
LiFePO4wered/Pi+™

Introduction
The LiFePO4wered/Pi+™ is a high performance battery power system for the Raspberry Pi.  It can 
power a Raspberry Pi for up to 9 hours from the battery (depending on installed battery size, Raspberry
Pi model, attached peripherals and system load) and can be left plugged in continuously.  It features:

• A single 3.2 V, 18650 size 1500 mAh LiFePO4 (lithium iron phosphate) cell or optionally a 
14500 size 600 mAh LiFePO4 cell, providing high power density, extended cycle life (2000+ 
cycles), and safety from fire and explosions.

• Continuous output load current of 2 A with the 18650 size battery, both when connected to 
external power and when on battery power.

• A smart charge controller with over-charge protection, allowing the device to stay plugged in 
continuously and provide UPS (Uninterruptible Power Supply) functionality.

• Smart auto-adjusting charge current allowing charge currents up to 1.5 A when used with high 

LiFePO4wered/Pi+™ product brief 1 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

power chargers, but automatically reducing current as needed to not overload lower power 
sources such as a PC USB port.

• Customizable MPPT functionality making it possible to charge the LiFePO4wered/Pi+™ from 
suitably sized 5 – 18 V nominal solar panels.

• Two-way communication between the power system and the Raspberry Pi over I2C bus (to 
monitor voltages and customize settings) and Raspberry Pi shutdown detection.

• A smart power manager controller and open source daemon working in tandem to provide clean
shutdown functionality and over-discharge protection, resulting in long life and high reliability.

• Continuous measurement of input voltage, battery voltage, output voltage and load current with 
smart user programmable thresholds for boot, shutdown and hard power down.

• An on-board mechanical on/off button providing clean boot/shutdown capability even in 
headless setups, with convenient connection points to add an external button if desired.

• Press and hold button functionality protecting against accidental button activation and enabling 
the possibility to use short button presses to control user software.

• A green PWR LED indicating the Raspberry Pi power state, providing feedback to the user and 
controllable by user software, plus convenient connection points to add an external power LED 
if desired.

• A separate red CHRG LED indicating charging state, plus convenient connection points to add 
an external charge LED if desired.

• A wake timer allowing the Raspberry Pi to be off most of the time and wake up as needed for 
low duty cycle applications.

• Real-time clock functionality, keeping track of time when the Raspberry Pi is off and restoring 
system time on boot, with the ability to wake up at an absolute time.

• An auto-boot feature maximizing uptime by making the Raspberry Pi run whenever there is 
sufficient battery power, or when the input power is present or absent.

• An auto shutdown feature making it possible to automatically shut down the Raspberry Pi 
immediately when input power is been removed or after a programmable amount of time.

• A flexible watchdog timer able to alert a user by flashing the PWR LED or trigger a shutdown if
the user application fails to service the timer within a configurable amount of time.  In 
combination with the auto-boot feature, this can greatly improve reliability by allowing the 
system to reboot to a known state if the user application crashes or becomes unresponsive.

LiFePO4wered/Pi+™ product brief 2 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

• Out of the box compatibility with Raspberry Pi Model A+, Model B+, Raspberry Pi 2 and 3, 
Raspberry Pi 3 Model A+ and B+ and Raspberry Pi 4 (with 18650 battery), Raspberry Pi Zero 
and Raspberry Pi Zero W.

• Compatibility with original Raspberry Pi Model A and Model B with additional wiring, or by 
removing the composite video RCA connector.

• Compatibility with other Raspberry Pi style SBCs using time or load current based power off 
after shutdown, if shutdown detection is not available.

• Convenient connection points for input power, 5 V output power and switched battery power.

• A host-side command line tool, shared library and Python and Node.js bindings allowing easy 
configuration and integration into user programs and scripts.

Hardware installation
The LiFePO4wered/Pi+™ is designed to plug in to the Raspberry Pi GPIO header.  In case of the Pi 
Zero (which doesn't come with a header populated), it is necessary to first install a header.  To ensure 
compatibility with all Raspberry Pi models, the LiFePO4wered/Pi+™ has the same form factor as a 
Raspberry Pi Zero, but with a battery holder that is located to the side of the Raspberry Pi.

The LiFePO4wered/Pi+™ has four mounting holes with the same layout as a Raspberry Pi Zero.  When
used with a Pi Zero, all four holes can be used to mount the LiFePO4wered/Pi+™ to the Pi Zero.  When
used with other Raspberry Pi models, only the two mounting holes next to the GPIO header are used.  
For mechanical stability, it is recommended to mount the LiFePO4wered/Pi+™ to the Raspberry Pi 
using two 16 mm minimum length M2.5 machine screws, M2.5 nuts and a 7/16” length, number 4 
screw size nylon spacers which maintains the correct distance without putting stress on the GPIO 
header connections.

LiFePO4wered/Pi+™ product brief 3 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

External power has to be connected to the LiFePO4wered/Pi+™ instead of the Raspberry Pi’s own 
power input.  This is necessary to allow battery charging and to ensure that the LiFePO4wered/Pi+™ 
has complete control over the Raspberry Pi’s power.

Available hardware options

Battery size
Three standard battery options are available:

• O’Cell IFR18650EC 3.2 V 1.5 Ah mounted in 18650 battery holder.  This option is 
recommended for heavily loaded systems with many peripherals.
It supports a continuous load current of 2 A, both when plugged in and when running from 
battery.  If charging below 0°C is required, a cell from A123 or K2 Energy can be used instead.

• O’Cell IFR14500EC 3.2 V 600 mAh mounted in 14500 (AA) battery holder.  This option 
reduces cost, size and weight, and is ideal for lower power systems when used as a battery 
supply, or in some higher power systems when used as a UPS requiring only enough power to 

LiFePO4wered/Pi+™ product brief 4 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

perform a shutdown when external power is removed.  It does not support the Raspberry Pi 
Model 3 A+ and B+ or the Raspberry Pi 4.
It supports a continuous load current of 2 A when plugged in to a quality high power (3 A) 
supply, less if the source power supply voltage sags under high load.  When running from 
battery, it supports a continuous load current of 0.75 A.

• No on-board battery, and battery compartment removed.  This option requires the user to obtain 
and connect their own 1S LiFePO4 battery pack to the BAT terminals.  This is the lowest cost 
and smallest solution, making the footprint equal to that of a Raspberry Pi Zero, and allows the 
user the freedom to use large packs to obtain very long run times.
Performance will depend on the cells used and the wiring.  Keeping the wiring short and using 
thick gauge wire will provide the best performance, similar to that of the IFR18650EC option. 
Note that only 1S (3.2 V) LiFePO4 chemistry battery packs are supported, and that a battery has 
to be connected for proper operation!  The LiFePO4wered/Pi+™ will not function correctly 
without a battery present.

Aside of these standard options, other battery options are available by request for bulk orders.  The 
picture below shows the different standard battery options.

Battery spacing
By default, the battery is installed so it sits right next to the Raspberry Pi board.  This is the “compact” 
option, and is the one to be used in Raspberry Pi cases that are specifically designed to accommodate 
the LiFePO4wered/Pi+™.  A “spaced” option is available that provides 2.5 mm of space between the 
battery and the Raspberry Pi, allowing the use of some standard Raspberry Pi cases (possibly needing 
some modification) while the battery is outside the case.

The picture below shows an example of a prototype LiFePO4wered/Pi+™ in a modified official 

LiFePO4wered/Pi+™ product brief 5 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

Raspberry Pi case.  While the case allows no access to the LiFePO4wered/Pi+™ micro USB power port
or the power button without making extra holes, by using the auto-boot/auto-shutdown features and 
connecting power wiring directly to the VIN connections, this would be a perfectly usable setup.

GPIO header
Two options are available for the GPIO header:

• A normal short 40-pin female header.

• A stackable 40-pin header with extended pins to allow installation of Raspberry Pi HATs on top.

The stackable header option is shipped with spacers covering the pins for protection during shipping.  
To install a HAT, the spacers need to be removed to make the pins available.  Note that the extended 

LiFePO4wered/Pi+™ product brief 6 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

pins are not square like the Raspberry Pi’s own GPIO pins but flatter in one direction.  This causes no 
issues for 40-pin female headers plugged in on top, because the orientation of the female contacts is 
ensured to mate correctly with the larger pin dimension.  However, these pins don’t work well with fly 
leads, because the orientation of the contacts is not enforced.

As an example, the picture below shows a setup with a Raspberry Pi 3 B+, a LiFePO4wered/Pi+™ and 
a HifiBerry DAC+ powered from the battery.

Mechanical dimensions
The LiFePO4wered/Pi+™ provides much functionality in a compact form factor, with most of the 
circuitry confined within the same footprint as a Raspberry Pi Zero.  The on-board battery is located 
outside this footprint to limit vertical space requirements and prevent issues when stacking HATs on 

LiFePO4wered/Pi+™ product brief 7 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

top.  The large power inductor location is optimized to place it between the Raspberry Pi’s CPU and 
USB / Ethernet hub, allowing the user to add heat sinks to these chips if desired.  To assist the user with
the mechanical design of their system, below is a mechanical drawing with the most pertinent 
dimensions.

LiFePO4wered/Pi+™ product brief 8 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

Note that this drawing is a view of the component side or bottom of the PCB.

The drawing contains dimensions for both battery sizes.  The 14500 battery holder outline is marked in 
green while the 18650 battery holder outline is blue.  When the 14500 battery is used, the small 
breakaway tab in the bottom left corner is removed.  When there is no on-board battery holder but an 
external battery is used, the whole left side breakaway area is removed.

When the LiFePO4wered/Pi+™ is installed on a Raspberry Pi, the total height from the top of the 
LiFePO4wered/Pi+™ PCB to the bottom of the Raspberry Pi PCB is about 14 mm.  The total height 
from the top of the LiFePO4wered/Pi+™ PCB to the bottom of the 14500 battery is 16.5 mm, meaning 
that this battery extends 2.5 mm below the bottom of the Raspberry Pi PCB.  The total height from the 
top of the LiFePO4wered/Pi+™ PCB to the bottom of the 18650 battery is 21.5 mm, meaning that this 
battery extends 7.5 mm below the bottom of the Raspberry Pi PCB.  When installed in a case, the 
Raspberry Pi should be mounted on standoffs to allow enough clearance so the battery does not get 
pushed against the bottom of the case.

Software installation
The LiFePO4wered/Pi+™ requires software to be running on the Raspberry Pi to operate correctly.  
This software provides a daemon that automatically manages the power state and shutdown of the 
Raspberry Pi, a shared library that allows integration of LiFePO4wered/Pi+™ functionality in user 
programs, a Python and Node.js library to provide easy access to the LiFePO4wered/Pi+™ from user 
scripts, and a CLI (command line interface) program that allows the user to easily configure the 
LiFePO4wered/Pi+™ from the command line or control it from shell scripts.

Initial installation of the host software should preferably be done before the LiFePO4wered/Pi+™ 
hardware is installed.  The reason is that the LiFePO4wered/Pi+™ firmware includes a timeout for the 
boot sequence with a default length of 5 minutes.  If the LiFePO4wered/Pi+™ is turned on and doesn’t 
get notified by the host daemon that the system has booted within 5 minutes, the power will be turned 
off.  While it may be possible to finish the host software installation outlined below within that time, it 
will be safer to do this step with the Raspberry Pi powered directly and not risk losing power during 
installation.

The LiFePO4wered/Pi+™ host software package can be found on Github at:

https://github.com/xorbit/LiFePO4wered-Pi

The “Clone or download” button provides the option to download a ZIP file or clone the software using
Git.  It is recommended to use Git since this makes updating the software easier.  This can be done by 
opening a terminal window on the Raspberry Pi (using a local interface or over SSH), and running the 

LiFePO4wered/Pi+™ product brief 9 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

following command to first ensure the build tools, Git and the systemd support library are installed:

# sudo apt-get -y install build-essential git libsystemd-dev

The systemd support library is optional and does not need to be installed if systemd support for the 
daemon is not required or desired.

Next clone the software package to a location where you keep source software packages:

# git clone https://github.com/xorbit/LiFePO4wered-Pi.git

Now go into the newly created LiFePO4wered-Pi directory by running:

# cd LiFePO4wered-Pi

In the source project directory, you can now build the software by running:

# make all

Or alternatively, if systemd support is not required or desired, run:

# make all USE_SYSTEMD=0

After building the binaries, they need to be installed on the system.  This can be done by running:

# sudo make user-install

This will not only install the software to the Raspberry Pi system, but also perform any necessary 
configuration changes such as enabling the I2C bus and enabling the GPIO UART (UART pin TX is 
used for shutdown detection).

When installation is complete, the Raspberry Pi can be shut down, and the LiFePO4wered/Pi+™ can 
now be used to power the system.  The LiFePO4wered/Pi+™ daemon will automatically be started on 
boot and manage shutdown requests.

Basic usage
In the basic use case, the user does not need to interact with the LiFePO4wered/Pi+™ software on the 
Raspberry Pi at all once it is installed.  The only necessary user interaction is with the on/off button, 
with feedback provided by the green PWR LED.

To use the system as a basic power manager, just keep a 5 V USB charger connected to the 
LiFePO4wered/Pi+™ micro USB, like you normally would have it connected to the Raspberry Pi's own
power input.  The Raspberry Pi's own power input should remain unconnected (otherwise the 
LiFePO4wered/Pi+™ will not be able to control the Raspberry Pi's power state and will in fact refuse to

LiFePO4wered/Pi+™ product brief 10 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

power the Raspberry Pi).

The LiFePO4wered/Pi+™ button can be used to turn the Raspberry Pi on and off.  The button needs to 
be pressed and held for 2 seconds to take effect.  During this press-and-hold delay, the PWR LED glow 
will ramp up.  The press-and-hold delay is implemented to prevent accidental activation when handling
the system.

While the system is booting or shutting down, the LiFePO4wered/Pi+™ cannot respond to button 
pushes until the Raspberry Pi reaches the desired state (on or off).  The changing of state (booting or 
shutting down) is indicated by the slow pulsing of the PWR LED, which indicates the system is “busy”.
If the user touches the button during this time, the PWR LED will do a quick flashing sequence to 
indicate it cannot comply with the user request at that time.  Once the Raspberry Pi reaches a steady 
state (on or off), the user can interact with the touch button to change power state again.

If the power going to the LiFePO4wered/Pi+™ is disconnected or fails, the system will keep running 
from the battery for up to 9 hours, depending on the LiFePO4wered/Pi+™ battery size, Raspberry Pi 
model, attached peripherals and system load.  If the power returns during that time, the battery will be 
recharged and the system will not experience any down time.  If the battery power runs out before the 
power returns, the LiFePO4wered/Pi+™ will instruct the Raspberry Pi to do a shutdown, and once the 
system is shut down properly, the power will be turned off.

If the user attempts to turn on the Raspberry Pi using the button when the battery is depleted, the PWR 
LED will do a quick flashing sequence to inform  the user that the system cannot comply with the 
request.  The same happens if the LiFePO4wered/Pi+™ detects that Raspberry Pi is already powered 
from another source (like its own power input).

In the default configuration, the system will not be automatically booted when power returns, but the 
user is expected to turn the system back on using the button.  It is possible to change this behavior and 
make the Raspberry Pi boot automatically when power returns by configuring the AUTO_BOOT 
setting.  This is ideal for unattended systems that need to provide maximum uptime.

Safe boot and shutdown behavior based on the presence of external power is also possible using the 
AUTO_BOOT and AUTO_SHDN_TIME settings.  This is a great way to make the 
LiFePO4wered/Pi+™ ensure the Pi always does clean shutdowns in systems where the user just wants 
to be able to flip a main power switch or unplug the system without having to worry about manually 
shutting down first.

Since the LiFePO4wered/Pi+™ ensures that the Raspberry Pi is always shut down in a proper way 
before power is removed, no matter what the reason for the shutdown is, the file systems are always 
properly unmounted and left in a clean state.  This will go a long way in preserving reliable system 
operation and preventing SD card corruption, which often is a result of removing power while the 

LiFePO4wered/Pi+™ product brief 11 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

system is running.

If for whatever reason the host system is unresponsive (for instance no Raspberry Pi present, no SD 
card present, kernel panic), the LiFePO4wered/Pi+™ can be forced off by pressing and holding the 
touch button for approximately 10 seconds.

Limitations

Power source dependence
The LiFePO4wered/Pi+™ was designed to provide continuous UPS functionality for a Raspberry Pi 3 
Model B+ under high load and with peripherals attached.  The default 18650 battery option is not 
dependent on the input source for providing continuous load current up to 2 A to the Pi and peripherals,
but since it isn’t 100% efficient, it still needs to have more energy coming in than going out to the Pi to 
maintain the battery level.

In addition to this, the 14500 battery option is dependent on the power source for instantaneous load 
current, because of the higher internal resistance of the small cell and higher current sense resistor used 
in the circuit.  At high loads, most power needs to be provided directly from the power source through 
the LiFePO4wered/Pi+™ power chain for this option.

The charger automatically adjusts its charge current to the power available from the connected source.  
This means you can power the LiFePO4wered/Pi+™ from a PC USB port for instance, but the charge 
current will be reduced to 0.5 A typically and the system won’t be able to keep the battery charged 
under the high load.  It is the user’s responsibility to provide a power source sufficient to keep up with 
the expected system load.  Many USB power supplies available on the market will not be able to keep 
up with the load presented by the LiFePO4wered/Pi+™ if it is under the maximum 2 A load, due to 
losses in the circuit and typical voltage sag of these supplies.  Even many 2.5 A chargers on the market 
will show significant voltage drop at high current levels, causing the LiFePO4wered/Pi+™ to limit the 
input current so as not to damage the power source.  For this reason, using a quality 3 A rated power 
supply is recommended.

Another matter of concern is the USB cable used.  There are unfortunately many low-quality micro 
USB cables on the market, often using very thin wire.  When drawing high currents through such a 
cable, a substantial amount of voltage will be dropped and the LiFePO4wered/Pi+™ will again limit the
current to not make the input voltage drop below the MPPT threshold.  This can significantly limit the 
charge current even when a good power supply is used.  It is the user’s responsibility to use a high 
quality cable for maximum performance.  At high system loads, it is recommended to connect power 
directly to the VIN pads with large gauge wire instead of using the micro USB port, to avoid wiring 

LiFePO4wered/Pi+™ product brief 12 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

and contact losses.

The LiFePO4wered/Pi+™ can be powered from a wide input voltage range of 5 V to 20 V.  Some of the
issues with losses in wiring can be alleviated by powering the LiFePO4wered/Pi+™ from a higher input
voltage.  Note however that performance without active cooling will decrease at high input voltages, 
due to the extra power dissipation and resulting heat at these high voltages.

Heat management
The LiFePO4wered/Pi+™ is characterized to be able to provide a continuous load current of 2 A at 5 V 
nominal output, without active cooling.  This testing was done in open air at room temperature.  If the 
LiFePO4wered/Pi+™ is built in to a case with the Raspberry Pi and other loads consuming 10 W of 
power, it should be obvious that the temperature inside the case will rise quickly.  It is the user’s 
responsibility to work out an appropriate thermal design for their system.  If the LiFePO4wered/Pi+™ 
is heated by other sources and enclosed in a case, active cooling is likely necessary at high power 
levels.

Battery run time
The run time on battery power depends on many factors, so only general guidelines can be given to 
help set expectations.  In general a LiFePO4 cell will have more capacity when discharged at a lower 
rate.  A cell will also lose some capacity as it ages, but this effect is small in LiFePO4 cells compared to 
most other lithium chemistries.  The cell manufacturer specifies that the cell should still have 80% of 
its original capacity after 2000 cycles.  Also note that the cell will have increased self-discharge at 
higher temperatures.  When deployed in high temperature environments, make sure the cell is charged 
regularly so it doesn’t discharge far enough to cause permanent damage (< 2 V).

The following scenarios can be used as a reference to estimate battery run times for the LiFePO4wered/
Pi+™:

• Raspberry Pi 3 with 4 cores @ 100% load + Ethernet: 1 hour

• Raspberry Pi 3 idle + WiFi: 3 hours

• Pi Zero idle: 9 hours

Electrostatic discharge
In dry conditions, electrostatic charge can build up in the human body and this charge will be 
discharged into conductive systems such as the LiFePO4wered/Pi+™ when the user touches them.

LiFePO4wered/Pi+™ product brief 13 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

While no reports of permanent damage due to electrostatic discharge have been received, it is possible 
that such a discharge will reset the microcontroller on the LiFePO4wered/Pi+™, cutting power to the 
Raspberry Pi abruptly without doing a proper shutdown first.  In dry climates and during dry seasons, it
is therefor recommended that the user first discharge by touching grounded metal before interacting 
with the LiFePO4wered/Pi+™.

Bidirectional load switch
The LiFePO4wered/Pi+™ incorporates a bidirectional load switch which will protect it from damage in 
case the Raspberry Pi is powered from another source such as its own micro USB power connector.  
However, this switch only works correctly if the LiFePO4wered/Pi+™ is powered (the battery is 
present).  Applying power to the Raspberry Pi with the LiFePO4wered/Pi+™ connected but the battery 
removed will expose the LiFePO4wered/Pi+™ to voltages that can cause permanent damage.

Another scenario that causes damage to the LiFePO4wered/Pi+™ is powering a Pi Zero and connecting
a back-powering powered hub to the Pi Zero’s USB port.  The Pi Zero accepts power input through the 
data USB and has no protection circuitry to prevent this back-power.

In general, the safest thing is to avoid powering the Raspberry Pi from any other source when the 
LiFePO4wered/Pi+™ is connected.  This will also ensure the LiFePO4wered/Pi+™ has full control 
over the power to the Raspberry Pi and can properly do its job as a UPS.

Raspberry Pi 4 compatibility
The LiFePO4wered/Pi+™ with 18650 battery is fully compatible with the Raspberry Pi 4, as long as the
continuous total system load is 2 A or less (higher peak currents can usually be handled).  Since the 
Raspberry Pi 4 under full system load takes a good amount of this available power, it is up to the user 
to evaluate whether it will work in their system, keeping in mind added loads such as a fan or USB 
peripherals.

Hardware connections
This section describes the hardware connections available on the LiFePO4wered/Pi+™.

Micro-B USB connector
This is the default external power input to the system when using the LiFePO4wered/Pi+™.  Power 
should not be applied to the Raspberry Pi from another source.

LiFePO4wered/Pi+™ product brief 14 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

GPIO connector
The following table describes if and how each pin of the Raspberry Pi GPIO connector is used by the 
LiFePO4wered/Pi+™.  Pins not listed are unconnected:

Pin Name Use

2, 4 5V Power output of the LiFePO4wered/Pi+™ to provide power to the 
Raspberry Pi.

3 GPIO2 
(SDA1)

I2C bus data signal, used by the Raspberry Pi to communicate with the 
LiFePO4wered/Pi+™.  Since it is a bus, it can be shared with other devices.
Note that some HATs erroneously add pull-up resistors to the I2C bus which 
can cause issues with logic levels.  The Raspberry Pi as I2C master already 
has the required pull-up resistors on board, so slave devices are not 
supposed to add any.  If you experience communication issues when the 
LiFePO4wered/Pi+™ is used in combination with other HATs, please check 
whether they have this issue.

5 GPIO3 
(SCL1)

I2C bus clock signal, used by the Raspberry Pi to communicate with the 
LiFePO4wered/Pi+™.  Since it is a bus, it can be shared with other devices.
Note that some HATs erroneously add pull-up resistors to the I2C bus which 
can cause issues with logic levels.  The Raspberry Pi as I2C master already 
has the required pull-up resistors on board, so slave devices are not 
supposed to add any.  If you experience communication issues when the 
LiFePO4wered/Pi+™ is used in combination with other HATs, please check 
whether they have this issue.

6, 9, 14, 20, 
25, 30, 34, 39

GND Ground reference for power output and all signals.

8 GPIO14 
(TX0)

During the shutdown state, the TX signal from the Raspberry Pi is 
monitored to check if the Raspberry Pi has completed its shutdown.  The 
Raspberry Pi will stop driving this signal when shutdown is completed.
The LiFePO4wered/Pi+™ does not use this signal as a UART, it only 
monitors the logic level during the shutdown phase.  The UART 
functionality is completely available to the user just as if the LiFePO4wered/
Pi+™ wasn’t present.
Note that some UART connected modules erroneously add a pull-up resistor
to this signal, usually as part of a scheme to provide legacy 5V support.  
This is not an approved method to terminate a UART signal and as it keeps 
the TX high when the Raspberry Pi has stopped driving it, it will prevent 
the LiFePO4wered/Pi+™ from correctly detecting that the system has 
finished shutdown.  In that case, power will be turned off by timeout.

LiFePO4wered/Pi+™ product brief 15 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

In short, the presence of the LiFePO4wered/Pi+™ is pretty much transparent to the system, as long as it
is the only device providing power.  All the Raspberry Pi’s GPIOs are available to the user application.

User through-hole solder pads
The LiFePO4wered/Pi+™ was designed to make it easy to customize its functionality and use it as a 
component in a larger system.  To facilitate this, large through-hole pads are available for making 
external connections.  These are the connection pads available to the user:

Name Use

BAT Battery voltage.  This is where the user connects their external 1S LiFePO4 battery pack 
when the “no on-board battery” option was chosen.  The “+” mark indicates the positive 
terminal.
It is recommended to have a high-current connector in the battery leads, so the wires can be 
soldered to the board without the actual battery connected.  If this is not possible, be very 
careful to not short the battery terminals while soldering the wires to the board.
If the LiFePO4wered/Pi+™ does come with a battery on board, these connections provide 
direct access to the battery voltage.  It is not recommended to connect any load to these 
pads because they are directly connected to the battery and as such provide no short circuit 
or over-discharge protection.

VOUT Output voltage.  This is the switched 5 V output voltage to the Raspberry Pi.  The “+” mark 
indicates the positive terminal.
A user can power other 5 V loads from these pads and they will be switched on and off 
together with the Raspberry Pi.  For example, a case fan can be connected here.

VBSW Switched battery voltage.  This is an auxiliary switched output of the battery voltage (3.2 V 
nominal).  The “+” mark indicates the positive terminal.
External 3.3 V circuitry can be powered from these pads and it will be switched on and off 
together with the Raspberry Pi.  Unlike the BAT connections, this output has short circuit 
and over-discharge protection.

VIN Input voltage.  This is where the user can permanently connect the input power source 
instead of using the micro USB connector.  The “+” mark indicates the positive terminal.
Note that these are directly connected to the micro USB connector pins, so the USB input 
voltage can be measured here if the micro USB is used as power input.  You should only 
ever use one of them at a time: either the micro USB or these pads.
It is recommended to use these pads instead of the micro USB in high power systems, since 
micro USB connectors were not designed to handle high currents.

BTN External button.  This is where the user can connect an external momentary switch to 
duplicate the functionality of the on-board push button.  The “+” mark indicates the positive
terminal (polarity is important if using a transistor instead of mechanical switch).
If the LiFePO4wered/Pi+™ is switched to touch pad mode, a capacitive touch pad can be 
connected to the pad marked with “+” and the other pad is not used.  Keep wiring as short 

LiFePO4wered/Pi+™ product brief 16 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

as possible in touch pad mode.

PWLED Power LED.  The user can connect an external LED to these terminals to duplicate the 
functionality of the on-board PWR LED.   The “+” mark indicates the positive terminal.
It is necessary to add a current limiting resistor in series with the external LED.  The current
limiting LED is not integrated on the board because it needs to be customized to give the 
external LED the desired brightness.

CHLED Charge LED.  The user can connect an external LED to these terminals to duplicate the 
functionality of the on-board CHRG LED.  The “+” mark indicates the positive terminal.
It is necessary to add a current limiting resistor in series with the external LED.  The current
limiting LED is not integrated on the board because it needs to be customized to give the 
external LED the desired brightness.

MPP Maximum Power Point setting.  This connection will allow the user to customize the 
maximum power point (MPP) voltage by adding a resistor across the pads.  The charger will
reduce the charge current as needed to ensure the input voltage does not drop below the 
MPP voltage.  The “+” mark indicates the positive terminal.
By default the MPP voltage is 4.66 V nominal.  This is what limits the input current so a 
weak USB port does not get overloaded.  If the user connects a solar panel as input source, 
a resistor needs to be added to optimize for the panel’s MPP voltage.
The MPP resistor value can be calculated with the following formula:
RMPP = 51815 / (VMPP – 4.66)

User surface mount pads

Name Use

SW Switch.  The LiFePO4wered/Pi+™ by default is shipped with a side-facing on/off button 
mounted on the bottom of the board.  However on the top of the board are two footprints for
commonly available surface mount momentary switches that can be added by the user if an 
up-facing button is desired.

Test pads and configuration solder jumpers
The LiFePO4wered/Pi+™ has the following test pads on the bottom of the circuit board:

Name Use

V Battery voltage.  Used during production.

C Microcontroller programming clock.  Used during production.

D Microcontroller programming data.  Used during production.

G Ground reference for all signals.

SDA I2C bus data.  Used during production.

LiFePO4wered/Pi+™ product brief 17 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

SCL I2C bus clock.  Used during production.

TX UART TX signal detect.  Used during production.

1.5A 1.5A charge mode.  This solder jumper sets the maximum charge current.  For the 14500 size
battery, the maximum nominal charge current is 0.57 A and the solder jumper should be 
open.  For the 18650 size battery, the maximum nominal charge current is 1.5 A and the 
solder jumper should be bridged with solder.  If no battery is installed and the user adds their 
own pack, it is the user’s responsibility to configure this jumper to select a charge current 
appropriate for the connected battery pack.

Software interface
The LiFePO4wered/Pi+™ exposes a set of registers that can be accessed from the Raspberry Pi through
the I2C bus.  By default, the 7-bit device address is 0x43.  This can be changed in case of a conflict, but 
keep in mind that the shared library, daemon and CLI will need to be adjusted and recompiled to access
the LiFePO4wered/Pi+™ at any other address.  To change the address in the host software, adjust the 

value of the I2C_ADDRESS definition in the lifepo4wered-access.c source file, recompile 

and reinstall.

This section provides a lot of low level detail necessary to implement direct access to the hardware, but
please note that when using the provided host side software such as the CLI tool, the shared library or 
the provided Python or Node.js bindings, a lot of this complexity is hidden.  These tools automatically 
convert raw register values into convenient units such as millivolts, milliampères and seconds, take 
care of mapping the correct register addresses based on register version, and provide definitions that 
clarify what is happening instead of having to use magic values in your code.

The tools also take care of access control in case multiple processes are trying to access the 
LiFePO4wered/Pi+™ at the same time, data consistency checks when reading, write unlock code 
calculation, and retries in case of access contention.  So it is recommended to use these tools if at all 
possible, instead of rolling your own.

Low level I2C access
The LiFePO4wered/Pi+™ supports I2C access from the host at the standard speed of 100 kHz 
maximum.  Faster speeds are not supported, since the controller handles a good portion of the I2C 
protocol in software and the Raspberry Pi does not support I2C clock stretching.

I2C write access

The first byte of a write access is always the register address to be read or written.  If the write access is

LiFePO4wered/Pi+™ product brief 18 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

only used to specify a register address for a read, this is all that is needed.

If the write access intends to write data, an unlock code needs to be send next.  The unlock code is 
calculated as:

(I2C_ADDRESS << 1) .xor. 0xC9 .xor. REG_ADDRESS

It is specifically intended to prevent erroneous writes in case of bus contention when other processes 
may be trying to use the I2C bus.  If the unlock code is incorrect, the LiFePO4wered/Pi+™ will respond 
with a NACK and the access fails.

After the unlock code, data bytes can be sent to be written.  The internal register address pointer is 
automatically incremented after each byte, allowing for bulk data writes.  Writes outside the valid range
of registers that can be written will trigger a NACK and the write will fail.

The LiFePO4wered/Pi+™ uses a shadow buffer to cache and then atomically write complete registers.  
This measure can prevent race conditions when writing multi-byte registers that are in use by the 
controller.

I2C read access

To read data from the LiFePO4wered/Pi+™, the host first needs to do a write with the desired register 
address, followed by one or more read accesses to read out the data.  The internal register address 
pointer is automatically incremented after each byte, allowing for bulk data reads.  Data reads outside 
the defined register range return 0xFF.

Low level I2C register specification
The following I2C registers are available in the LiFePO4wered/Pi+™:

I2C_REG_VER

1 byte, register address 0x00, read only access

Value: 0x07

This value specifies an I2C register set version.  It allows the client software to choose the correct 
register addresses, since the same software is used for various LiFePO4wered products.

I2C_ADDRESS

1 byte, register address 0x01, read/write access, saved to flash

Default value: 0x43

7-bit bus address of the LiFePO4wered/Pi+™ device.  If this is changed, the host software on the 

LiFePO4wered/Pi+™ product brief 19 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

Raspberry Pi needs to be changed (I2C_ADDRESS definition in the lifepo4wered-access.c 

source file) and recompiled to match the new value.

LED_STATE

1 byte, register address 0x02, read/write access, saved to flash

Default value: 0x01

This byte can be used to set the PWR LED state when the Raspberry Pi is in the on state.  The LED is 
under control of the LiFePO4wered/Pi+™ when the system is off (LED off), booting (LED pulsing) or 
shutting down (LED pulsing).  When the Raspberry Pi is on, by default the LED is on solid, but this 
can be changed.  Possible reasons to do so are to save power for maximum run time or to indicate the 
state of a user program.  Possible values are: 0x00 (LED off), 0x01 (LED on), 0x02 (LED pulsing) or 
0x03 (LED fast flash).

TOUCH_STATE

1 byte, register address 0x3A, read only

This register indicates the touch/press state of the button.  It is called TOUCH_STATE to maintain 
compatibility with older LiFePO4wered products.  The value is 0 if the button is not currently pressed.  
The value is nonzero when indicating button press states.  Press and hold of the button for 2 seconds 
will make the Raspberry Pi turn off, but short button press events can be interpreted by user code.  The 
4 lowest bits of this byte indicate the last 4 button samples, shifting from the low to the high bit.  For 
instance, a value of 0x01 indicates the user just started pressing the button, while 0x0E indicates the 
button was just released after it had been held for at least 3 system ticks.

TOUCH_CAP_CYCLES

1 byte, register address 0x03, read/write access, saved to flash

Default value: 0

By default, with a register value of 0, the button handler is configured in “mechanical switch” mode to 
use the on-board (or an added external) mechanical switch as on/off button.  However, the button 
handler can be switched to “capacitive touch” mode by setting this register in case the user chooses to 
connect an external capacitive touch area.

To configure capacitive touch, this register must be set to a non-zero value that indicates the total 
number of charge and discharge cycles generated and measured by the touch detection subsystem.  A 
good starting value for this register is 20, but the value can be customized as needed to optimize the 
sensitivity of the connected touch pad.

LiFePO4wered/Pi+™ product brief 20 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

TOUCH_THRESHOLD

1 byte, register address 0x04, read/write access, saved to flash

Default value: 12

When the button handler is in capacitive touch mode, a low pass filtered baseline is maintained that 
follows the average touch reading level.  For a touch to be detected, the current touch reading has to 
exceed the baseline plus the touch threshold plus the touch hysteresis (see below).  For the touch 
detection to become inactive, the current touch reading has to fall below the baseline plus the touch 
threshold minus the touch hysteresis.  This is one of the touch parameters that can be customized in 
case sensitivity needs to be adjusted.

When the button handler is in mechanical switch mode, this register should be left at the default value 
to ensure correct button operation.

TOUCH_HYSTERESIS

1 byte, register address 0x05, read/write access, saved to flash

Default value: 2

The touch detection system has a hysteresis to ensure reliable touch detection performance.  The 
hysteresis is added to and subtracted from the touch threshold, depending on whether an active touch is 
detected.  This is one of the touch parameters that can be customized in case sensitivity needs to be 
adjusted.

This register may only be customized when the button handler is in capacitive touch mode.  When the 
button handler is in mechanical switch mode, this register should be left at the default value to ensure 
correct button operation.

DCO_RSEL

1 byte, register address 0x06, read/write, saved to flash

Default value: factory calibrated

This value is factory calibrated so the microcontroller clock runs at 12 MHz.  Refer to the 
MSP430G2332 datasheet for more details.  The user should not need to change this value.

DCO_DCOMOD

1 byte, register address 0x07, read/write, saved to flash

Default value: factory calibrated

This value is factory calibrated so the microcontroller clock runs at 12 MHz.  Refer to the 

LiFePO4wered/Pi+™ product brief 21 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

MSP430G2332 datasheet for more details.  The user should not need to change this value.

VIN

2 bytes little endian, register address 0x36, read only

Value: input voltage, 13-bit value, 25.37 V full scale, resolution of 3.1 mV per LSB

This value represents the input (USB) voltage.  The Raspberry Pi host software package contains 
scaling code so the value is converted to mV for convenience.  For instance, the following command 
reads the input voltage as 5004 mV or 5.004 V.

# lifepo4wered-cli get VIN
5004

VBAT

2 bytes little endian, register address 0x32, read only

Value: battery voltage, 13-bit value, 5 V full scale, resolution of 0.61 mV per LSB

This value represents the battery voltage.  The Raspberry Pi host software package contains scaling 
code so the value is converted to mV for convenience.  For instance, the following command reads the 
battery voltage as 3606 mV or 3.606 V.

# lifepo4wered-cli get VBAT
3606

VOUT

2 bytes little endian, register address 0x34, read only

Value: output voltage, 13-bit value, 5.256 V full scale, resolution of 0.64 mV per LSB

This value represents the output (Raspberry Pi supply) voltage.  The Raspberry Pi host software 
package contains scaling code so the value is converted to mV for convenience.  For instance, the 
following command reads the output voltage as 5036 mV or 5.036 V.

# lifepo4wered-cli get VOUT
5036

IOUT

2 bytes little endian, register address 0x38, read only

Value: output (load) current, 13-bit value, 5.814 A full scale, resolution of 0.71 mA per LSB

This value represents the output (load) current of the 5V output powering the Raspberry Pi.  The 

LiFePO4wered/Pi+™ product brief 22 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

Raspberry Pi host software package contains scaling code so the value is converted to mA for 
convenience.  For instance, the following command reads the output current as 675 mA.

# lifepo4wered-cli get IOUT
675

Note that this measurement is approximate and not linear.  For more information, see “CC Pin Voltage”
curves in the TI TPS61236P datasheet.

VBAT_MIN

2 bytes little endian, register address 0x08, read/write, saved to flash

Default value: 4665 (corresponding to 2.85 V, resolution of 0.61 mV per LSB)

This value determines the minimum battery voltage.  If the input voltage falls below this value, the 
LiFePO4wered/Pi+™ will immediately shut the Raspberry Pi power off so no damage occurs to the 
battery.  Note that this is an emergency procedure which normally doesn't occur, the Raspberry Pi 
should have been given a command to shut down at a higher battery voltage (VBAT_SHDN), but in 
case the Raspberry Pi is unresponsive and fails to shut down, this is provided as a safety feature.

The Raspberry Pi host software package contains scaling code so the value can be read and set in mV 
for convenience.  For instance, the following command reads the minimum battery voltage as 2850 mV
or 2.85 V.

# lifepo4wered-cli get VBAT_MIN
2850

VBAT_SHDN

2 bytes little endian, register address 0x0A, read/write, saved to flash

Default value: 4829 (corresponding to 2.95 V, resolution of 0.61 mV per LSB)

This value determines the battery voltage at which the Raspberry Pi will be instructed to shut down.  
The Raspberry Pi host software package contains scaling code so the value can be read and set in mV 
for convenience.  For instance, the following command reads the shutdown battery voltage as 2950 mV
or 2.95 V.

# lifepo4wered-cli get VBAT_SHDN
2950

VBAT_BOOT

2 bytes little endian, register address 0x0C, read/write, saved to flash

LiFePO4wered/Pi+™ product brief 23 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

Default value: 5156  (corresponding to 3.15 V, resolution of 0.61 mV per LSB)

This value determines the battery voltage level at which the Raspberry Pi is allowed to boot.  Note that 
this value is higher than VBAT_SHDN to provide hysteresis.  This will ensure that the system will not 
oscillate between boot and shutdown when the battery is nearly empty, but then the voltage recovers 
once the load is removed.  Under heavy load, it may be necessary to increase this value to prevent 
continuous boot / shutdown cycling when the battery starts to be depleted.

The Raspberry Pi host software package contains scaling code so the value can be read and set in mV 
for convenience.  For instance, the following command reads the boot battery voltage as 3150 mV or 
3.15 V.

# lifepo4wered-cli get VBAT_BOOT
3150

VOUT_MAX

2 bytes little endian, register address 0x0E, read/write, saved to flash

Default value: 5449 (corresponding to 3.5 V, resolution of 0.64 mV per LSB)

This value determines the minimum output voltage present for which the LiFePO4wered/Pi+™ will 
refuse to boot the Raspberry Pi when it is supposed to be off (according to the state maintained in the 
LiFePO4wered/Pi+™).  The LiFePO4wered/Pi+™ power supply employs a bidirectional load switch 
that makes it possible to power the Raspberry Pi from a different source (such as its own power 
connector) with the LiFePO4wered/Pi+™ attached without causing damage (NOTE: this only works if 
the battery is present, damage will occur if the Raspberry Pi is powered from another power source and 
the battery has been removed from the LiFePO4wered/Pi+™).  Because the LiFePO4wered/Pi+™ 
should not be allowed to turn on when the Raspberry Pi is powered from a different source, this voltage
check provides a safety feature that prevents this from happening.

The Raspberry Pi host software package contains scaling code so the value can be read and set in mV 
for convenience.  For instance, the following command reads the maximum output voltage to allow 
boot as 3500 mV or 3.5 V.

# lifepo4wered-cli get VOUT_MAX
3500

VIN_THRESHOLD

2 bytes little endian, register address 0x10, read/write, saved to flash

Default value: 1451 (corresponding to ~4.5 V, resolution of 3.1 mV per LSB)

LiFePO4wered/Pi+™ product brief 24 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

This value determines the input (USB) voltage level at which the Raspberry Pi will be booted, if the 
battery voltage is also high enough (VBAT_BOOT threshold), and the AUTO_BOOT register is set to 
option 3 or 4.  It also determines the input voltage level at which the input is considered to be missing 
and the Raspberry Pi will be shut down after AUTO_SHDN_TIME minutes if this value is set.

The Raspberry Pi host software package contains scaling code so the value can be read and set in mV 
for convenience.  For instance, the following command reads the input voltage threshold as 4498 mV 
or 4.5 V (rounded).

# lifepo4wered-cli get VIN_THRESHOLD
4498

IOUT_SHDN_THRESHOLD

2 bytes little endian, register address 0x1A, read/write, saved to flash

Default value: 0 (magic value to turn the feature off, other values resolution of 0.71 mA per LSB)

When this register is set to the default value of 0, the LiFePO4wered/Pi+™ determines whether the 
Raspberry Pi has finished shutdown by monitoring the UART TX line, which will go from a high to 
low logic level and stay there after shutdown has finished.

However, when using the LiFePO4wered/Pi+™ with other SBCs, this option is sometimes not available
because the monitored GPIO pin doesn’t behave the same on different hardware.  Or the user may have
reason to disable the UART on the Raspberry Pi.  In these cases, shutdown detection by GPIO TX pin 
will not work, and by default the power will only be turned off after the PI_SHDN_TO time expires.

However, this register provides another option.  If the power consumption of the board and peripherals 
when running is different enough compared to when shutdown has finished, the current level can be 
used to detect that shutdown has occurred.  In that case this register can be set to a threshold current 
level between running and shutdown current.

The Raspberry Pi host software package contains scaling code so the value can be read and set in mA 
for convenience.  For instance, the following command reads the output current threshold as 100 mA.

# lifepo4wered-cli get IOUT_SHDN_THRESHOLD
100

VBAT_OFFSET

2 bytes little endian, register address 0x12, read/write, saved to flash

Default value: factory calibrated (resolution of 4.88 mV per LSB)

This register provides a calibration value for the battery voltage measurements.  It is a simple 1 point 

LiFePO4wered/Pi+™ product brief 25 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

offset calibration at 3.2V nominal that provides compensation for inaccuracy of the internal reference 
voltage and resistive divider.

The Raspberry Pi host software package contains scaling code so the value can be read and set in mV 
for convenience.  The user should not have to use this register, it is for factory calibration only.

VOUT_OFFSET

2 bytes little endian, register address 0x14, read/write, saved to flash

Default value: factory calibrated (resolution of 5.14 mV per LSB)

This register provides a calibration value for the output voltage measurements.  It is a simple 1 point 
offset calibration at the zero load output voltage that provides compensation for inaccuracy of the 
internal reference voltage and resistive divider.

The Raspberry Pi host software package contains scaling code so the value can be read and set in mV 
for convenience.  The user should not have to use this register, it is for factory calibration only.

VIN_OFFSET

2 bytes little endian, register address 0x16, read/write, saved to flash

Default value: factory calibrated (resolution of 24.8 mV per LSB)

This register provides a calibration value for the input voltage measurements.  It is a simple 1 point 
offset calibration at 5V nominal that provides compensation for inaccuracy of the internal reference 
voltage and resistive divider.

The Raspberry Pi host software package contains scaling code so the value can be read and set in mV 
for convenience.  The user should not have to use this register, it is for factory calibration only.

IOUT_OFFSET

2 bytes little endian, register address 0x18, read/write, saved to flash

Default value: 0 (corresponding to 0 mA, resolution of 0.71 mA per LSB)

This register provides a calibration value for the output current measurements.  It is a simple 1 point 
offset calibration value that by default is 0.  It is not factory calibrated because, due to the non-linearity 
of the IOUT reading, calibration should be performed in the region of interest.  The user can use this 
register to perform a custom calibration value suitable for their application.

The Raspberry Pi host software package contains scaling code so the value can be read and set in mA 
for convenience.

LiFePO4wered/Pi+™ product brief 26 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

AUTO_BOOT

1 byte, register address 0x20, read/write, saved to flash

Default value: 0x00

When this register is 0 (AUTO_BOOT_OFF), the LiFePO4wered/Pi+™ will stay off until the user 
presses the on/off button to turn the Raspberry Pi on.

Setting this register to 1 (AUTO_BOOT_VBAT) will make the Raspberry Pi boot immediately when 
sufficient battery voltage is available (VBAT >= VBAT_BOOT threshold).  This is useful when using 
the LiFePO4wered/Pi+™ as a UPS to maximize uptime, since the Raspberry Pi will run whenever 
possible.

Setting this register to 2 (AUTO_BOOT_VBAT_SMART) will make the Raspberry Pi boot 
immediately when sufficient battery voltage is available, but only if the unit was previously not shut 
down by the user, but shut down due to a low voltage condition or watchdog timeout.  This makes it so 
the user can still choose to turn the Raspberry Pi off with the button or from a user program.

Setting this register to 3 (AUTO_BOOT_VIN) will make the Raspberry Pi boot if sufficient battery 
voltage is available (VBAT >= VBAT_BOOT threshold) and the input voltage is also present (VIN >= 
VIN_THRESHOLD).  This can be useful in conjunction with the auto shutdown feature to boot and 
properly shut down the Raspberry Pi by using a flip switch in series with the input power.  It can also 
boot a solar powered system when the sun comes up.

Setting the register to 4 (AUTO_BOOT_VIN_SMART) enables the smart version of the previous 
setting, which still allows the user to shut down the unit manually as described above.

Setting this register to 5 (AUTO_BOOT_NO_VIN) will make the Raspberry Pi boot if sufficient 
battery voltage is available (VBAT >= VBAT_BOOT threshold) and there is no input voltage present 
(VIN < VIN_THRESHOLD).  This is useful in cases where the Raspberry Pi needs to take action when
external power goes away, for instance, when monitoring the health of another wall powered system.

Setting this register to 6 (AUTO_BOOT_NO_VIN_SMART) enables the smart version of the previous 
setting.  This allows the Raspberry Pi to shut down and stay off while external power is still missing, 
after it has taken care of what it needs to do.  Only after external power comes back and then goes away
again will it automatically boot the system next.

WAKE_TIME

2 bytes little endian, register address 0x26, read/write, not saved to flash

Default value: 0

LiFePO4wered/Pi+™ product brief 27 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

This register allows the user to set a time in minutes that determines how long the Raspberry Pi will 
stay in the off state before the LiFePO4wered/Pi+™ will automatically boot it again.  The timing is 
based on a 32kHz watch crystal.  If the value is 0, the wake timer is off.

This value cannot be saved in flash, but needs to be set by a user program every time before the 
Raspberry Pi shuts down.  It allows extended run time on battery power for tasks that have low duty 
cycles.  The LiFePO4wered/Pi+™ will still respond to button presses and the AUTO_BOOT setting as 
usual when the wake timer is set.

A user program can check the value of this register after boot.  The value will reflect the number of 
minutes remaining in the wake timer when the system was booted.  If there is still time remaining, this 
indicates the system boot was not triggered by the wake timer, but from another source, such as 
AUTO_BOOT or a button press.  For instance, the following command reads the wake time remaining 
as 7 minutes.

# lifepo4wered-cli get WAKE_TIME
7

SHDN_DELAY

2 bytes little endian, register address 0x1C, read/write, saved to flash

Default value: 40

This sets the number of LiFePO4wered/Pi+™ system ticks that elapse between when the Raspberry Pi 
is shut down (detected by the UART TX line going low or output current dropping below the set 
threshold) and when the power to it is turned off.  There are 8 ticks per second so the default delay is 
around 8 seconds, but this is not accurate because the counter is maintained in software in the task 
manager.  The default value is chosen to allow plenty of time between shutdown and power off for the 
Raspberry Pi’s LED light blink sequence to happen so users don’t become concerned that shutdown 
didn’t finish correctly.  The user can reduce this value to attain maximum run time on battery power in 
low power systems using the wake timer.

Another possible use for changing this value is when the Raspberry Pi 3 and newer is configured to 
disable the UART on the GPIO header.  This is actually the default state on recent Raspberry Pis, 
however the LiFePO4wered/Pi+™ software installer will change the system configuration to turn the 
UART back on.  If this conflicts with what the user wants to do, it is possible to keep the UART 
disabled and set this register to a large value.  This can make the system work correctly for shutdown 
and reboot even when UART TX line detection is not available.  The delay in that case has to be long 
enough to last through a reboot from the time the LiFePO4wered/Pi+™ daemon is unloaded until it's 
loaded again.

LiFePO4wered/Pi+™ product brief 28 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

It has been observed that when using the NOOBS distribution, the recovery mode screen on boot can 
cause a long enough delay to prevent reboots from working correctly.  It prevents the kernel from 
running quickly enough to pull the UART TX line high again before the shutdown delay timer runs out 
and the system is shut off instead of rebooted.  When using NOOBS, it is recommended to increase this
register value to 100 so reboots work correctly.

Since this is a deeply technical register, no scaling is provided by the host tools.  It’s assumed the user 
who changes it knows what they’re doing.

AUTO_SHDN_TIME

2 bytes little endian, register address 0x1E, read/write, saved to flash

Default value: 0xFFFF

Auto shutdown is a feature that will shut down the Raspberry Pi if the input (USB) voltage falls below 
the VIN_THRESHOLD level.  The shutdown will happen after a delay in minutes specified in this 
register.  The default value of 0xFFFF disables auto shutdown, which will allow the system to run on 
battery power for as long as battery power is available.  When this value is set to 0, immediate 
shutdown is triggered when the input power is removed.  Since in some situations where auto shutdown
is used it may be more desirable to keep the system running through short power interruptions, a run 
time on battery power can be set in minutes.  For instance, the following command can be used to keep 
the system running on battery power for 10 minutes after external power fails.

# lifepo4wered-cli set AUTO_SHDN_TIME 10
10

Note that if the battery is too depleted, or if this value is set too high, shutdown may still occur sooner 
than indicated by this register since VBAT check against the VBAT_SHDN threshold will take 
precedence.

PI_BOOT_TO

1 byte, register address 0x21, read/write, saved to flash

Default value: 30 (corresponding to 300 seconds or 5 minutes, resolution of 10 seconds per LSB)

The LiFePO4wered/Pi+™ will not indefinitely stay in the boot state if there is no response from the 
Raspberry Pi.  Instead, power will be turned back off after the boot timeout expires.  The boot timeout 
can be set in 10 second increments up to 2550 seconds or 42.5 minutes.  Setting this register to 0 turns 
the boot timeout off.

The Raspberry Pi host software package contains scaling code so the value can be read and set in 
seconds for convenience.  For instance, the following command reads the boot timeout as 300 s.

LiFePO4wered/Pi+™ product brief 29 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

# lifepo4wered-cli get PI_BOOT_TO
300

PI_SHDN_TO

1 byte, register address 0x22, read/write, saved to flash

Default value: 12 (corresponding to 120 seconds or 2 minutes, resolution of 10 seconds per LSB)

The LiFePO4wered/Pi+™ will not indefinitely stay in the shutdown state if the UART TX line (which 
is monitored to detect kernel shutdown) stays high.  Instead, power will be turned off after the 
shutdown timeout expires.  The shutdown timeout can be set in 10 second increments up to 2550 
seconds or 42.5 minutes.  Setting this register to 0 turns the shutdown timeout off.

This feature makes the LiFePO4wered/Pi+™ compatible with more single board computers that use the 
Raspberry Pi form factor and compatible GPIO header.  Many of these boards do not bring the UART 
TX line low on shutdown, preventing shutdown detection (unless IOUT_SHDN_THRESH can be 
used).  Using this shutdown timeout, the power can now be turned off after giving the board a 
reasonable amount of time to complete the shutdown sequence.

The Raspberry Pi host software package contains scaling code so the value can be read and set in 
seconds for convenience.  For instance, the following command reads the shutdown timeout as 120 s.

# lifepo4wered-cli get PI_SHDN_TO
120

RTC_TIME

4 bytes, register address 0x28, read/write, not saved to flash

Default value: counting up every second

The LiFePO4wered/Pi+™ uses a 32 kHz watch crystal as a time base, and implements this 32-bit 
register to store and track real time in the form of a Unix time stamp (seconds since midnight Jan 1 
1970), even when the host system is off.  When first powered, this register will start counting from 
zero.  The daemon automatically manages saving the host system time to this register on shutdown, and
restoring system time from this register on boot if it makes sense to do so.  The logic implemented in 
the daemon is designed to make the RTC functionality automatic and compatible with other (possibly 
more accurate) time sources such as network time and temperature compensated RTC modules.  There 
is no need for the user to manage this register directly.

RTC_WAKE_TIME

4 bytes, register address 0x2C, read/write, not saved to flash

LiFePO4wered/Pi+™ product brief 30 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

Default value: 0

With this register the user can specify an absolute time for the host system to be woken up.  The wake 
time is specified as a 32-bit Unix time stamp (seconds since midnight Jan 1 1970).

The LiFePO4wered/Pi+™ implements smart logic to ensure wake up requests are not missed, which 
could otherwise cause the system to stay off indefinitely in certain race conditions.  For instance, if the 
wake time was set to a time in the past, or of a wake time was set and then the system didn’t shut down 
in time before the wake time had passed, a check that would just compare whether the wake time is 
equal to the RTC time would never wake the host up.

Instead, the LiFePO4wered/Pi+™ checks if the current RTC time is greater than or equal to the wake 
time.  This way, the host will reboot immediately after shutdown if the wake time was missed.  The 
wake time register will automatically be reset to 0 if it causes the system to be booted.  This prevents 
erroneous repeated wake ups, yet preserves the ability to set a wake time in the future while other 
events may cause shutdowns and boots before the wake time.

For command line use, the date utility can be used in combination with the lifepo4wered-cli tool to 
conveniently set wake times.  For instance, the following command will wake the Raspberry Pi at 5 PM
next Friday.

# lifepo4wered-cli set RTC_WAKE_TIME `date +%s -d "5 pm next friday"`
1599865200

WATCHDOG_CFG

1 byte, register address 0x23, read/write, saved to flash

Default value: 0x00

The LiFePO4wered/Pi+™ implements a watchdog feature that can be used to ensure the user’s 
application keeps running correctly.  It consists of a timer that counts down every 10 seconds, and 
when it reaches zero, an action is taken.  Which action is taken is determined by this watchdog 
configuration register.

When the value is 0x00 (WATCHDOG_OFF), no action is taken and the watchdog feature is turned off.
In this state the watchdog timer will also not count down.

When the value is 0x01 (WATCHDOG_ALERT), the LED will start producing the fast error flash 
instead of the normal steady on (or whatever pattern the user has activated using the LED_STATE 
register) when the watchdog timer reaches zero.  This can alert the user that something is wrong with 
their application.

When the value is 0x02 (WATCHDOG_SHDN), the LiFePO4wered/Pi+™ will trigger a Raspberry Pi 

LiFePO4wered/Pi+™ product brief 31 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

shutdown when the watchdog timer reaches zero.  All the normal shutdown behavior is active: the 
Raspberry Pi will be told to shut down, but if it fails to do so, the shutdown timeout or the battery 
voltage falling below the VBAT_MIN threshold will turn the Raspberry Pi off if it fails to perform a 
clean shutdown.  In combination with the AUTO_BOOT feature, this can be used to restart the 
Raspberry Pi if the user application locks up and recover the application from a clean boot.

WATCHDOG_GRACE

1 byte, register address 0x24, read/write, saved to flash

Default value: 2 (corresponding to 20 seconds, resolution of 10 seconds per LSB)

This sets the watchdog grace period from when the host daemon informs the LiFePO4wered/Pi+™ that 
the system has booted, until the user application finally has its first chance to write to the watchdog 
timer.  It essentially is the initial value written to the watchdog timer on boot.

A user application may need some time after boot to start up, initialize, connect to WiFi, establish a 
server connection, etc. before it is ready to service the watchdog timer.  A full stack watchdog may 
require a lot of things to happen before it is ready to declare success by writing to the watchdog, or may
even require a remote heartbeat to service the watchdog.  All of this needs time.

The watchdog grace period can be set to something that makes sense for the user’s application, 
depending on how much time is required.  It can be set in 10 second increments up to 2550 seconds or 
42.5 minutes.

The Raspberry Pi host software package contains scaling code so the value can be read and set in 
seconds for convenience.  For instance, the following command reads the watchdog grace period as 20 
s.

# lifepo4wered-cli get WATCHDOG_GRACE
20

WATCHDOG_TIMER

1 byte, register address 0x30, read/write, not saved to flash

Default value: WATCHDOG_GRACE on boot

This is the watchdog timer register that needs to be written with a time value in 10 second increments 
when the watchdog is enabled with WATCHDOG_CFG.  When the watchdog is enabled, from the 
moment the timer is written it will count down in 10 second steps, until it reaches zero.  When it 
reaches zero, the action configured in WATCHDOG_CFG will take place.

The watchdog is intended as a user application watchdog and is not serviced by the 

LiFePO4wered/Pi+™ product brief 32 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

LiFePO4wered/Pi+™ daemon.  The idea is that if the user application is working correctly it will reset 
the timer value to a sufficient value at regular intervals, but if the user application suffers a failure, this 
will not happen in time and the LiFePO4wered/Pi+™ can take an appropriate action to try and recover.

The Raspberry Pi host software package contains scaling code so the value can be read and set in 
seconds for convenience.  For instance, the following command sets the watchdog timeout to 45 s.

# lifepo4wered-cli set WATCHDOG_TIMER 45
45

PI_RUNNING

1 byte, register address 0x31, read/write, not saved to flash

Default value: 1 once the Raspberry Pi is booted

This is an important register that determines the state of the Raspberry Pi power.  It is normally 
managed by the LiFePO4wered/Pi+™ itself and the LiFePO4wered/Pi+™ daemon on the host.  When 
the power to the Raspberry Pi is off or when the Raspberry Pi is booting, the value of this flag is 0.  
When the LiFePO4wered/Pi+™ daemon starts, it sets this flag to 1 to indicate the Raspberry Pi has 
booted.  This will change the state of the LiFePO4wered/Pi+™, the PWR LED will go from pulsing to 
on state, and will be ready for user input (pressing the button to turn the Raspberry Pi off again).  This 
flag can be cleared by various sources, such as a user pressing the button, the battery voltage falling 
below VBAT_SHDN, or the daemon being shut down when a user shuts down the Raspberry Pi.  On 
the other hand, the daemon will also trigger a shutdown if this flag goes low from another source.  In 
either case, the system will be shutting down, the LiFePO4wered/Pi+™ will show this by pulsating the 
PWR LED and the power will be turned off when shutdown is finished.

As mentioned, the user does not need to worry about manually controlling this flag, the LiFePO4wered/
Pi+™ daemon takes care of it.  If the user sets this flag to 0, this will trigger a system shutdown.

CFG_WRITE

1 byte, register address 0x25, read/write

Default value: 0

This register makes it possible to make configuration changes permanent by writing the values to flash 
memory (only those marked by “saved to flash”).  It may not be necessary to use this, since the 
LiFePO4wered/Pi+™ microcontroller stays powered even when the Raspberry Pi is off.  However, 
when the battery is removed, configuration changes will be lost.  This can be a good thing, it allows the
user to experiment with changing configuration values, and if they cause a problem, they can be 
undone by removing the battery and putting it back, with power disconnected.  Only if the user is very 

LiFePO4wered/Pi+™ product brief 33 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

sure about their configuration changes should they be written to flash.  Writing bad configurations to 
flash can MAKE THE DEVICE UNUSABLE.

To write the current configuration to flash, the user has to write the “magic value” 0x46 (70) to the 
CFG_WRITE register.  Any other value is ignored, and the register is always read as 0.

Command line tool specification
To make it convenient to interact with the LiFePO4wered/Pi+™, the software package installed on the 
Raspberry Pi provides a command line tool.  Help is provided when you run it without parameters:

# lifepo4wered-cli

The tool can be used to get and set the values of the LiFePO4wered/Pi+™ I2C registers described in the 
previous section without having to know implementation details such as register addresses and unit 
scaling.  For instance, to get the current battery voltage, run:

# lifepo4wered-cli get vbat

This will return the battery voltage converted to millivolts.  If no register is specified, the values of all 
available registers are dumped:

# lifepo4wered-cli get

You can use hex instead of get if you want to display values in hexadecimal notation.

Setting values works similarly.  For instance, to set the wake up timer to an hour, run:

# lifepo4wered-cli set wake_time 60

When you shut down the Raspberry Pi, it will wake up again in 60 minutes.  Using the RTC, you can 
also cause the Pi to wake up at an absolute time.  Instead of using the Unix time stamp directly, we can 
combine the lifepo4wered-cli command with other command line tools to make things easier.  The 
following will wake the Pi up at 10:00 pm today.

# lifepo4wered-cli set rtc_wake_time `date -d "10:00 pm" +%s`

Values can be provided in decimal notation or hexadecimal notation by using the 0x prefix.  For 

instance, if you want the Raspberry Pi to boot whenever the USB input voltage is applied, you can run:

# lifepo4wered-cli set auto_boot 0x03

Please refer to the I2C register specification for a complete reference of available options, but note that 
the command line tool will convert many registers from their low level values to more useful units such

LiFePO4wered/Pi+™ product brief 34 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

as millivolts and seconds for convenience.

The user running the tool needs to have sufficient permissions to access the I2C bus.  On Raspbian, the 

pi user by default can access the bus because it is in the i2c group.  If you run as a different user, you 

either need to add this user to the i2c group or run the tool with sudo.  On other distributions, a 

different group name may be used.  You can check the owner and group of the I2C device with:

# ls -l /dev/i2c-1

The command line tool returns the following negative values to indicate error conditions:

Return value Condition

-1 Could not access the LiFePO4wered/Pi+™ to perform the specified operation.  
Usually this condition is caused by insufficient privileges when trying to access the 
I2C bus.  Trying to run the command as root or with sudo to fix the problem.  
When writing settings, this value is also returned if a register is not writable.

-2 The I2C bus could be accessed and the operation is valid, but communication with the
LiFePO4wered/Pi+™ failed.  After trying several times (20 by default), the 
LiFePO4wered/Pi+™ I2C bus transaction could not be completed successfully.  This 
happens if the LiFePO4wered/Pi+™ is not physically present or if something 
(possibly another HAT) is preventing the I2C bus from operating correctly.

Electrical characteristics
Unless otherwise indicated, all characteristics apply for VIN = 4.85 V to 5.15 V and TA = 0 ºC to 50 ºC.
Typical values are at 25 ºC and VIN = 5 V.

Parameter Sym Min Typ Max Unit Conditions

Input voltage VIN 4.85 5.0 20.0 V

Battery leakage 
current

IDISCHARGE 4 μA Input voltage absent, 
Raspberry Pi powered off

Battery charge current ICHARGE 1.5 A 1.5A solder bridge closed, 
for use with 18650 or bigger
battery

Battery charge current ICHARGE 0.57 A 1.5A solder bridge open, for
use with 14500 battery

Continuous output 
current externally 
powered

IOUT_EXT 2.0 A If using 14500 battery 
option, power source needs 
to be solid (not sag under 

LiFePO4wered/Pi+™ product brief 35 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

load)

Continuous output 
current on battery

IOUT_18650 2.0 A 18650 battery installed, 
battery fully charged

Continuous output 
current on battery

IOUT_14500 0.75 A 14500 battery installed, 
battery fully charged

Output voltage VOUT 4.7 5.0 5.2 V

Default minimum 
battery voltage (power
forced off)

VBATMIN 2.85 V

Default shutdown 
battery voltage (Pi 
shutdown triggered)

VBATSHDN 2.95 V

Default minimum boot
battery voltage

VBATBOOT 3.15 V

Default output voltage 
preventing boot

VOUTMAX 3.50 V Raspberry Pi is powered 
from another source

Default input threshold
voltage

VINTHRS 4.50 V For auto boot and auto 
shutdown

Maximum Power 
Point threshold voltage
(default)

VINMPP 4.65 4.8 V Charge current will be 
limited to prevent VIN from 
dropping below threshold

Safety information
The LiFePO4wered/Pi+™ uses LiFePO4 (lithium iron phosphate) batteries which are known for their 
reliability, long life and safety compared to most other lithium-ion chemistries.  They also have very 
high power density, which is required for a high performance product like this, but which also requires 
precautions to safely handle and use the product.  Here are some things to keep in mind:

• While the LiFePO4wered/Pi+™ provides overload and short circuit protection on its VOUT and
VBSW outputs, the BAT connections are directly connected to the battery without any 
protection.  The BAT connections are only intended for connecting an external battery, please do
not use them to connect loads to an on-board battery, but use the protected VBSW output for 
this instead.

• In order to be able to offer the highest performance in normal operation, the battery connections
(BAT pads and on-board battery holder) do not include reverse battery protection.  When 
connecting an external battery or inserting a battery into the on-board holder, please take care to

LiFePO4wered/Pi+™ product brief 36 Rev 12 - 09/08/20



LiFePO4wered/Pi+™

ensure correct battery polarity.  Connecting the battery in reverse will cause high current flow 
and destroy the device.

• The LiFePO4wered/Pi+™ is only designed to work with 1S LiFePO4 cells.  Do not connect 
higher voltage battery packs.  Do not use any other type of battery with the device.  The 
maximum voltage across the battery terminals is 3.65V.

• The LiFePO4wered/Pi+™ is always powered when a battery is connected.  If it is necessary for 
the user to perform work on the unit such as soldering external wiring to any of the pads, it is 
highly recommended to remove / disconnect the battery first.

• Never place the unit on a conductive or metal surface.  As mentioned, the unit is powered from 
a high power cell and damage can occur if any parts of the device get shorted.  Take special care
to avoid anything that could cause a short across the battery terminals, as the battery is capable 
of sustaining very high currents, leading to excessive heat production or possibly fire.

• Never expose the unit to water, fire, excessive heat or chemicals.

We have taken every precaution to provide a high performance, safe product but do not accept any 
liability or responsibility for your use of it.  It is your responsibility as a customer to use the device in a 
proper and sensible way, and show proper respect for the high amount of energy present.  By using the 
device you agree that Silicognition LLC will not be held liable for any damages you may incur due to 
your use of the device.

Sales and support
To buy the LiFePO4wered/Pi+™, please visit http://lifepo4wered.com.  To order in quantity and for 
volume discounts, please contact sales@lifepo4wered.com.

For technical support, please contact support@lifepo4wered.com.

© 2018-2020 Silicognition LLC.  All rights reserved.

LiFePO4wered/Pi+™ product brief 37 Rev 12 - 09/08/20



X-ON Electronics
 
Largest Supplier of Electrical and Electronic Components
 
Click to view similar products for Power Management IC Development Tools category:
 
Click to view products by  Crowd Supply manufacturer:  
 
Other Similar products are found below :  

EVB-EP5348UI  MIC23451-AAAYFL EV  MIC5281YMME EV  124352-HMC860LP3E  DA9063-EVAL  ADP122-3.3-EVALZ  ADP130-0.8-

EVALZ  ADP130-1.8-EVALZ  ADP1740-1.5-EVALZ  ADP1870-0.3-EVALZ  ADP1874-0.3-EVALZ  ADP199CB-EVALZ  ADP2102-1.25-

EVALZ  ADP2102-1.875EVALZ  ADP2102-1.8-EVALZ  ADP2102-2-EVALZ  ADP2102-3-EVALZ  ADP2102-4-EVALZ  AS3606-DB 

BQ25010EVM  BQ3055EVM  ISLUSBI2CKIT1Z  LM2734YEVAL  LP38512TS-1.8EV  EVAL-ADM1186-1MBZ  EVAL-ADM1186-2MBZ 

ADP122UJZ-REDYKIT  ADP166Z-REDYKIT  ADP170-1.8-EVALZ  ADP171-EVALZ  ADP1853-EVALZ  ADP1873-0.3-EVALZ 

ADP198CP-EVALZ  ADP2102-1.0-EVALZ  ADP2102-1-EVALZ  ADP2107-1.8-EVALZ  ADP5020CP-EVALZ  CC-ACC-DBMX-51 

ATPL230A-EK  MIC23250-S4YMT EV  MIC26603YJL EV  MIC33050-SYHL EV  TPS60100EVM-131  TPS65010EVM-230  TPS71933-

28EVM-213  TPS72728YFFEVM-407  TPS79318YEQEVM  ISL85033EVAL2Z  UCC28810EVM-002  XILINXPWR-083  

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/analog-digital-ic-development-tools/power-management-ic-development-tools
https://www.x-on.com.au/manufacturer/crowdsupply
https://www.x-on.com.au/mpn/enpirion/evbep5348ui
https://www.x-on.com.au/mpn/micrel/mic23451aaayflev
https://www.x-on.com.au/mpn/micrel/mic5281ymmeev
https://www.x-on.com.au/mpn/analogdevices/124352hmc860lp3e
https://www.x-on.com.au/mpn/dialogsemiconductor/da9063eval
https://www.x-on.com.au/mpn/analogdevices/adp12233evalz
https://www.x-on.com.au/mpn/analogdevices/adp13008evalz
https://www.x-on.com.au/mpn/analogdevices/adp13008evalz
https://www.x-on.com.au/mpn/analogdevices/adp13018evalz
https://www.x-on.com.au/mpn/analogdevices/adp174015evalz
https://www.x-on.com.au/mpn/analogdevices/adp187003evalz
https://www.x-on.com.au/mpn/analogdevices/adp187403evalz
https://www.x-on.com.au/mpn/analogdevices/adp199cbevalz
https://www.x-on.com.au/mpn/analogdevices/adp2102125evalz
https://www.x-on.com.au/mpn/analogdevices/adp2102125evalz
https://www.x-on.com.au/mpn/analogdevices/adp21021875evalz
https://www.x-on.com.au/mpn/analogdevices/adp210218evalz
https://www.x-on.com.au/mpn/analogdevices/adp21022evalz
https://www.x-on.com.au/mpn/analogdevices/adp21023evalz
https://www.x-on.com.au/mpn/analogdevices/adp21024evalz
https://www.x-on.com.au/mpn/ams/as3606db
https://www.x-on.com.au/mpn/texasinstruments/bq25010evm
https://www.x-on.com.au/mpn/texasinstruments/bq3055evm
https://www.x-on.com.au/mpn/renesas/islusbi2ckit1z
https://www.x-on.com.au/mpn/texasinstruments/lm2734yeval
https://www.x-on.com.au/mpn/texasinstruments/lp38512ts18ev
https://www.x-on.com.au/mpn/analogdevices/evaladm11861mbz
https://www.x-on.com.au/mpn/analogdevices/evaladm11862mbz
https://www.x-on.com.au/mpn/analogdevices/adp122ujzredykit
https://www.x-on.com.au/mpn/analogdevices/adp166zredykit
https://www.x-on.com.au/mpn/analogdevices/adp17018evalz
https://www.x-on.com.au/mpn/analogdevices/adp171evalz
https://www.x-on.com.au/mpn/analogdevices/adp1853evalz
https://www.x-on.com.au/mpn/analogdevices/adp187303evalz
https://www.x-on.com.au/mpn/analogdevices/adp198cpevalz
https://www.x-on.com.au/mpn/analogdevices/adp210210evalz
https://www.x-on.com.au/mpn/analogdevices/adp21021evalz
https://www.x-on.com.au/mpn/analogdevices/adp210718evalz
https://www.x-on.com.au/mpn/analogdevices/adp5020cpevalz
https://www.x-on.com.au/mpn/digiinternational/ccaccdbmx51
https://www.x-on.com.au/mpn/microchip/atpl230aek
https://www.x-on.com.au/mpn/micrel/mic23250s4ymtev
https://www.x-on.com.au/mpn/micrel/mic26603yjlev
https://www.x-on.com.au/mpn/micrel/mic33050syhlev
https://www.x-on.com.au/mpn/texasinstruments/tps60100evm131
https://www.x-on.com.au/mpn/texasinstruments/tps65010evm230
https://www.x-on.com.au/mpn/texasinstruments/tps7193328evm213
https://www.x-on.com.au/mpn/texasinstruments/tps7193328evm213
https://www.x-on.com.au/mpn/texasinstruments/tps72728yffevm407
https://www.x-on.com.au/mpn/texasinstruments/tps79318yeqevm
https://www.x-on.com.au/mpn/renesas/isl85033eval2z
https://www.x-on.com.au/mpn/texasinstruments/ucc28810evm002
https://www.x-on.com.au/mpn/texasinstruments/xilinxpwr083

