

Features

- LVPECL Outputs Optimized for Very Low Phase Noise (-165dBc/Hz)
- ➤ Up to 800MHz Bandwidth
- ➤ Selectable ÷1, ÷2 Output
- Selectable Enable Logic
- > 3.0V to 3.6V Operation
- RoHS Compliant Pb Free Packages

Block Diagram

Description

The CTSLV353 is a sine wave/CMOS to LVPECL buffer/translator optimized for very low phase noise (-165dBc/Hz). It is particularly useful in converting crystal or SAW based oscillators into LVPECL outputs for up 800MHz of bandwidth. For greater bandwidth, refer to the CTSLV363.

The CTSLV353 is one of a family of parts that provide options of fixed ÷1, fixed ÷2 and selectable ÷1, ÷2 modes as well as active high enable or active low enable to oscillator designers. Refer to Table 1 for the comparison of parts within the CTSLV35x and CTSLV363 family.

Engineering Notes

Functionality

The CTSLV353 is one of a family of parts that provide options of fixed ÷1, fixed ÷2 and selectable ÷1, ÷2 modes as well as active high enable or active low enable to oscillator designers. Table 1 details the differences between the parts to assist designers in selecting the optimal part for their design.

Table 2 lists the specific CTSLV353 functional operation.

Figure 1 plots the S-parameters of the D input. <u>S-parameter</u> and <u>IBIS</u> model files for the CTSLV353 are also available for download.

Table 1 - CTSP51-54 & CTSP63 Family

Part Number	Divide Ratio	EN Logic	EN Pull-Up / Pull-Down	Bandwidth
CTSLV351	÷1	active HIGH	Pull-up	> 800MHz
CTSLV353	Selectable ÷1 or ÷2	selectable	selectable	> 800MHz
CTSLV363	Selectable ÷1 or ÷2	selectable	selectable	≥ 1GHz

1

Table 2 - CTSLV353 Functional Operation, ÷1 mode

	Inputs			Outputs		
Part Number	EN_SEL EN D			Q	,ď	
		Low NC	Low	Low	High	
	High, NC	Low, NC			Low	
		High	X	Z	Z	
CTSLV353		Ligh NC	Low	Low	High	
	Low	rigii, NC	High	High	Low	
		Low X Z Z	Z			
		DIV_SEL		Divide Ratio		
	I	Low, NC		÷1		
High				÷2		

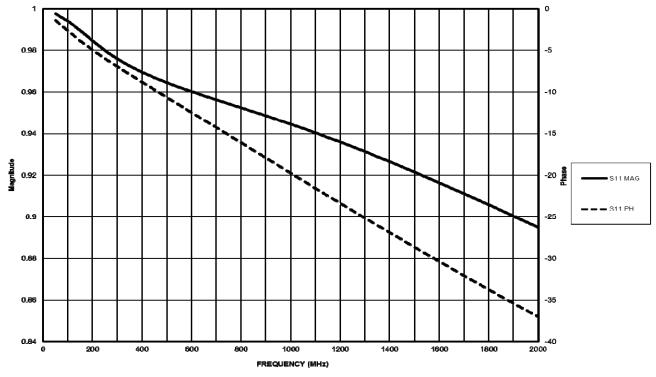
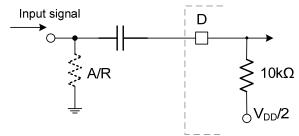


Figure 1 - S11, Parameters, D Input

CTSLV353


Low Phase Noise LVPECL Buffer and Translator

QFN8, SON8

Input Termination

The D input bias is $V_{DD}/2$ fed through an internal $10k\Omega$ resistor. For clock applications, an input signal of at least $750mV_{PP}$ ensures the CTSLV353 meets AC specifications. The input should also be AC coupled to maintain a 50% duty cycle on the outputs. The input can be driven to any voltage between 0V and V_{DD} without damage or waveform degradation.

Figure 2 - Input Termination

Output Termination Techniques

The LVPECL compatible output stage of the CTSLV353 uses a current drive topology to maximize switching speed as illustrated below in Figure 3. Two current source PMOS transistors (M1-M2) feed the output pins. M5 is an NMOS current source which is switched by M3 and M4. When M4 is on, M5 takes current from M2. This produces an output current of 5.1mA (low output state). M3 is off, and the entire 21.1mA flows through the output pin. The associated output voltage swings match LVPECL levels when external 50Ω resistors terminate the outputs.

Both Q and \overline{Q} should always be terminated identically to avoid waveform distortion and circulating current caused by unsymmetrical loads. This rule should be followed even if only one output is in use.

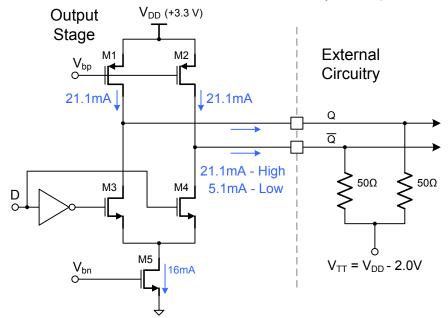


Figure 3 - Typical Output Termination

QFN8, SON8

Dual Supply LVPECL Output Termination

The standard LVPECL loads are a pair of 50Ω resistors connected between the outputs and V_{DD}-2.0V (Figure 3). The resistors provide both the DC and the AC loads, assuming 50Ω interconnect. If an additional supply is available within the application, a four resistor termination configuration is possible (Figure 4).

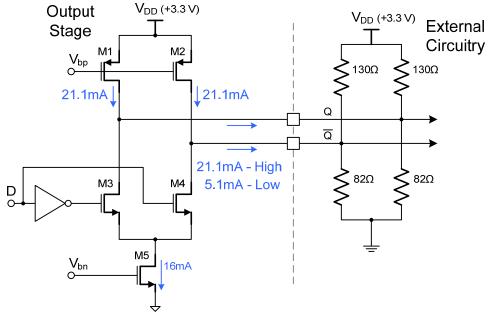
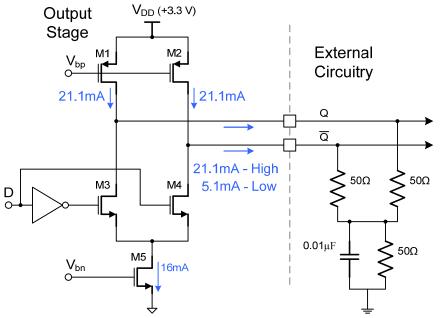



Figure 4 - Dual Supply Output Termination

Three Resistor Termination

Another termination variant eliminates the need for the additional supply (Figure 5). Alternately three resistors and one capacitor accomplish the same termination and reduce power consumption.

Figure 5 - Three Resistor Termination

Low Phase Noise LVPECL Buffer and Translator QFN8, SON8

Evaluation Board (EBP53)

CTS's evaluation board, EBP53, provides the most convenient way to test and prototype CTSLV353 series circuits. Built for the CTSLV353QG 1.5x1.0mm package, it is designed to support both dual and single supply operation. Dual supply operation (V_{DD} =+2.0V, V_{SS} =-1.3V) enables direct coupling to 50 Ω time domain test equipment (Figure 6).

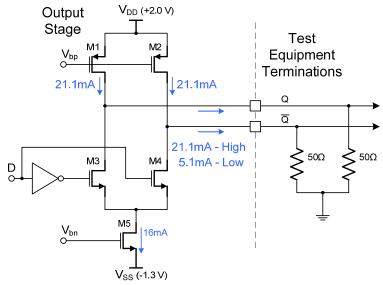


Figure 6 - Split Supply LVPECL Output Termination

AC Termination

Clock applications or phase noise/frequency domain testing scenarios typically require AC coupling. Figure 7 below shows the AC coupling technique. The 200Ω resistors form the required DC loads, and the 50Ω resistors provide the AC termination. The parallel combination of the 200Ω and 50Ω resistors results in a net 40Ω AC load termination. In many cases this will work well. If necessary, the 50Ω resistors can be increased to about 56Ω . Alternately, bias tees combined with current setting resistors will eliminate the lowered AC load impedance. The 50Ω resistors are typically connected to ground but can be connected to the bias level needed by the succeeding stage.

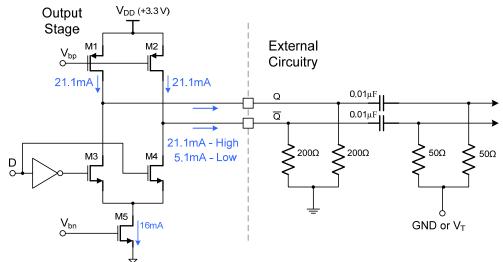


Figure 7 - AC Termination

CTSLV353 Low Phase Noise LVPECL Buffer and Translator QFN8, SON8

Electrical Specifications

Absolute Maximum Ratings

Absolute Maximum Ratings are those values beyond which device life may be impaired.

Symbol	Characteristic	Rating	Unit
V_{DD}	Power Supply	0 to +5.5	V
VI	Input Voltage	-0.5 to V _{DD} + 0.5	V
T _A	Operating Temperature Range	-40 to +85	°C
T _{STG}	Storage Temperature Range	-65 to +150	°C
ESD _{HBM}	Human Body Model	2500	V
ESD _{MM}	Machine Model	200	V
ESD _{CDM}	Charged Device Model	2500	V

DC Characteristics

DC Characteristics (V_{DD} = 3.0V to 3.6V unless otherwise specified, T_A = -40°C to +85°C)

Do characteristics (VDD = 3.0V to 3.0V timess otherwise specified, TA = -40 C to 100 C)							
Symbol	Characteristic	Conditions		Min	Тур	Max	Unit
		-40°C		2.05		2.415	
V_{OH}	Output HIGH Voltage ¹	+25°C	°C V _{DD} = 3.3V	2.05		2.48	V
		+85°C		2.05		2.54	
		-40°C		1.365		1.615	
V_{OL}	Output LOW Voltage ¹	+25°C	$V_{DD} = 3.3V$	1.43		1.68	V
		+85°C		1.49		1.74	
I _Z	Output Leakage Current, Tri-state ²	EN=Disable		-10		10	μΑ
M	High Lavel Innet Valtage	EN_SEL		2			\/
V_{IH}	High Level Input Voltage	DIV_SEL					V
V _{IL}	Low Level Input Voltage	EN				0.8	V
I _{PU}	Pull-up Current	EN_SEL			2.2		μA
I _{PD}	Pull-down Current	DIV_SEL			-2.2		μΑ
l _P	Pull-up / Pull-down Current	EN			±2.2		μA
R _{BIAS}	Bias Resistor	D Input to Internal V _{DD} /2 Reference			10k		Ω
I _{DD}	Power Supply Current				22	35	mA
	Power Supply Current –	D Ir	nput ≤ V _{IL}				
l _{DDZ}	Outputs Tri-state ¹	EN:	=Disable			8	mA

 $^{^{1}}$ Specified with outputs terminated through 50 Ω resistors to V_{DD} -2V or Thevenin equivalent.

² Measured at Q / Q pins.

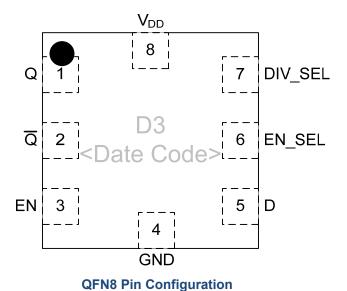
CTSLV353 Low Phase Noise LVPECL **Buffer and Translator** QFN8, SON8

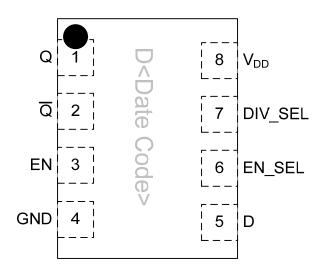
AC Characteristics AC Characteristics (V_{DD} = 3.0V to 3.6V, T_A = -40°C to +85°C)

AC Specifications guaranteed by design

Symbol	Characteristic	Min	Тур	Max	Unit
t _r / t _f	Output Rise/Fall ^{1, 2}	80		250	ps
ι _r / ι _f	(20% - 80%)	00			
	Maximum Input Frequency - Sine wave ²				
f_{MAX}	÷1			800	MHz
	÷2			1300	
V _{INMAX}	Maximum Recommended Input Signal			V_{DD}	V_{PP}
V _{INMIN}	Minimum Recommended Input Signal	0.2			V_{PP}
t _{PLH}	Propagation Delay	938 161		1614	ps
t _{PHL}	Propagation Delay	938 16		1614	ps
j́кмs	RMS Jitter: 12kHz - 20MHz, 155MHz Center Freq		36		fs
n _P	Phase Noise ^{1, 2} - 1MHz offset	-165		dBc/Hz	

 $^{^{1}}$ Specified with outputs terminated through 50W resistors to V_{CC} -2V or Thevenin equivalent.


 $^{^{2}}$ 1.5 V_{P-P} sine wave input, AC coupled to D pin.

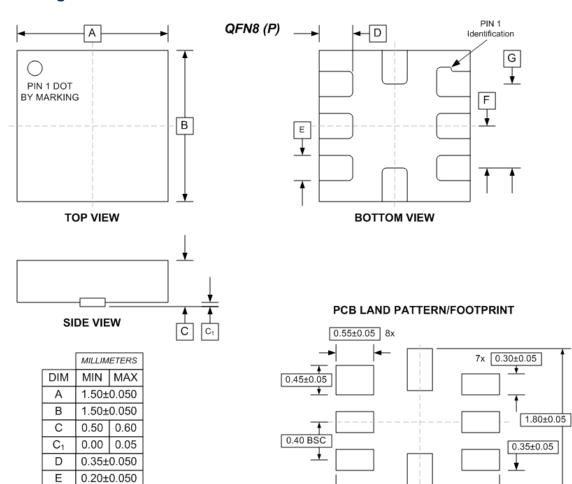


Pin Description and Configuration

Pin Assignments

Pin	Name	Type	Function
1	Q	Output	LVPECL Output
2	Q	Output	LVPECL Output
3	EN	Input	Enable
4	GND	Power	Negative Supply
5	D	Input	Sine or CMOS Input
6	EN_SEL	Input	Enable Select
7	DIV_SEL	Input	Divide Select
8	V_{DD}	Power	Positive Supply

SON8 Pin Configuration

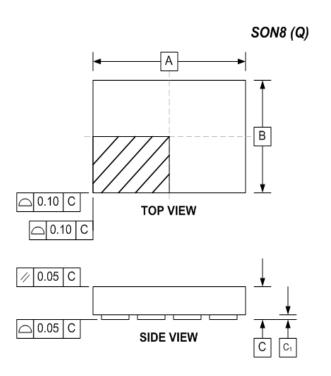

Part Ordering Information

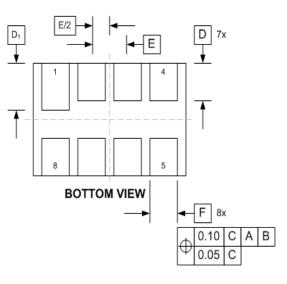
Part Number	Package	Marking
CTSLV353PG	QFN8	D3 / YW
CTSLV353QG	SON8	D YW

CTSLV353 Low Phase Noise LVPECL Buffer and Translator QFN8, SON8

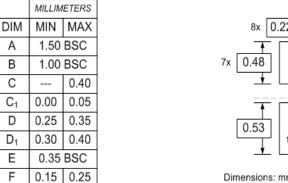
Package Dimensions

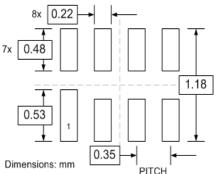
F


G


0.400 BSC

0.800 REF


1.80±0.05



PCB LAND PATTERN/FOOTPRINT

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by CTS manufacturer:

Other Similar products are found below:

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T
PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX
PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R
MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG
NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1
NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7 ADCLK854BCPZ-REEL7
ADCLK905BCPZ-R2