7.5 ${ }^{\circ}$ 12.5 Watts 4 phases Part number 82940015

- 48 steps/revolution $\left(7.5^{\circ}\right)$
- Absorbed power : 12.5 W
- 2 or 4 phase versions available

Part numbers								
	Type	Type	Number of phases	Electronic controller used	$\begin{aligned} & \text { Resistance per phase } \\ & \text { (o) } \end{aligned}$	$\begin{aligned} & \text { Inductance per phase } \\ & (\mathrm{mH}) \end{aligned}$	$\begin{aligned} & \text { Current per phase } \\ & (A) \end{aligned}$	\qquad (V)
82940015	4 phases	82940		Unipolar	7.4	11	0,9	6,7

Specifications	
Absorbed power (W)	12,5
Holding torque (mNm)	240
Step angle (${ }^{\circ}$)	7,5
Positioning accuracy (\%)	5
Rotor inertia (gcm^{2})	180
Max. detent torque (mNm)	16
Max. coil temperature (${ }^{\circ} \mathrm{C}$)	120
Storage temperature (${ }^{\circ} \mathrm{C}$)	$-40 \rightarrow+80$
Thermal resistance of coil - ambient air (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	5,6
Insulation resistance (at 500 VCc$)(\mathrm{M} \Omega)$ following NFC 51200 standard	$>10^{3}$
Insulation voltage ($50 \mathrm{~Hz}, 1$ minute) (V) following NFC 51200 standard	> 600
Wires length (mm)	250
Weight (g)	540
Protection rating	IP 40

N°	Legend
(1)	4 oblong fixing holes 4.2 wide

4 phases

Inertia of measuring chain : $20.5 \mathrm{~g} . \mathrm{cm} 2 \mathrm{a}=$ constant voltage controller with Rs (resistance in series) $=0 \mathrm{~b}=$ constant voltage controller with Rs (resistance in series) $=\mathrm{R}$ motor $\mathrm{c}=$ constant voltage controller with Rs (resistance in series) $=2 \mathrm{R}$ motor $\mathrm{d}=$ constant voltage controller with Rs (resistance in series) $=3 \mathrm{R}$ motor The measurements are made with full stepping, 2 -phases energised.

N°	Legend
(1)	RPM
(2)	Max. stopping-starting curves

Max. stopping-starting and operating curves at I constant (PBL 3717) for 2 (motor) phases 5.2 ohms. Holding torque $240 \mathrm{mN} . \mathrm{m}$ Current per phase 0.55 A

Curves

Max. stopping-starting frequency curves as a function of the external inertia load at zero antagonistic torque. Tests at constant U.

N.B. Measurement conditions : Tam $=25^{\circ} \mathrm{C}$, motor cold

N°	Legend
(1)	2 phases
(2)	4 phases

Energisation sequence for clockwise rotation : 2 phases energised (viewed shaft end, front forward) Commons connected to positive.

N°	Legend
(1)	Step

- Special cable lengths
- Special connectors

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Stepper Motors category:
Click to view products by Crouzet manufacturer:
Other Similar products are found below :
HT17-275 5014-020 HT23-597 $82924041 \underline{82924036} \underline{82914016} \underline{80910502} \underline{80910501} \underline{80910003} \underline{\text { HT23-598 HT08-221 902-0135-000 }}$
MS11HS3P4067-09RL MS17HD6P4200-24RL MS11HS5P4150-13RL MS08HY1P4050-09RL MS08HY3P4050-02RL ML24HCAL3550-
01RL MS17HD6P4100-16RL ML23HS8P4220-16RL MS17HD2P4200-20RL ML23HSAL4500-E MS14HS5P4100-03RL MS17HD2P4100-
27RL MS14HS1P4100-09RL MS11HS1P4100-25RL ML23HSAP4300-18RL ML23HS4P4100-02RL PL23HS8L4550-05RL
PL23HSAL4500-05RL MS17HD4P4150-22RL PM42S-048-HHC8 PM20L-020-HHC3 PM42L-048-HHC9 82930002 HT34-504 82910003
103H7126-0440 $103 \mathrm{H} 8223-5141$ 103H8223-6340 $103 \mathrm{H} 7126-0740103 \mathrm{H} 7126-5840103 \mathrm{H} 8221-6240$ 103H7126-5740 103H7822-5740
103H8222-6340 STEPPER MOTOR BIPOLAR 42X38MM 2.8V 1.7A SY20STH30-0604A STEPPER MOTOR: UNIPOLAR/BIPOLAR
57Ã-56MM ROB-10551

