
wESP32™

Introduction
The wESP32™ is an ESP32 core board with wired Ethernet connectivity and Power over Ethernet that
was designed to help Makers quickly create zero-setup, single-wire-install connected devices. By
combining a powerful microcontroller with excellent community support, 13 W of power, and reliable
connectivity in a compact footprint, the wESP32™ gives you a head start in your next IoT design and
allows you to focus on your application.

The wESP32™ provides the following functionality and features:

• Espressif Systems ESP32-WROOM-32 module with 4 MB of flash for revisions prior to 7,
ESP32-WROOM-32E module with 16 MB of flash from revision 7 onward.

• Optional wESP32-Prog module for programming and/or USB serial console can be plugged in
as needed or soldered in permanently.

• IEEE 802.3at Type 1 Class 0 compliant PoE with 12.95+ W of power available at the default 12
V output setting for V+.

• Optional 5 V output setting for V+ configurable by solder jumper with 5 W of power available.

wESP32™ product brief 1 Rev 8 - 09/13/21

wESP32™

• 3.3 V output with up to 6 W output power available (power taken from V+).
• Applying external power to V+ is supported, in case PoE is not available.
• Applying power through the wESP32-Prog USB port is supported (only provides USB 5 V on

V+).
• High performance RJ-45 jack with optimized data path provides excellent data throughput.
• Compatible with PoE Mode A (power over data pairs) and PoE Mode B (power over spare

pairs) and Auto-MDIX allowing the use of straight and cross-over Ethernet cables.
• Designed with full data and power path isolation to comply with the IEEE 802.3at 1500 Vrms

isolation requirement.
• High quality PCB with 2 oz copper and mounting hole designed to sink heat away from the PoE

PD controller for optimal thermal performance.
• 20-pin header footprint with 3.3 V, V+ power and 15 of the ESP32 GPIOs available for your

application.
• Compact 75 mm by 40 mm footprint with 4 mounting holes compatible with common M2.5 or

4-40 screws.

Hardware

Physical specification

wESP32™ product brief 2 Rev 8 - 09/13/21

wESP32™

The image above shows the wESP32™ in detail with certain features highlighted.

The wESP32™ is constructed on a high-quality 1.2 mm thick FR4 PCB. The board is designed to
provide electrical isolation between the ESP32 application portion and the Ethernet cable to ensure
safety and performance as demanded by the IEEE 802.3at specification.

Mounting holes
Four 3 mm diameter mounting holes are located 3.5 mm from each board edge and are compatible with
both M2.5 and 4-40 screws.

As can be seen in the image, two of the mounting holes are plated with metal and two are not. The
mounting hole on the bottom left marked in red is electrically connected to the potential of the
upstream PoE PSE (Power Sourcing Equipment) and is thermally coupled to the PoE PD (Powered
Device) controller chip to the right of it. Aside of mounting, the main purpose of this hole is to be able
to provide heat sinking for the PD controller when under high load by screwing a metal heat sink to the
hole. Note that since this hole is electrically connected to the PSE, it should not be connected to a
metal case the user can touch as this would negate the isolation.

The mounting hole on the top right marked in blue is by default not electrically connected to the rest of
the board, but can be connected by closing solder jumper “HG” marked in yellow if the user wants to
locally ground the system or electrically connect the ESP32 application side of the board to a metal
case. As noted above, this mounting hole and the bottom left mounting hole should not be electrically
connected as this would negate the isolation.

Classification resistor
On the left side of the board, marked in brown, is an unpopulated resistor footprint R18 that can be
used to add an optional 0603 size power classification resistor. By default, with R18 not populated, the
wESP32™ reports itself to the PoE PSE as a “Class 0” device, meaning classification is not
implemented and up to 12.95 W is available to the device. The table below documents the resistor
values that R18 can be populated with to indicate power requirement classification to the PSE:

R18 value Power Class Power range at PD Description

> 681 Ω 0 0.44 – 12.95 W Classification unimplemented

140 Ω 1% 1 0.44 – 3.84 W Very low power

75 Ω 1% 2 3.84 – 6.49 W Low power

48.7 Ω 1% 3 6.49 – 12.95 W Mid power

wESP32™ product brief 3 Rev 8 - 09/13/21

wESP32™

5 V option
The feature marked in green in the middle of the board is the “5V” solder jumper. By default, the V+
power output has a voltage of 12 V. This configuration provides the maximum amount of output power
capability (12.95+ W as specified for IEEE 802.3at Type 1 Class 0). However, sometimes the user may
need 5 V instead. By bridging this solder jumper, the V+ power output voltage will be set to 5 V
instead. In the 5 V output configuration, only 5 W of power is available.

GPIO header footprint
On the right side of the board, marked in purple blue, is the GPIO header footprint JP1. This is a bare
through-hole 2 x 10 pin 0.1” footprint where the user can directly solder wires or add a header, for
instance the optional 2 x 10 position female header. This is where the user can connect their
application circuitry.

The central idea for the wESP32™ is that it provides processing, connectivity and power functionality,
and the user can create a simple add-on board with their application specific sensors, level shifters,
power drivers and connectors that plugs in to the GPIO header. The header is electrically connected to
the ESP32 application side of the board and isolated from the Ethernet cable, so the user doesn’t need
to worry about issues with touching or grounding anything connected to the GPIO header.

The wESP32™ makes many of the GPIO signals of the ESP32-WROOM-32 module available on the
GPIO header, but some are missing because they are either used by the Ethernet MAC RMII interface
or the programming circuitry. All pins that are on the GPIO header are exclusively available to the user
application. The following graphic shows the available pins:

This documents the pinout of the GPIO header, and the default mapping of peripherals when using the
Arduino development environment (and other environments with the concept of “board files” follow
this layout). Please note that other development environments such as ESP32-IDF and MicroPython
provide more flexibility, and allow many of these functions to be mapped to any available pin.
However, if compatibility with future add-on boards that work with Arduino is desired, it may make

wESP32™ product brief 4 Rev 8 - 09/13/21

wESP32™

sense to stick to these mappings even for those development environments.

Notes:

• Not all pins have output capability. The input-only pins are marked in lighter orange.

• TCHx are touch channels, Ax are analog (ADC) inputs.

• UART0 is not mapped to the GPIO header but connected to programming / serial console port
J2.

• Pin 1 is marked on the silk screen but when a header is installed it may not be possible to see
this. In that case, pin 1 is the pin closest to the non-plated mounting hole, toward the edge of
the board.

• Certain ESP32 pins are so-called “strapping pins” that configure the chip on boot. Of those,
IO2, IO12 and IO15 are available on the GPIO header. The user is responsible for ensuring that
the circuitry they attach does not interfere with the ESP32 boot or programming sequence by
making sure their circuitry does not pull either IO2 or IO12 high when the system first is
powered. There pins need to be either left floating (allowing the built-in pull-downs to do their
job) or driven low on boot.

Programming / serial console footprint
In the middle, marked in pink, is the programming and/or serial console header footprint J2. Here the
user can connect either their own ESP32 programmer or a wESP32-Prog module. The footprint uses a
staggered layout so it is possible to temporarily press-fit a wESP32-Prog module into place for one
time programming. For reliable operation during development it is recommended to actually solder the
module permanently to the wESP32™, and of course if the application requires a USB serial
connection, this can be another reason to install it permanently. The header is electrically connected to
the ESP32 application side of the board and isolated from the Ethernet cable, so the user does not need
to worry about connecting the USB to their PC while Ethernet is connected. The pinout of the header
is documented below:

Pin Name Notes

1 IO0 Used to select boot mode for either normal boot (high or not driven since the
wESP32™ contains a pull-up) or programming (low, see ESP32 documentation).
Connect to programming tool DTR signal for auto programming by esptool.py.
Note that after normal boot, this pad signal will be driven by a 50 MHz clock for the
Ethernet PHY and MAC so do not drive it or put a load on it because it may interfere
with the operation of the Ethernet subsystem.

wESP32™ product brief 5 Rev 8 - 09/13/21

wESP32™

2 EN Used to reset the ESP32 and during programming.
Connect to programming tool RTS signal for auto programming by esptool.py.

3 GND Ground reference, connected to ESP32 application side of the board and isolated from
Ethernet.

4 TXD UART0 transmit line from the wESP32™, receive line as seen from the external
programming / console device.

5 RXD UART0 receive line from the wESP32™, transmit line as seen from the external
programming / console device.

6 V+ Positive supply voltage. If no other power source is present, the wESP32™ can be
powered from the connected programming / serial console device.
Note that when connected to a PoE PSE, this pad will have 12 V power on it (or 5 V if
the “5V” solder jumper is bridged), so make sure you have a blocking diode in your
programming device or your device can handle this voltage if the pad is connected!

Pin 1 is toward the middle of the board, pin 6 near the edge of the board. An important thing to note is
that to correctly operate, the levels of three other pins are important during boot:

• IO2 must be floating or driven low to correctly enter programming mode.

• IO12 must be floating or driven low to select the correct flash voltage during normal boot or
when entering programming mode.

• IO15, if driven low during boot, suppresses boot messages printed by the ROM bootloader.

Revision changes
The board revision can be found next to the Ethernet jack. From revision 7 onward, a 4-layer PCB
with 1 oz copper is used, while older revisions use a 2-layer PCB with 2 oz copper.

From revision 7 onward, the ESP32 module is an ESP32-WROOM-32E with 16 MB of flash, while
older revisions used an ESP32-WROOM-32 module with 4 MB of flash. No software change is
required, the boards with 16 MB of flash will work fine with images created for modules with 4 MB of
flash, but the software has to be changed if the user wants to take advantage of the extra flash.

From revision 7 onward, the board uses an RTL8201FI Ethernet PHY chip for increased reliability
versus older revisions that used a LAN8720AI Ethernet PHY. A software change is necessary to
support the new PHY. In most cases, the only thing that changes is the definition of the PHY declared
in the code.

wESP32™ product brief 6 Rev 8 - 09/13/21

wESP32™

Mechanical dimensions
Below is a drawing with most of the relevant mechanical dimensions necessary for integration of the
wESP32™.

The mounting holes are 3 mm in diameter, allowing the use of common M2.5 or 4-40 screws for
mounting. The tallest component is the Ethernet jack, this is a Hanrun HR861153C or compatible jack.
Including EMI tabs, this jack extends 15.2 mm above the PCB. The PCB is 1.2 mm in thickness and
the jack’s mechanical tabs and pins extend about 2 mm below the PCB. Keep in mind that some of
these pins are electrically connected to the remote side of the Ethernet cable, and clearance needs to be
maintained to any metal enclosure parts to maintain electrical isolation.

wESP32-Prog
A small programming / USB serial console submodule was created to be able to conveniently program
the wESP32™ or to provide an optional USB serial port if required by the user’s application. The tiny
22 mm x 15 mm module connects to the wESP32™ programming / serial console header footprint J2.

wESP32™ product brief 7 Rev 8 - 09/13/21

wESP32™

It features the Silicon Labs CP2102N chip for excellent cross platform driver support, on-board auto-
program circuitry to transparently handle device programming and serial console use, a V+ blocking
diode and ESD protection.

The user is free to use another programming device if they want, but this module is available for those
who have no other ESP32 programming device or want a solution that was specifically designed to
work well with the wESP32™.

Software support

Warning: GPIO pin configuration
By default, the wESP32™ ships with MicroPython and a boot.py script that automatically

configures the GPIO pins correctly to communicate with the Ethernet PHY and enables the Ethernet
subsystem. Plugging in an Ethernet cable should automatically connect the board to the network with
DHCP.

If the user wants to use a different software environment, it is the user’s responsibility to ensure that the
software loaded on the ESP32 configures the GPIO pins that are connected to the Ethernet PHY
correctly. Many of the signals between the ESP32 and the Ethernet PHY are part of the high speed
RMII bus, and they are directly connected together without any protection. Pins involved in
connectivity between the ESP32 and PHY are IO0, IO16, IO17, IO19, IO21, IO22, IO25, IO26, IO27.

If the user loads software on the ESP32 that does not configure the RMII pins correctly, it is possible
the software will configure the pins in such a way that physical damage may result, for instance

wESP32™ product brief 8 Rev 8 - 09/13/21

wESP32™

connecting an output from the PHY to an output of the ESP32, resulting in a short circuit through the
chip’s output drivers. This may cause damage, at least to board revisions using the LAN8720. The
new RTL8201 has never been damaged during our testing.

It is recommended the wESP32™ is first tested with the default MicroPython software to confirm
network functionality, before other software is loaded. Basic network functionality can be confirmed

by running lan.ifconfig() and checking that the wESP32™ received an IP address from DHCP.

Defective units will not be replaced once they have been flashed with different software.

Espressif ESP-IDF
https://github.com/espressif/esp-idf

ESP-IDF is the official Espressif development framework for the ESP32. Since the ESP-IDF provides
the ultimate flexibility, it is out-of-the-box compatible with the wESP32™. The only thing the user
needs to do to make it work with the wESP32™ is set the right configuration for how the PHY is

connected and configured (either in the menuconfig if using example projects, or in code):

• Ethernet PHY type is RTL8201 from revision 7 boards onward and LAN8720 for older
revisions

• PHY interface is RMII

• PHY address is 0

• Clock mode is GPIO0 external input

• PHY power/reset pin is disabled (set to -1)

• SMI MDC pin is 16, SMI MDIO pin is 17

In code, this can be done with the following code snippet to configure and start Ethernet:

eth_mac_config_t mac_config = ETH_MAC_DEFAULT_CONFIG();
mac_config.smi_mdc_gpio_num = 16;
mac_config.smi_mdio_gpio_num = 17;
esp_eth_mac_t *mac = esp_eth_mac_new_esp32(&mac_config);

eth_phy_config_t phy_config = ETH_PHY_DEFAULT_CONFIG();
phy_config.phy_addr = 0;
phy_config.reset_gpio_num = -1;
// For boards revision 7 and onward, use RTL8201
esp_eth_phy_t *phy = esp_eth_phy_new_rtl8201(&phy_config);
// For boards before revision 7, use LAN8720
// esp_eth_phy_t *phy = esp_eth_phy_new_lan8720(&phy_config);

wESP32™ product brief 9 Rev 8 - 09/13/21

wESP32™

esp_eth_handle_t eth_handle = NULL;
esp_eth_config_t config = ETH_DEFAULT_CONFIG(mac, phy);
ESP_ERROR_CHECK(esp_eth_driver_install(&config, ð_handle));

ESP_ERROR_CHECK(esp_netif_attach(eth_netif, esp_eth_new_netif_glue(eth_handle)));
ESP_ERROR_CHECK(esp_eth_start(eth_handle));

Full details can be found in the ESP-IDF Programming Guide (https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/api-reference/network/esp_eth.html).

For the ESP-IDF ‘ethernet/iperf’ and other examples, the correct configuration can be applied using

make menuconfig under “Example Configuration”:

Arduino-ESP32
https://github.com/espressif/arduino-esp32

The Arduino-ESP32 project allows you to program the wESP32™ from the popular Arduino IDE.

Installation instructions are in the repo’s README.md, support for wESP32™ boards is fully integrated

into the stable release so you can use the Adruino Boards Manager installation instructions. Support
for the RTL8201 used in revision 7 boards and onward requires version 2.0.0 or higher.

Once the ESP32 support is installed, you can select the wESP32™ from the Arduino IDE menu:

wESP32™ product brief 10 Rev 8 - 09/13/21

wESP32™

Tools → Board → Silicognition wESP32

To use the Ethernet connection in your sketch, you need to #include <ETH.h> and call

ETH.begin() to start the Ethernet peripheral. This function can take optional parameters to set the

configuration, the defaults are currently set for the wESP32™ before revision 7, for revision 7 you
need to add parameters to select the RTL8201 PHY. It is likely that in the future, the default will be
changed to work for the RTL8201 and extra parameters have to be specified for older LAN8720
boards.

Below is a minimal web server with mDNS example sketch:

#include <ETH.h>
#include <WebServer.h>
#include <ESPmDNS.h>

// Web server
WebServer server(80);

// HTTP handlers
void handleRoot() {
 server.send(200, "text/plain", "Hello from wESP32!\n");
}

void handleNotFound() {
 server.send(404, "text/plain", String("No ") + server.uri() + " here!\n");
}

void setup(){
 // Start the Ethernet, revision 7+ uses RTL8201
 ETH.begin(0, -1, 16, 17, ETH_PHY_RTL8201);
 // The defaults work for older revision boards
 // ETH.begin();
 // You can browse to wesp32demo.local with this
 MDNS.begin("wesp32demo");

 // Bind HTTP handler
 server.on("/", handleRoot);
 server.onNotFound(handleNotFound);

 // Start the Ethernet web server
 server.begin();
 // Add service to MDNS-SD
 MDNS.addService("http", "tcp", 80);
}

void loop(){
 server.handleClient();
}

wESP32™ product brief 11 Rev 8 - 09/13/21

wESP32™

MicroPython
https://github.com/micropython/micropython/

The MicroPython project provides a rich Python 3 environment for small microcontrollers. The ESP32
and Ethernet are well supported, and due to its flexible nature, the wESP32™ is supported out-of-the-
box.

The following is the minimum code needed to get a wESP32™ before revision 7 that used the
LAN8720 PHY connected to Ethernet with MicroPython:

import machine
import network

lan = network.LAN(mdc = machine.Pin(16), mdio = machine.Pin(17), power = None,
phy_type = network.PHY_LAN8720, phy_addr = 0)
lan.active(1)

This works with ESP-IDF v3.x based MicroPython releases and with ESP-IDF v4.x based
MicroPython releases from version v1.16 onward.

For revision 7 and above wESP32™ boards, MicroPython v1.16 or newer based on ESP-IDF v4.x is
required to support the RTL8201. The following is the minimum code needed when using this PHY:

import machine
import network

lan = network.LAN(mdc = machine.Pin(16), mdio = machine.Pin(17), power = None,
phy_type = network.PHY_RTL8201, phy_addr = 0)
lan.active(1)

From MicroPython version 1.17 on, there is a custom build of MicroPython for the wESP32™ revision
7 to make use of the full 16 MB of flash available on the board. The “Generic ESP32 module” binaries
will still work, but only provide access to 4 MB of flash. The MicroPython website does not yet have a
download page specific to the wESP32™. To get the wESP32™ build, copy the URL of a “Generic
ESP32” binary and add a “w” at the start of the filename. For instance, the download link of version
1.17 for the wESP32™ is:

https://micropython.org/resources/firmware/ w esp32-20210902-v1.17.bin

Once connected, all networking functionality will occur over Ethernet.

The wESP32™ by default ships with MicroPython and a pre-installed boot.py script that contains

the code shown above, configured for the correct PHY populated on a particular board revision. This

wESP32™ product brief 12 Rev 8 - 09/13/21

wESP32™

means that out-of-the-box, the wESP32™ will connect to the network when the Ethernet jack is
connected without any code needing to be supplied by the user.

Lua-RTOS-ESP32
https://github.com/whitecatboard/Lua-RTOS-ESP32

Lua-RTOS-ESP32 provides a rich Lua environment for the ESP32. Installation instructions are in the

README.md, when prompted to enter a board type choose the option for the “Silicognition wESP32”

with or without OTA. As of the time of writing, this project is built on IDF 3.x and only supports board
revisions before revision 7 that use the LAN8720 Ethernet PHY.

Once built and flashed, the minimum code to get connected over Ethernet is:

net.en.setup()
net.en.start()

Once connected, all networking functionality will occur over Ethernet. Since this runtime has dropbear
on board, you can even remotely log in to the Lua REPL over SSH!

NodeMCU
https://github.com/nodemcu/nodemcu-firmware/tree/dev-esp32-idf4

Fans of Lua have a second option to run Lua on the wESP32™, and this one works with revision 7 and
newer. The dev-esp32-idf4 branch has to be used as it supports both the LAN8720 on older

revisions and the RTL8201 on revision 7. They provide quite a nice implementation with events that
allow the user to respond to various states of the Ethernet connection such as cable connect / disconnect
and acquiring an IP address.

NodeMCU does not seem to provide ready-made images, you have to check out the dev-esp32-

idf4 branch from Github and follow the build instructions found in the project’s documentation. To

be able to use the Ethernet port, you have to ensure you turn on the Ethernet module when you run
make menuconfig to configure your build options:

Component config → NodeMCU modules → Ethernet module

wESP32™ product brief 13 Rev 8 - 09/13/21

wESP32™

Once built and flashed, the minimum code to get connected over Ethernet when using a board before
revision 7 is:

eth.init({phy = eth.PHY_LAN8720, addr = 0, mdc = 16, mdio = 17})

For revision 7 and later boards using the RTL8201, instead use:

eth.init({phy = eth.PHY_RTL8201, addr = 0, mdc = 16, mdio = 17})

Mongoose OS
https://mongoose-os.com/

Mongoose OS is a development framework for IoT firmware, with good support for the ESP32. It
comes with a lot of back end functionality to take care of device management, such as a device
dashboard and OTA updates.

Ethernet on the ESP32 is supported, but at the time of writing, the project does not seem to tie it in to
the network stack in any way to make it useful. See this issue on Github.

Hoping that this is a temporary problem, below is an example mos.yml file that contains the right bits

to configure a project to make use of the wESP32™ hardware:

author: mongoose-os
description: A JS-enabled demo Mongoose OS firmware
platform: esp32

wESP32™ product brief 14 Rev 8 - 09/13/21

wESP32™

version: 1.0
manifest_version: 2017-05-18
libs_version: ${mos.version}
modules_version: ${mos.version}
mongoose_os_version: ${mos.version}

config_schema:
 - ["mqtt.server", "iot.eclipse.org:1883"]
 - ["i2c.enable", true]

tags:
 - js

filesystem:
 - fs

config_schema:
 - ["eth.clk_mode", 0]
 - ["eth.mdc_gpio", 16]
 - ["eth.mdio_gpio", 17]
 - ["eth.phy_addr", 0]
 - ["eth.enable", true]

libs:
 - location: https://github.com/mongoose-os-libs/ethernet
 - location: https://github.com/mongoose-os-libs/js-demo-bundle

Note in particular the config_schema section that configures the Ethernet subsystem and the

ethernet library in the libs section. This is sufficient for wESP32™ revisions prior to 7 using the

LAN8720, from revision 7 onward, the following part needs to be added to configure the Ethernet
driver to use the RTL8201 PHY:

conds:
 - when: mos.platform == "esp32"
 apply:
 cdefs:
 MGOS_ETH_PHY_LAN87x0: 0
 MGOS_ETH_PHY_RTL8201: 1

wESP32™ product brief 15 Rev 8 - 09/13/21

wESP32™

Compatibility
The wESP32™ was created to work with standard compliant IEEE 802.3af and 802.3at PoE power
sourcing equipment (PSE). It is not compatible with so-called “passive PoE” systems on the market
but requires a minimum voltage of 37V and power negotiation as per the IEEE specification. Category
3 or higher rated cable is required.

While cost may be somewhat higher for standard compliant equipment, it is preferable because a lot of
though was put in to the standard by industry experts to ensure that it works well and is safe, not just in
bench or lab settings, but also in actual production installations. Transmitting power over long wire
runs is just not compatible with low 12 V or 24 V line voltages and devices lacking isolation, and the
fact that these non-compliant hackish solutions exist unfortunately results in customer confusion when
“PoE” devices don’t work together.

It should be noted that since the wESP32™ is powered from a third party device over a potentially long
cable, across possibly a large number of connecting points, performance in reaching the specified 12.95
W of power is not solely dependent on the wESP32™ itself but also on many external factors.

Electrical characteristics
Unless otherwise indicated, all characteristics apply for VIN = 37 V – 57V and TA = 0 ºC to 50 ºC.
Typical values are at 25 ºC and VIN = 48 V.

Parameter Sym Min Typ Max Unit Conditions

PoE input voltage VIN 37 48 57 V

V+ output voltage V+ 12 “5V” solder jumper open

V+ output voltage (5V
option)

V+OPT 5 “5V” solder jumper bridged

V+ external input
voltage

V+EXT 15 V V+ supplied from JP1

Total output power POUT 12.95 W

V+ output power POUT_V+ 12.5 W “5V” solder jumper open

V+ output power (5V
option)

POUT_V+OPT 5 W “5V” solder jumper closed

Logic supply voltage VDD 3.3 V

Logic supply power PVDD 6 W “5V” solder jumper open,
V+ supplied from PoE

wESP32™ product brief 16 Rev 8 - 09/13/21

wESP32™

Disclaimer
We have taken every precaution to provide a high performance, safe product but do not accept any
liability or responsibility for your use of it. It is your responsibility as a customer to use the device in a
proper and sensible way, and show proper respect for the high amount of energy present, and
maintaining isolation. By using the device you agree that Silicognition LLC will not be held liable for
any damages you may incur due to your use of the device.

Sales and support
To buy the wESP32™, please visit http://wesp32.com. To order in quantity and for volume discounts,
please contact sales@wesp32.com.

For technical support, please contact support@wesp32.com.

© 2018-2021 Silicognition LLC. All rights reserved.

wESP32™ product brief 17 Rev 8 - 09/13/21

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for WiFi Development Tools - 802.11 category:

Click to view products by Crowd Supply manufacturer:

Other Similar products are found below :

YSAEWIFI-1 SKY65981-11EK1 QPF7221PCK-01 SIMSA915C-Cloud-DKL SIMSA433C-Cloud-DKL ISM43903-R48-EVB-E

QPF4206BEVB01 RN-G2SDK SKY85734-11EK1 SKY85735-11EK1 MIKROE-2336 EVAL_PAN1760EMK 3210 ATWINC1500-XPRO

2471 DM990001 WRL-13711 2999 ATWILC3000-SHLD DFR0321 TEL0118 3213 DFR0489 SLWSTK-COEXBP WRL-13804 DEV-

13907 UP-3GHAT-A20-0001 3405 TEL0078 2680 2702 2821 3606 3653 3654 4178 4285 CS-ANAVI-25 CS-ANAVI-26 CS-ANAVI-

23 CS-ANAVI-24 CS-ANAVI-28 CS-ANAVI-29 CS-ANAVI-30 CS-ANAVI-31 ABX00021 ABX00023 AKX00004 AKX00014

AKX00015

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/communication-development-tools/rf-wireless-development-tools/wifi-development-tools-802-11
https://www.x-on.com.au/manufacturer/crowdsupply
https://www.x-on.com.au/mpn/renesas/ysaewifi1
https://www.x-on.com.au/mpn/skyworks/sky6598111ek1
https://www.x-on.com.au/mpn/qorvo/qpf7221pck01
https://www.x-on.com.au/mpn/sensiedge/simsa915cclouddkl
https://www.x-on.com.au/mpn/sensiedge/simsa433cclouddkl
https://www.x-on.com.au/mpn/inventek/ism43903r48evbe
https://www.x-on.com.au/mpn/qorvo/qpf4206bevb01
https://www.x-on.com.au/mpn/microchip/rng2sdk
https://www.x-on.com.au/mpn/skyworks/sky8573411ek1
https://www.x-on.com.au/mpn/skyworks/sky8573511ek1
https://www.x-on.com.au/mpn/mikroelektronika/mikroe2336
https://www.x-on.com.au/mpn/panasonic/evalpan1760emk
https://www.x-on.com.au/mpn/adafruit/3210
https://www.x-on.com.au/mpn/microchip/atwinc1500xpro
https://www.x-on.com.au/mpn/adafruit/2471
https://www.x-on.com.au/mpn/microchip/dm990001
https://www.x-on.com.au/mpn/sparkfun/wrl13711
https://www.x-on.com.au/mpn/adafruit/2999
https://www.x-on.com.au/mpn/microchip/atwilc3000shld
https://www.x-on.com.au/mpn/dfrobot/dfr0321
https://www.x-on.com.au/mpn/dfrobot/tel0118
https://www.x-on.com.au/mpn/adafruit/3213
https://www.x-on.com.au/mpn/dfrobot/dfr0489
https://www.x-on.com.au/mpn/siliconlabs/slwstkcoexbp
https://www.x-on.com.au/mpn/sparkfun/wrl13804
https://www.x-on.com.au/mpn/sparkfun/dev13907
https://www.x-on.com.au/mpn/sparkfun/dev13907
https://www.x-on.com.au/mpn/aaeon/up3ghata200001
https://www.x-on.com.au/mpn/adafruit/3405
https://www.x-on.com.au/mpn/dfrobot/tel0078
https://www.x-on.com.au/mpn/adafruit/2680
https://www.x-on.com.au/mpn/adafruit/2702
https://www.x-on.com.au/mpn/adafruit/2821
https://www.x-on.com.au/mpn/adafruit/3606
https://www.x-on.com.au/mpn/adafruit/3653
https://www.x-on.com.au/mpn/adafruit/3654
https://www.x-on.com.au/mpn/adafruit/4178
https://www.x-on.com.au/mpn/adafruit/4285
https://www.x-on.com.au/mpn/anavitechnology/csanavi25
https://www.x-on.com.au/mpn/anavitechnology/csanavi26
https://www.x-on.com.au/mpn/anavitechnology/csanavi23
https://www.x-on.com.au/mpn/anavitechnology/csanavi23
https://www.x-on.com.au/mpn/anavitechnology/csanavi24
https://www.x-on.com.au/mpn/anavitechnology/csanavi28
https://www.x-on.com.au/mpn/anavitechnology/csanavi29
https://www.x-on.com.au/mpn/anavitechnology/csanavi30
https://www.x-on.com.au/mpn/anavitechnology/csanavi31
https://www.x-on.com.au/mpn/arduino/abx00021
https://www.x-on.com.au/mpn/arduino/abx00023
https://www.x-on.com.au/mpn/arduino/akx00004
https://www.x-on.com.au/mpn/arduino/akx00014
https://www.x-on.com.au/mpn/arduino/akx00015

