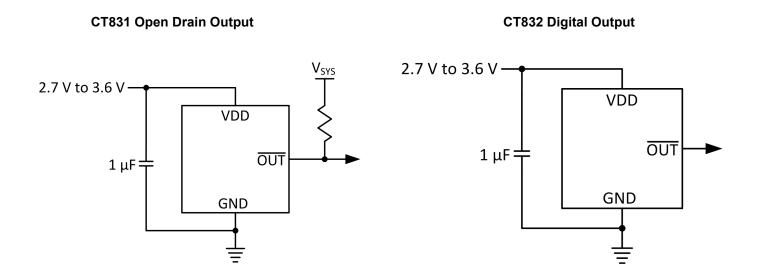


Figure 49. Magnetic Sensitivity vs. Supply Voltage vs. Temperature for Negative Field

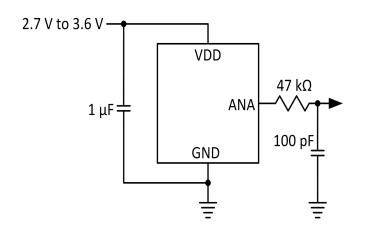
Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Figure 50: Omnipolar Magnetic Flux

Output Behavior vs. Magnetic Field

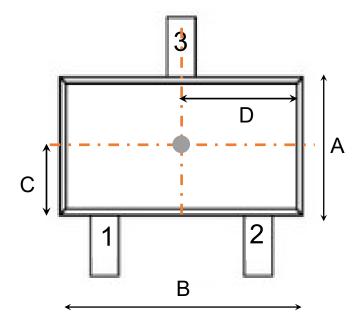

Characteristic	Conditions	Output
Positive Field	B > B _{OPS}	Low (ON)
Positive Field	0 < B < B _{RPS}	High (OFF)
Ne vetice Eicle	B < B _{OPN}	Low (ON)
Negative Field	0 > B > B _{RPN}	High (OFF)

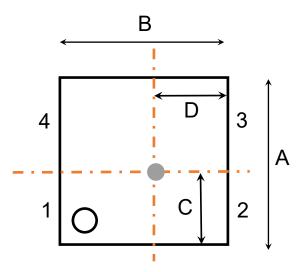
Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications


Figure 51: Application Circuits

A decoupling capacitor (C_{DD}) between the supply voltage and ground is required with placement close to the magnetic switch. A typical capacitor value of 1 μ F (Ceramic) will suffice. For the open drain output, maximum V_{SYS} should not exceed 5.5 V.

For the analog output, a simple RC filter is recommended on the ANA output as shown below:


CT834 Analog Output



Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

SOT23 Package

Symbols	Nominal Dimensions (mm)
A	1.60
В	2.90
С	0.80
D	1.45

LGA Package

Symbols	Nominal Dimensions (mm)
А	1.40
В	1.40
С	0.50
D	0.50

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Table 15: Order Guide for Omnipolar TMR Digital Latches/Analog Sensors

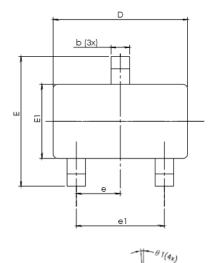
Part Number	Polarity	Output Type	B _{OP}	B _{RP}	I _{DD(AVG)}	f _S	Description
CT831BV-HS3		Open Drain					Omnipolar Magnetic Latch SOT-23 Package, Tape & Reel Packaging
CT831BV-IS3							
CT832BV-HL1			±3.0 mT	±2.0 mT	200 nA	2 Hz	Omnipolar Magnetic Latch
CT832BV-IL1							LGA Package, Tape & Reel Packaging
CT832BV-HS3							Omnipolar Magnetic Latch
CT832BV-IS3							SOT-23 Package, Tape & Reel Packaging
CT832SK-HS3						40.11	Omnipolar Magnetic Latch
CT832SK-IS3			±0.9 mT	±0.5 mT	230 nA	10 Hz	SOT-23Package, Tape & Reel Packaging
CT832SL-HS3				10 E T	4.4	050 11-	Omnipolar Magnetic Latch
CT832SL-IS3			±0.9 m i	±0.5 mT	1.4 µA	250 Hz	SOT-23 Package, Tape & Reel Packaging
CT832BL-HS3	Omnipolar	Push-Pull		T T		050.11	Omnipolar Magnetic Latch
CT832BL-IS3			±3.0 mT	±2.0 mT	1.4 µA	250 Hz	SOT-23 Package, Tape & Reel Packaging
CT832DM-HS3							Omnipolar Magnetic Latch
CT832DM-IS3			±1.5 mT	±1.0 mT	12 µA	2.5 kHz	SOT-23 Package, Tape & Reel Packaging
CT832BH-HL1							Omnipolar Magnetic Latch
CT832BH-IL1			±3.0 mT	±2.0 mT	36 µA	10 kHz	LGA Package, Tape & Reel Packaging
CT832EK-HS3							Omnipolar Magnetic Latch
CT832EK-IS3				±5.0 mT	230 nA	10 Hz	SOT-23 Packages, Tape & Reel Packaging
CT834DR-IL1		Analog	N/A	N/A	1.5 mA	Continuous	Omnipolar Magnetic Latch LGA Packages, Tape & Reel Packaging
CT834DR-IS3		/ indiog	11/7 (11/7 (1.0 11/4	Continuous	Omnipolar Magnetic Latch SOT-23 Packages, Tape & Reel Packaging

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

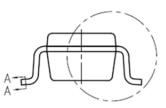
Table 16. Packaging Information

Orderable Part Number	Package Type	Pins	Package Quantity	Lead Finish	Eco Plan ⁽¹⁾	MSL Rating	Operating Temperature	Device Marking
CT831BV-HS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	JA YWWS
CT831BV-IS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	JA YWWS
CT832BV-HL1	LGA	4	3,000	Au	Green & RoHS	3	-40°C to +125°C	A YZ
CT832BV-IL1	LGA	4	3,000	Au	Green & RoHS	3	-40°C to +85°C	A YZ
CT832BV-HS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	HA YWWS
CT832BV-IS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	HA YWWS
CT832SK-HS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	HC YWWS
CT832SK-IS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	HC YWWS
CT832SL-HS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	HE YWWS
CT832SL-IS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	HE YWWS
CT832BL-HS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	HB YWWS
CT832BL-IS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	HB YWWS
CT832DM-HS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	HD YWWS
CT832DM-IS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	HD YWWS
CT832BH-HL1	LGA	4	3,000	Au	Green & RoHS	3	-40°C to +125°C	E YZ
CT832BH-IL1	LGA	4	3,000	Au	Green & RoHS	3	-40°C to +85°C	E YZ
CT832EK-HS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +125°C	HF YWWS
CT832EK-IS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	HF YWWS
CT834DR-IL1	LGA	4	3,000	Au	Green & RoHS	3	-40°C to +85°C	D YZ
CT834DR-IS3	SOT-23	3	3,000	Sn	Green & RoHS	1	-40°C to +85°C	HT YWWS

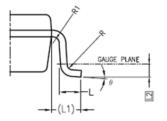
(1) RoHS is defined as semiconductor products that are compliant to the current EU RoHS requirements. It also will meet the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Green is defined as the content of Chlorine (CI), Bromine (Br) and Antimony Trioxide based flame retardants satisfy JS709B low halogen requirements of ≤ 1,000 ppm.


(2) MSL Rating = Moisture Sensitivity Level Rating as defined by JEDEC industry standard classifications.

(3) Device Marking for SOT23 is defined as XZ YWWS where XZ = part number, Y = year, WW = work week and S = sequential number. LGA is defined as X where X = part number and YZ = date code information.



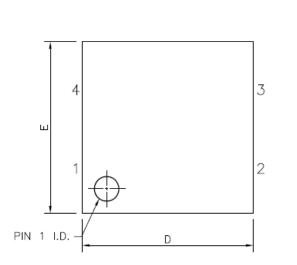
Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

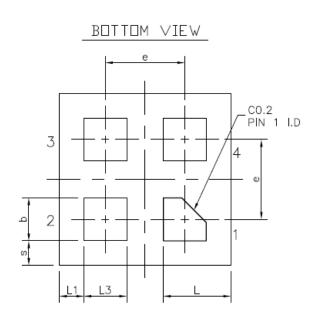

Figure 53: 3-Lead SOT-23 Package Dimensions

@2(#*)

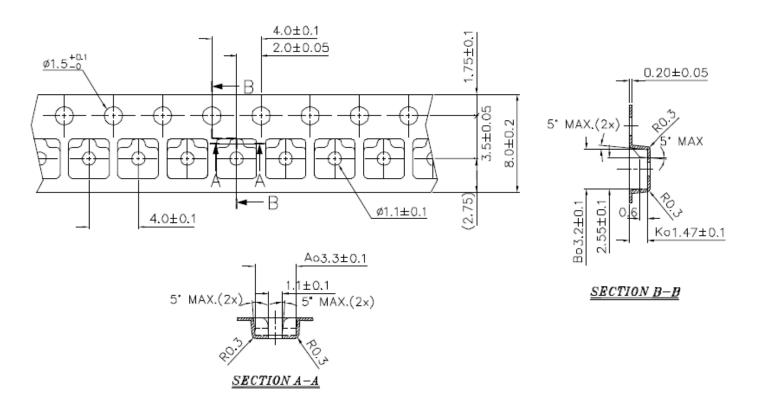
SEE VIEW B

VIEW B


[SYMBOLS	DIMENS	IONS IN MILL	IMETERS			
	STMBOLS	MIN	NOM	MAX			
	A	1.05	1.20	1.35			
A	A1	0.00	0.10	0.15			
	A2	1.00	1.10	1.20			
	b	0.30		0.50			
	b1	0.30	0.35	0.45			
	с	0.08		0.22			
	c1	0.08	0.13	0.20			
	D	2.80	2.90	3.00			
	E	2.60	2.80	3.00			
[E1	1.50	1.60	1.70			
	e						
	e1	1.90 BSC					
	L	0.35	0.43	0.60			
	L1		0.60 REF				
	L2		0.25 BSC.				
	R	0.10					
	R1	0.10		0.25			
	6	0.	4.	8.			
	0 1	5'	6*	15*			
	θ2	5*	8'	15"			


Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

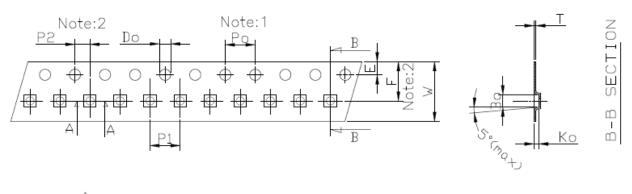
TOP VIEW

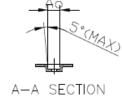

NOTE: ALL DIMENSIONS ARE IN MILLIMETERS.

	DIMENS	IONS IN MILLI	METERS
SYMBOLS	MIN.	NOM.	MAX.
Α	0.386	0.436	0.486
þ	0.30	0.35	0.40
с		0.136 REF.	
D	1.35	1.40	1.45
Е	1.35	1.40	1.45
е		0.65	
L	0.50	0.55	0.60
L1	0.15	0.20	0.25
L3	0.30	0.35	0.40
s	0.15	0.20	0.25

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Figure 55: Tape & Pocket Dimensions for SOT23 Package


Notes:


- 1. Material: Conductive Polystyrene
- 2. Dimensions in mm.
- 3. 10 sprocket hole pitch cumulative tolerance ±0.2.
- 4. Camber not to exceed 1 mm in 100 mm.
- 5. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.
- 6. (S.R. Ω /sq) means surface electric resistivity of the carrier tape.

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Figure 56: Tape & Pocket Dimensions for LGA Package

Ao=	1.65±0.05	. mm
Bo=	1.65±0.05	. mm
Ko=	0.65±0.05	. mm

Unit: mm	Unit:	mm
----------	-------	----

Symbol	Spec.
Po	4.0±0.10
P1	4.0±0.10
P2	2.0±0.05
Do	1.50 +0.1 +0
D1	1.10±0.05
E	1.75±0.10
F	3.50±0.05
10Po	40.0±0.10
W	8.0±0.20
Т	0.25±0.02

Notice:

- 1. 10 Sprocket hole pitch cumulative tolerance is ± 0.1 mm
- Pocket position relative to sprocket hole measured as true position of pocket not pocket hole.
- 3. Ao & Bo measured on a place 0.3mm above the bottom of the pocket to top surface of the carrier.
- Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 5. Carrier camber shall be not than 1mm per 100mm through a length of 250mm.

Omnipolar Digital TMR Latch/Sensor for Consumer & Industrial Applications

Disclaimer: The contents of this document are provided for informational purposes only. CROCUS TECHNOLOGY, INC. AND CRO-CUS TECHNOLOGY SA (COLLECTIVELY "CROCUS") MAKE NO REPRESENTATIONS OR WARRANTY OF ANY KIND, EX-PRESS OR IMPLIED, WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Crocus reserves the right to make changes to the specifications and product descriptions, and/or to discontinue or make changes to its products at any time without notice. Crocus's products have not been designed, tested, or manufactured for use and should not be used in applications where the failure, malfunction or inaccuracy of the Products carries a risk of death or serious bodily injury or damage to tangible property, including, but not limited to, life support systems, nuclear facilities, military, aircraft navigation or communication, emergency systems, harsh environments, or other applications with a similar degree of potential hazard.

© 2018 Crocus Technology, Inc. and Crocus Technology SA. All rights reserved. Crocus Technology, Intelligence in Sensing, MLU, and combinations thereof are trademarks of Crocus Technology, Inc. and Crocus Technology SA.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:

Click to view products by Crocus manufacturer:

Other Similar products are found below :

HGPRDT005A AH277AZ4-AG1 AV-10379 AV-10448 SS41C AH1894-Z-7 ATS601LSGTN-LT-WU4-T TLE4917 50017859-003 TY-13101 TLE4976L AH49FNTR-G1 SS85CA AH277AZ4-BG1 TLE49614MXTSA1 AH3377-P-B AH211Z4-AG1 AH3360-FT4-7 SS460S-100SAMPLE 50065820-03 TLE4941PLUSCB AH374-P-A AH1806-P-A SS460P-T2 AH1913-W-7 SS413F TLE5046ICAKLRHALA1 TLE49421CHAMA2 TLE4941PLUSCXAMA1 AH1912-W-EVM AH1903-FA-EVM AH3774-W-EVM AH49FNTR-EVM MMC5633NJL AH3360-FA-EVM AH8502-FDC-EVM AH3366Q-SA-EVM AH3774-P-EVM KTH1601SU-ST3 MG910 MG910M MG911 MG610 MW921 TLE4998S3XALA1 TLE5011FUMA1 TLE5027CE6747HAMA1 TLE5109A16E2210XUMA1 TLI4966GHTSA1 TLI4906KHTSA1