
Low Phase Noise LVPECL Buffer and Translator

QFN8, SON8

FEATURES

- LVPECL Outputs Optimized for Very Low Phase Noise (-165dBc/Hz)
- Up to 800MHz Bandwidth
- Selectable ÷1, ÷2 Output
- Selectable Enable Logic
- > 3.0V to 3.6V Operation
- RoHS Compliant Pb Free Packages

BLOCK DIAGRAM

DESCRIPTION

The CTSLV353 is a sine wave/CMOS to LVPECL buffer/translator optimized for very low phase noise (-165dBc/Hz). It is particularly useful in converting crystal or SAW based oscillators into LVPECL outputs for up 800MHz of bandwidth. For greater bandwidth, refer to the CTSLV363.

The CTSLV353 is one of a family of parts that provide options of fixed ÷1, fixed ÷2 and selectable ÷1, ÷2 modes as well as active high enable or active low enable to oscillator designers. Refer to Table 1 for the comparison of parts within the CTSLV35x and CTSLV363 family.

ENGINEERING NOTES

Functionality

Table 1 details the differences between the family parts to assist designers in selecting the optimal part for their design.

Table 2 lists the specific CTSLV353 functional operation.

Figure 1 plots the S-parameters of the D input.

Table 1

Part Number	Divide Ratio	EN Logic	EN Pull-Up / Pull-Down	Bandwidth
CTSLV351	÷1	active HIGH	Pull-up	> 800MHz
CTSLV353	Selectable ÷1 or ÷2	selectable	selectable	> 800MHz
CTSLV363	Selectable ÷1 or ÷2	selectable	selectable	≥ 1GHz

Table 2 - CTSLV353 Functional Operation, ÷1 mode

	Inputs			Outputs		
Part Number	EN_SEL EN D			Q	`Q	
	High, NC	Low, NC	Low	Low	High	
			High	High	Low	
		High	Х	Z	Z	
	Low	High, NC	Low	Low	High	
CTSLV353			High	High	Low	
		Low	Х	Z	Z	
	[DIV_SEL	Divide Ratio			
	Low, NC			÷1		
	High			÷2		

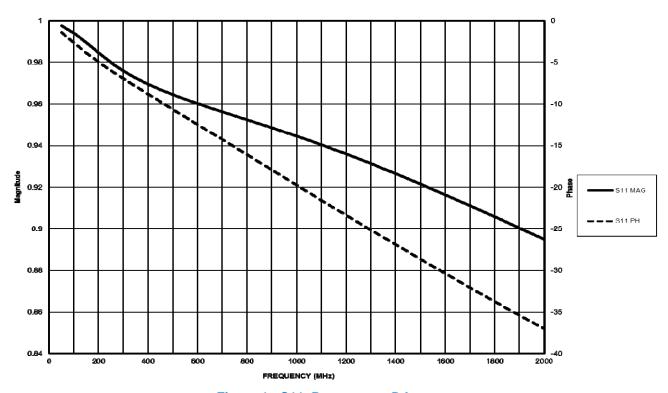
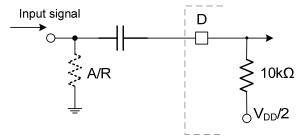


Figure 1 - S11, Parameters, D Input



Low Phase Noise LVPECL Buffer and Translator

QFN8, SON8

Input Termination

The D input bias is $V_{DD}/2$ fed through an internal $10k\Omega$ resistor. For clock applications, an input signal of at least $750mV_{PP}$ ensures the CTSLV353 meets AC specifications. The input should also be AC coupled to maintain a 50% duty cycle on the outputs. The input can be driven to any voltage between 0V and V_{DD} without damage or waveform degradation.

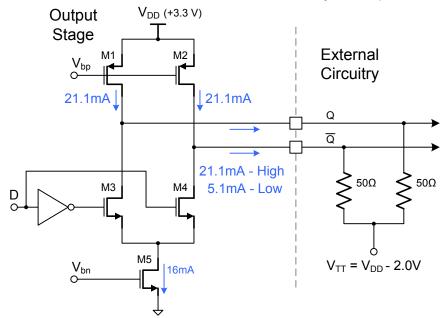


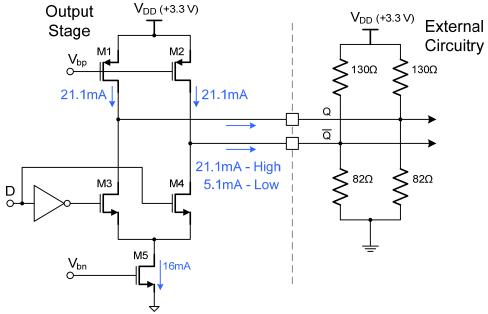
Figure 2 - Input Termination

Output Termination Techniques

The LVPECL compatible output stage of the CTSLV353 uses a current drive topology to maximize switching speed as illustrated below in Figure 3. Two current source PMOS transistors (M1-M2) feed the output pins. M5 is an NMOS current source which is switched by M3 and M4. When M4 is on, M5 takes current from M2. This produces an output current of 5.1mA (low output state). M3 is off, and the entire 21.1mA flows through the output pin. The associated output voltage swings match LVPECL levels when external 50Ω resistors terminate the outputs.

Both Q and \overline{Q} should always be terminated identically to avoid waveform distortion and circulating current caused by unsymmetrical loads. This rule should be followed even if only one output is in use.

Figure 3 - Typical Output Termination



Low Phase Noise LVPECL Buffer and Translator

QFN8, SON8

Dual Supply LVPECL Output Termination

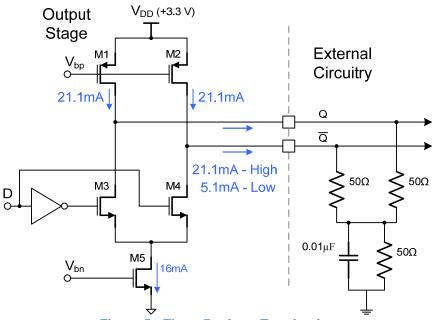

The standard LVPECL loads are a pair of 50Ω resistors connected between the outputs and V_{DD}-2.0V (Figure 3). The resistors provide both the DC and the AC loads, assuming 50Ω interconnect. If an additional supply is available within the application, a four resistor termination configuration is possible (Figure 4).

Figure 4 - Dual Supply Output Termination

Three Resistor Termination

Another termination variant eliminates the need for the additional supply (Figure 5). Alternately three resistors and one capacitor accomplish the same termination and reduce power consumption.

Figure 5 - Three Resistor Termination

Low Phase Noise LVPECL Buffer and Translator

QFN8, SON8

Evaluation Board (EBP53)

CTS's evaluation board, EBP53, provides the most convenient way to test and prototype CTSLV353 series circuits. Built for the CTSLV353QG 1.5x1.0mm package, it is designed to support both dual and single supply operation. Dual supply operation (V_{DD} =+2.0V, V_{SS} =-1.3V) enables direct coupling to 50 Ω time domain test equipment (Figure 6).

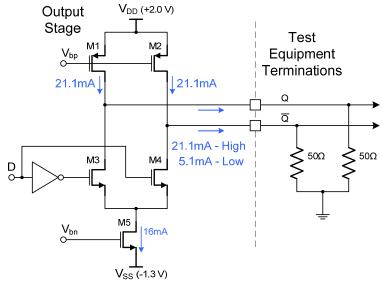


Figure 6 - Split Supply LVPECL Output Termination

AC Termination

Clock applications or phase noise/frequency domain testing scenarios typically require AC coupling. Figure 7 below shows the AC coupling technique. The 200Ω resistors form the required DC loads, and the 50Ω resistors provide the AC termination. The parallel combination of the 200Ω and 50Ω resistors results in a net 40Ω AC load termination. In many cases this will work well. If necessary, the 50Ω resistors can be increased to about 56Ω . Alternately, bias tees combined with current setting resistors will eliminate the lowered AC load impedance. The 50Ω resistors are typically connected to ground but can be connected to the bias level needed by the succeeding stage.

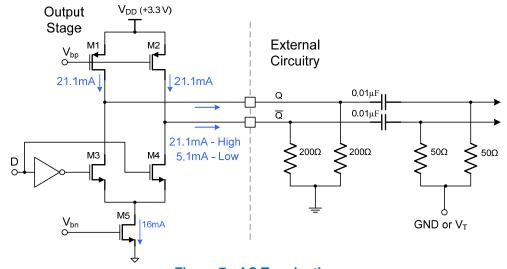


Figure 7 - AC Termination

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Absolute Maximum Ratings are those values beyond which device life may be impaired.

Symbol	Characteristic	Rating	Unit
V_{DD}	Power Supply	0 to +5.5	V
Vı	Input Voltage	-0.5 to V _{DD} + 0.5	V
T_A	Operating Temperature Range	-40 to +85	°C
T _{STG}	Storage Temperature Range	-65 to +150	°C
ESD _{HBM}	Human Body Model	2500	V
ESD _{MM}	Machine Model	200	V
ESD _{CDM}	Charged Device Model	2500	V

DC Characteristics

DC Characteristics (V_{DD} = 3.0V to 3.6V unless otherwise specified, T_A = -40°C to +85°C)

Symbol	Characteristic	Conditions		Min	Тур	Max	Unit
		-40°C		2.05		2.415	
V _{OH}	Output HIGH Voltage ¹	+25°C	$V_{DD} = 3.3V$	2.05		2.48	V
		+85°C		2.05		2.54	
		-40°C		1.365		1.615	
V_{OL}	Output LOW Voltage ¹	+25°C	$V_{DD} = 3.3V$	1.43		1.68	V
		+85°C		1.49		1.74	
I _Z	Output Leakage Current, Tri-state ²	EN=Disable		-10		10	μΑ
W	High Level Input Voltage	EN_SEL DIV_SEL		2			V
V _{IH}	High Level input voltage						V
V_{IL}	Low Level Input Voltage		EN			0.8	V
I _{PU}	Pull-up Current	Е	N_SEL		2.2		μA
I_{PD}	Pull-down Current	DI	V_SEL		-2.2		μA
I _P	Pull-up / Pull-down Current		EN		±2.2		μA
R _{BIAS}	Bias Resistor	D Input to Internal V _{DD} /2 Reference			10k		Ω
I _{DD}	Power Supply Current				22	35	mA
I _{DDZ}	Power Supply Current –	D Input ≤ V _{IL} EN=Disable					
	Outputs Tri-state ¹					8	mA

 $^{^{1}}$ Specified with outputs terminated through 50 Ω resistors to V_{DD} -2 \overline{V} or Thevenin equivalent.

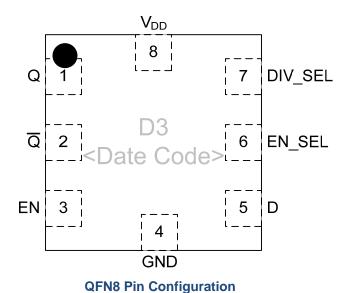
² Measured at Q / Q pins.

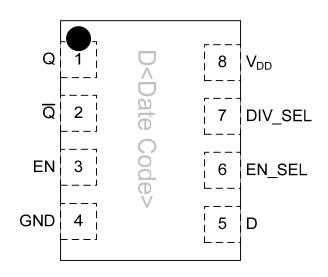
AC Characteristics AC Characteristics (V_{DD} = 3.0V to 3.6V, T_A = -40°C to +85°C)

AC Specifications guaranteed by design

Symbol	Characteristic	Min	Тур	Max	Unit
+ /+	Output Rise/Fall ^{1, 2}	00	250	no	
t _r / t _f	(20% - 80%)	80		250	ps
	Maximum Input Frequency - Sine wave ²				
f_{MAX}	÷1			800	MHz
	÷2			1300	
V _{INMAX}	Maximum Recommended Input Signal			V_{DD}	V_{PP}
V _{INMIN}	Minimum Recommended Input Signal	0.2			V_{PP}
t _{PLH}	Propagation Delay	938		1614	ps
t _{PHL}	Propagation Delay	938		1614	ps
j́кмs	RMS Jitter: 12kHz - 20MHz, 155MHz Center Freq		36		fs
n _P	Phase Noise ^{1, 2} - 1MHz offset		-165		dBc/Hz

¹ Specified with outputs terminated through 50W resistors to V_{CC} -2V or Thevenin equivalent.


 $^{^{2}}$ 1.5 V_{P-P} sine wave input, AC coupled to D pin.



Pin Description and Configuration

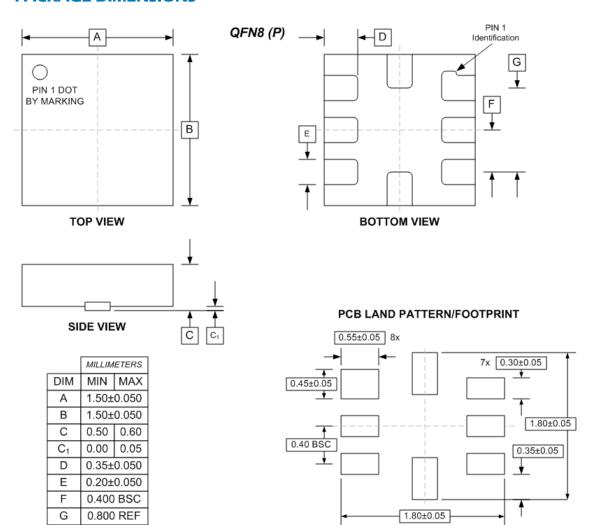
Pin Assignments

Pin	Name	Туре	Function
1	Q	Output	LVPECL Output
2	Q	Output	LVPECL Output
3	EN	Input	Enable
4	GND	Power	Negative Supply
5	D	Input	Sine or CMOS Input
6	EN_SEL	Input	Enable Select
7	DIV_SEL	Input	Divide Select
8	V_{DD}	Power	Positive Supply

SON8 Pin Configuration

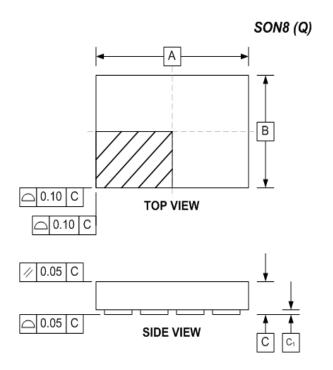
PART ORDERING INFORMATION

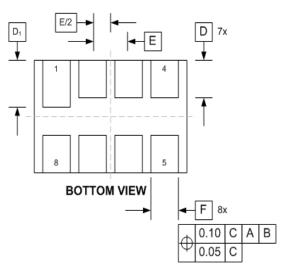
Part Number	Package	Marking
CTSLV353QG	QFN8	D3 / YW
CTSLV353PG	SON8	D YW



Low Phase Noise LVPECL Buffer and Translator

QFN8, SON8


PACKAGE DIMENSIONS



Low Phase Noise LVPECL Buffer and Translator

QFN8, SON8

PCB LAND PATTERN/FOOTPRINT

	MILLIMETERS		
DIM	MIN	MAX	
Α	1.50	BSC	
В	1.00 BSC		
С		0.40	
C ₁	0.00	0.05	
D	0.25	0.35	
D ₁	0.30	0.40	
Е	0.35 BSC		
F	0.15	0.25	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by CTS manufacturer:

Other Similar products are found below:

PL133-27GI 9DBV0941AKLF MPC962309EJ-1H NB3M8304CDG NB4N121KMNG 8T39S11ANLGI 8T73S1802NLGI
9DBV0941AKILF MK2308S-1HILF 6V31024NLG PL133-27GI-R 9DBV0941AKILFT NB3L02FCT2G NB3L03FCT2G

9DMV0141AKILFT ZL40205LDG1 ZL40212LDG1 ZL40201LDG1 9DBV0541AKILF PI49FCT32807QE 9FG1200DF-1LF

MDB1900ZCQY 9ZXL1530DKILF 8SLVP1102ANLGI/W ZL40223LDG1 5PB1213NTGK8 9FG1001BGLF MDB1900ZBQY

5PB1214CMGK ZL40202LDG1 8L30205NLGI8 5PB1204CMGK 5PB1214CMGK8 5PB1206NDGK PI49FCT20802QE MAX9317AECJ+

SL2305SC-1T PI6C10810HE 5P1103A517NLGI 9ZX21901DKLF NB7L1008MNG NB7L14MN1G NB3V1104CDTR2G

PI49FCT20807QE ZL80001QAA1 ZL80002QAB1 9SBV0802AKILF 9DBV0541AKLFT 8L30210NLGI 5P1103A515NLGI