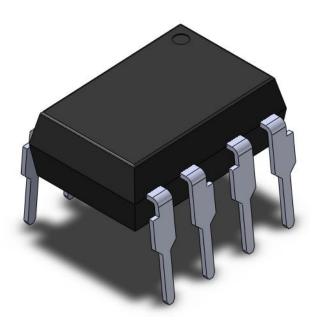


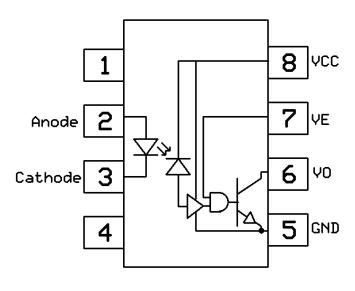
Features

- High speed 10MBit/s
- High isolation voltage between input and output (Viso=5000 Vrms)
- Guaranteed performance from -40°C to 85°C
- Wide operating temperature range of -55°C to 100°C
- Regulatory Approvals
 - UL UL1577 (E364000)
 - VDE EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898
 - IEC60065, IEC60950

Description


The 6N137, CT2601 optocouplers consist of a 850 nm AlGaAS LED, optically coupled to a very high speed integrated photo-detector logic gate with a strobable output. This output features an open collector,

there by permitting wired OR outputs. The switching parameters are guaranteed over the temperature range of -40°C to +85°C. A maximum input signal of 5mA will provide a minimum output sink current of 13mA (fan out of 8).


Applications

- Line receivers
- Telecommunication equipment
- Feedback loop in switch-mode power supplies
- Home appliances

Package Outline

Schematic

Note: Different lead forming options available. See package dimension.

Absolute Maximum Rating at 25°C

Symbol	Parameters	Ratings	Units	Notes
Viso	Isolation voltage	5000	V _{RMS}	1
Topr	Operating temperature	-55 ~ +100	°C	
Тѕтс	Storage temperature	-55 ~ +125	°C	
TsoL	Soldering temperature	260	°C	2
Emitter				•
l _F	Forward current	50	mA	
V _R	Reverse voltage	5	V	
Pı	Power dissipation	100	mW	
Detector				
Po	Power dissipation	85	mW	
lo	Average Output current	50	mA	
Vo	Output voltage	7.0	V	1min(Max.)
Vcc	Supply voltage	7.0	V	
VE	Enable Input Voltage Not to Exceed VCC by more than 500mV	5.5	V	

Notes

- 1. AC for 1 minute, $RH = 40 \sim 60\%$.
- 2. For 10 second peak

Electrical Characteristics

 T_A = -40 - 85°C (unless otherwise specified). Typical values are measured at T_A = 25°C and V_{CC} =5V

Emitter Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward voltage	IF = 10mA	-	1.4	1.6	V	
VR	Reverse Voltage	IR = 10μA	5.0	-	-	V	
ΔV _F /ΔT _A	Temperature coefficient of forward voltage	IF =10mA	-	-1.8	-	mV/°C	

Detector Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
1	Logic High Supply Current	I _F =0mA, V _E =0.5V, V _{CC} =3.3V	-	4.0	10	A	
I _{CCH}	Logic Figit Cupply Current	I _F =0mA, V _E =0.5V, V _{CC} =5.5V	-	6.5	10	mA	
	I _F =10mA, V _E =0.5V, V _{CC} =3.3V	-	5.5	13	m /		
ICCL	IccL Logic Low Supply Current	I _F =10mA, V _E =0.5V, V _{CC} =5.5V	-	8.8	13	mA	
\/	High Lavel Enable Voltage	I _F =10mA, V _{CC} =3.3V	2.0	-	-	V	
V _{EH} Hi	High Level Enable Voltage	I _F =10mA, V _{CC} =5.5V	2.0	-	-	V	
V _{EL} Low Level Enable Voltage	I _F =10mA, V _{CC} =3.3V	-	-	0.8	V		
	Low Level Enable Voltage	I _F =10mA, V _{CC} =5.5V	-	-	0.8	V	
	High Loyal Enable Current	V _E =2.0V, V _{CC} =3.3V	-	-0.2	-1.6	m 1	
I _{EH}	High Level Enable Current	V _E =2.0V, V _{CC} =5.5V	-	-0.53	-1.6	mA	
I _{EL}	Low Lovel Engble Current	V _E =0.5V, V _{CC} =3.3V	-	-0.42	-1.6	m 1	
	Low Level Enable Current	V _E =0.5V, V _{CC} =5.5V	-	-0.75	-1.6	mA	

Transfer Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
		Vcc=3.3V, Vo=0.6V,		1.6	5	- mA	
	Lawret Theory had a Commont	V _E =2.0V, I _O =13mA	-	1.6			
IFT	Input Threshold Current	Vcc=5.5V, Vo=0.6V,		0.5	-		
		V _E =2.0V, I _O =13mA	-	2.5	5		

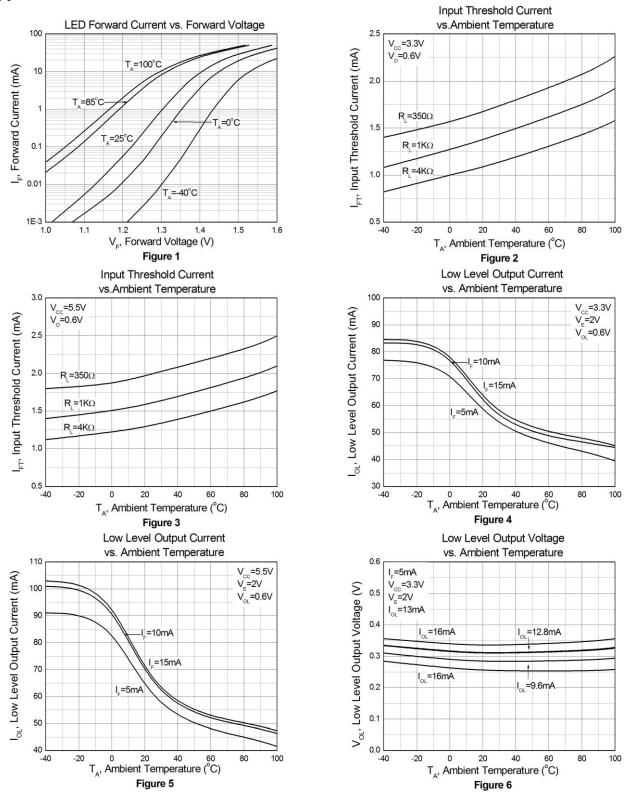
		I _F =250μA, V _O =V _{CC} =3.3V,		7.0	400		
lou	Logic High Output Current	V _E =2.0V		7.0	100	μA	
Іон	Logic High Output Current	I _F =250μA, V _O =V _{CC} =5.5V,	_	2.0	100	μΛ	
		V _E =2.0V	•	2.0	100		
		I _F =5mA, V _{CC} =3.3V, V _E =2.0V,	-	0.45	0.6	- V	
Vol	Low Lovel Output Voltage	Io=13mA		0.45			
VOL	Low Level Output Voltage	I _F =5mA, V _{CC} =5.5V, V _E =2.0V,		0.05	0.6	V	
	lo=13mA	0.35	0.6				

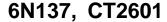
Electrical Characteristics

 $T_A = -40 - 85$ °C (unless otherwise specified). Typical values are measured at $T_A = 25$ °C, $V_{CC} = 5V$ and $I_F = 7.5$ mA

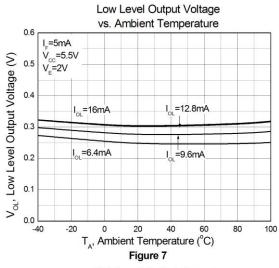
Switching Characteristics

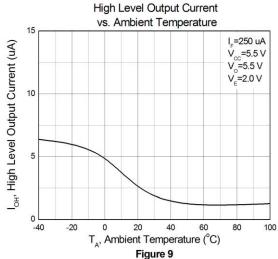
Symbol	Parameters	Test Co	nditions	Min	Тур	Max	Units	Notes
т	Output Propagation Delay High to	C _L = 15pF, R _L =	350Ω V _{CC} =3.3V	-	34	75		
T _{PHL}	Low	C _L = 15pF, R _L = 350Ω V _{CC} =5.5V		-	34	75	ns	
T _{PLH}	Output Propagation Delay Low to		350Ω V _{CC} =3.3V	-	50	75	ns	
11 21	High	C _L = 15pF, R _L =	350Ω V _{CC} =5.5V	-	39	75	110	
P _{WD}	Pulse Width Distortion	C _L = 15pF, R _L =	350Ω V _{CC} =3.3V	-	16	34	ns	
FWD	Pulse Width Distortion	C _L = 15pF, R _L = 350Ω V _{CC} =5.5V		-	5	34	115	
Tr			350Ω V _{CC} =3.3V	-	37	-	no	
l r	Output Rise Time	C _L = 15pF, R _L = 350Ω V _{CC} =5.5V		-	37	-	ns	
T _f			350Ω V _{CC} =3.3V	-	10	O - ns	no	
1 †	Output Fall Time	C _L = 15pF, R _L =	350Ω V _{CC} =5.5V	-	10	ı	115	
T _{ELH}	Enable Propagation Delay Low To High	VEH= 3.5V, C _L :	-	15	-	ns		
T _{EHL}	Enable Propagation Delay High To Low	350Ω	-	15	-	ns		
	Common Mode Transient	I _F = 0mA, V _{CM} = 50Vp-p,		-	10000	-		
СМн	Immunity at Logic High	$V_{OH}=2.0V$, $R_{L}=350\Omega$	CT2601	5000	10000	-	V/µs	

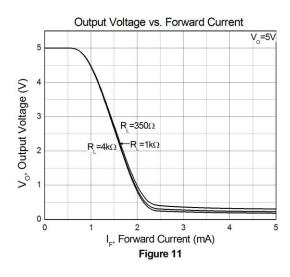

6N137, CT2601

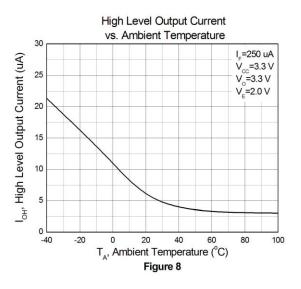

10MBit/s High Speed Logic Gate Optocoupler

	Common Mode Transient	I _F =7.5mA, V _{CM} = 50Vp-p, V _{OL} = 0.8V,	6N137	-	10000	-		
CML	Immunity at Logic Low		CT2601	5000	10000	-	V/µs	
		R _L = 350Ω	0.200.		.0000			

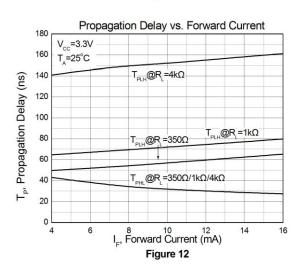

Typical Characteristic Curves

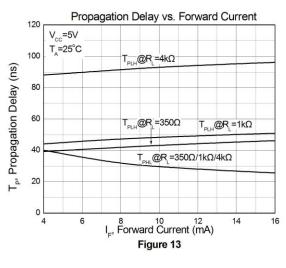


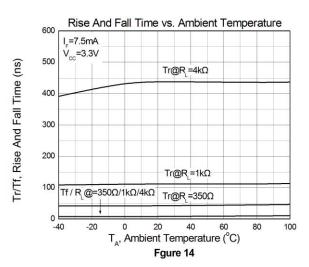


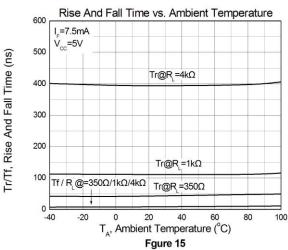


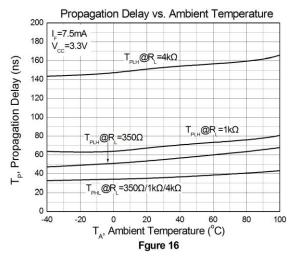
Typical Characteristic Curves

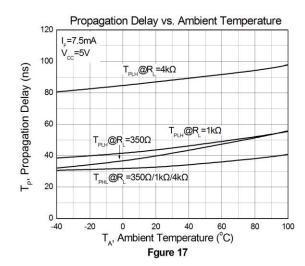


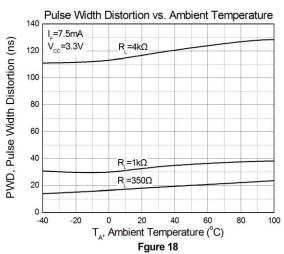


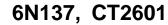


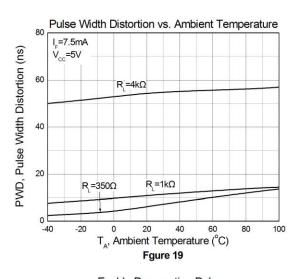


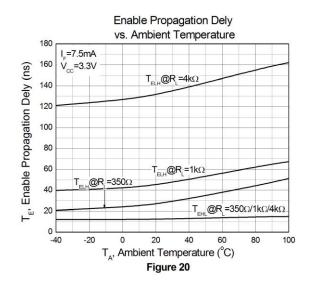


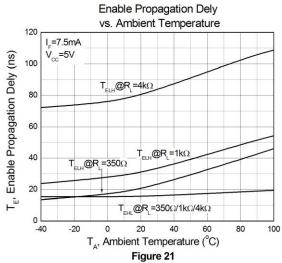


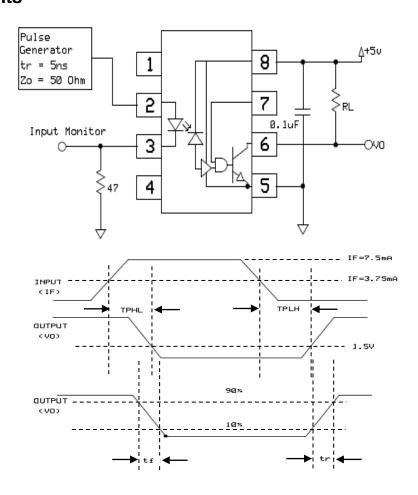


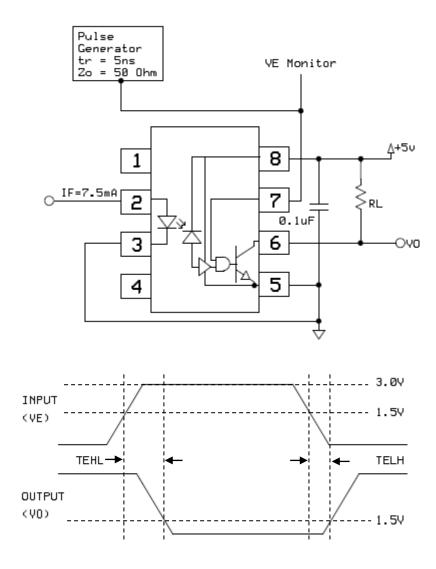




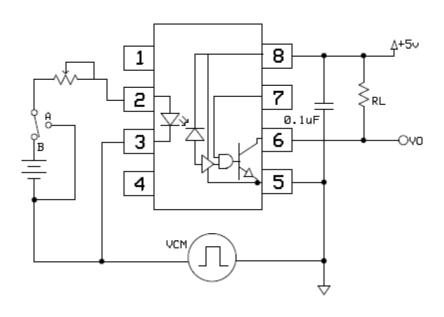


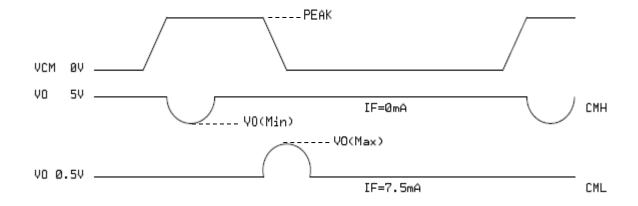





Test Circuits

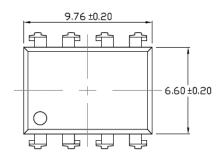
Switching Time Test Circuit

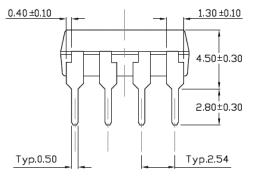

Test Circuits

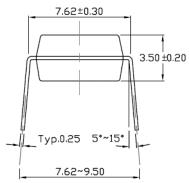


Enable Switching Time Test Circuit

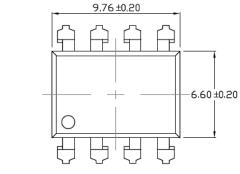
Test Circuits



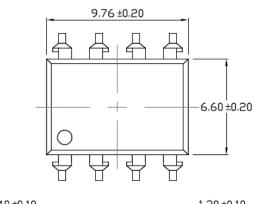

CMR Test Circuit

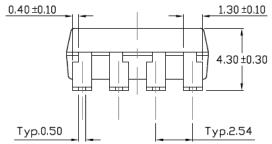


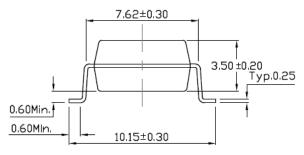
Package Dimension Dimensions in mm unless otherwise stated

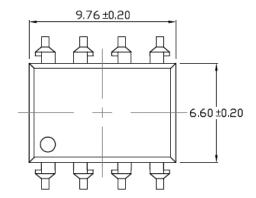

Standard DIP - Through Hole

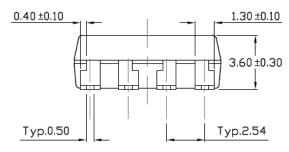
Gullwing (400mil) Lead Forming – Through Hole (M Type)

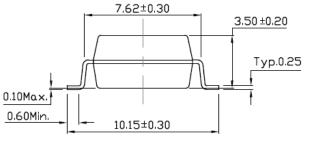




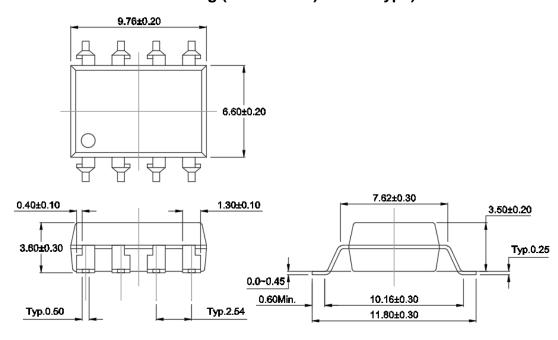

3.50 ±0.20

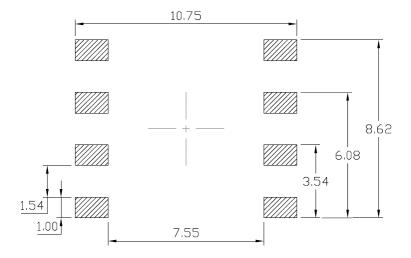

Surface Mount Lead Forming (S Type)



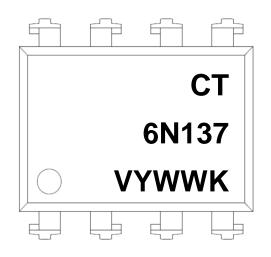


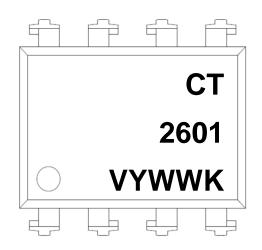
Surface Mount (Low Profile) Lead Forming (SL Type)





Wide Surface Mount Forming (Low Profile) - SLM Type)




Recommended Solder Mask Dimensions in mm unless otherwise stated

Device Marking

Note:

CT: Denotes "CT Micro"
6N137: Product Number
2601: Product Number
V: VDE Option
Y: Fiscal Year
WW: Work Week

K : Production Code

Ordering Information

6N137(V)(Y)(Z)-G; CT2601(V)(Y)(Z)-G

CT = Denotes "CT Micro"

6N137 = Part Number 2601 = Part Number

V = VDE Option (V or None)

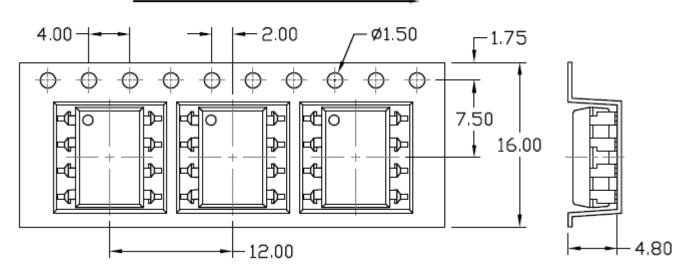
Y = Lead form option (S, SL, M, SLM or none)

Z = Tape and reel option (T1, T2 or none)

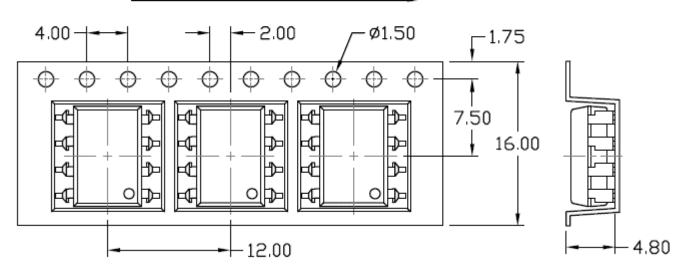
G = Material option (G: Green, None: Non-green)

6N137, CT2601

10MBit/s High Speed Logic Gate Optocoupler

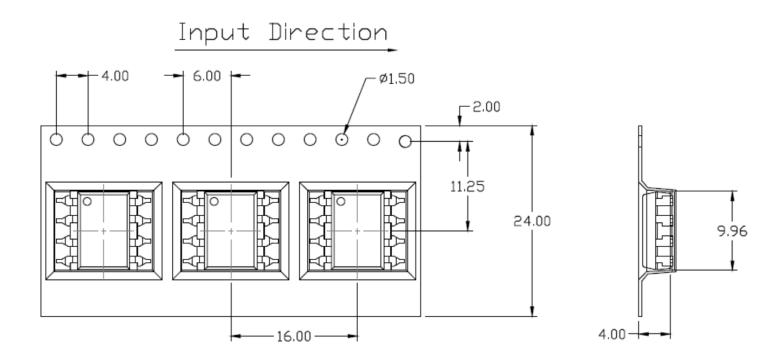

Option	Description	Quantity
None	Standard 8 Pin Dip	40 Units/Tube
M	Gullwing (400mil) Lead Forming	40 Units/Tube
S(T1)	Surface Mount Lead Forming – With Option 1 Taping	1000 Units/Reel
S(T2)	Surface Mount Lead Forming – With Option 2 Taping	1000 Units/Reel
SL(T1)	Surface Mount (Low Profile) Lead Forming– With Option 1 Taping	1000 Units/Reel
SL(T2)	Surface Mount (Low Profile) Lead Forming– With Option 2 Taping	1000 Units/Reel
SLM(T1)	Surface Mount (Gullwing) Lead Forming– With Option 1 Taping	1000 Units/Reel
SLM(T2)	Surface Mount (Gullwing) Lead Forming – With Option 2 Taping	1000 Units/Reel

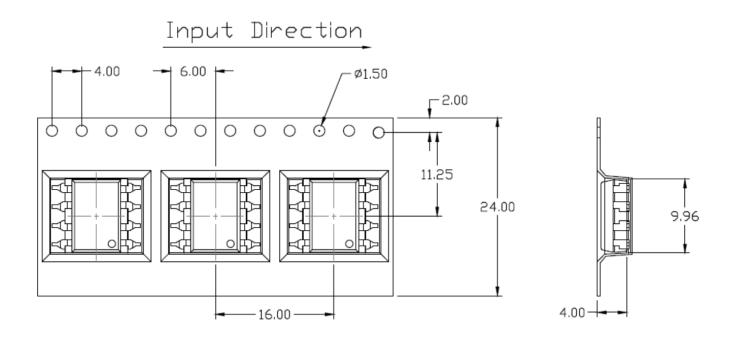
Carrier Tape Specifications Dimensions in mm unless otherwise stated


Option S(T1) & SL(T1)

Input Direction

Option S(T2) & SL(T2)

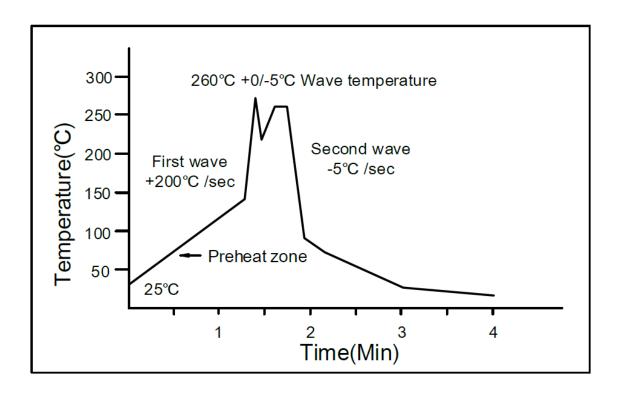

Input Direction



Option SLM(T1)

Option SLM(T2)

Wave soldering (follow the JEDEC standard JESD22-A111)


One time soldering is recommended within the condition of temperature.

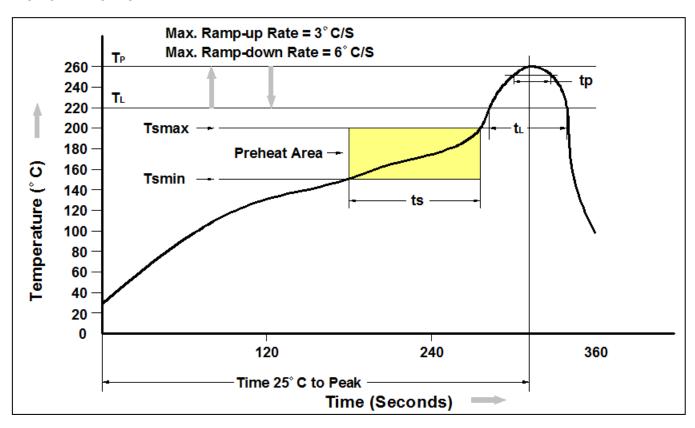
Temperature: 260+0/-5°C.

Time: 10 sec.

Preheat temperature:25 to 140°C.

Preheat time: 30 to 80 sec.

Iron soldering (follow the standard MIL-STD 202G, Method 210F)


Allow single lead soldering in every single process.

One time soldering is recommended. Temperature: 350+±10°C

Time: 5 sec max.

Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t∟ to t⊳)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Speed Optocouplers category:

Click to view products by CT Micro International manufacturer:

Other Similar products are found below:

6N136F HCPL-2201-300 JAN4N24 610737H HCPL2630M HCPL2630SM PS9817A-1-F3-AX PS9821-2-F3-AX TLP2766A(E TLP2766A(LF4,E PS9121-F3-AX TLP5774H(TP4,E TLP5771H(TP,E TLP2304(E(O 054279X HCPL2631SD HCPL-2730-500E TLP118(TPL,E) TLP2309(E(T TLP2366(TPL,E TLP2368(TPL,E(T TLP521-2XGB TLP621-2XGB JANTXV4N24U 8102802PC 5962-8767902XA 5962-8876801XA 5962-8957101PA SFH6318T 6N135-300E TIL198 TLP104(TPR,E) TLP2309(TPL,E) TLP2355(TPL,E TLP2358(E) TLP521-4GR TLP521-4XGB TLP621XSM 5962-8876801PA IS281-4GB IS2805-4 IS181GR ICPL2630 ICPL2531 ICPL2601 ICPL2530 5962-8876801PC TLP2301 TLP2301(E(T TLP2362(TPR,E