

SERIES: RIC11 | DESCRIPTION: MECHANICAL INCREMENTAL ENCODER

FEATURES

- multiple shaft options
- different mounting options
- different resolution and detent options

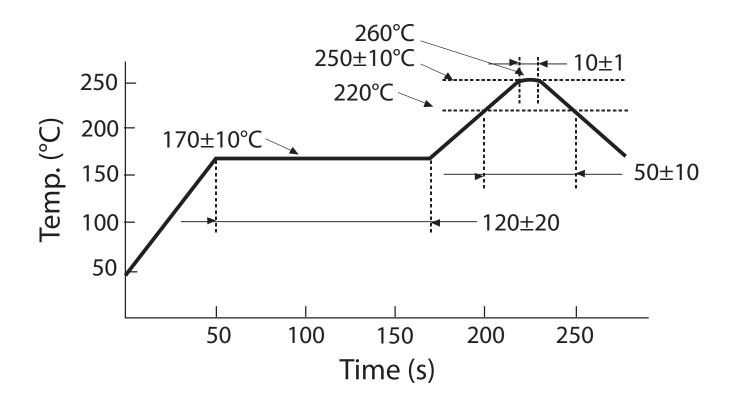
.....

ELECTRICAL

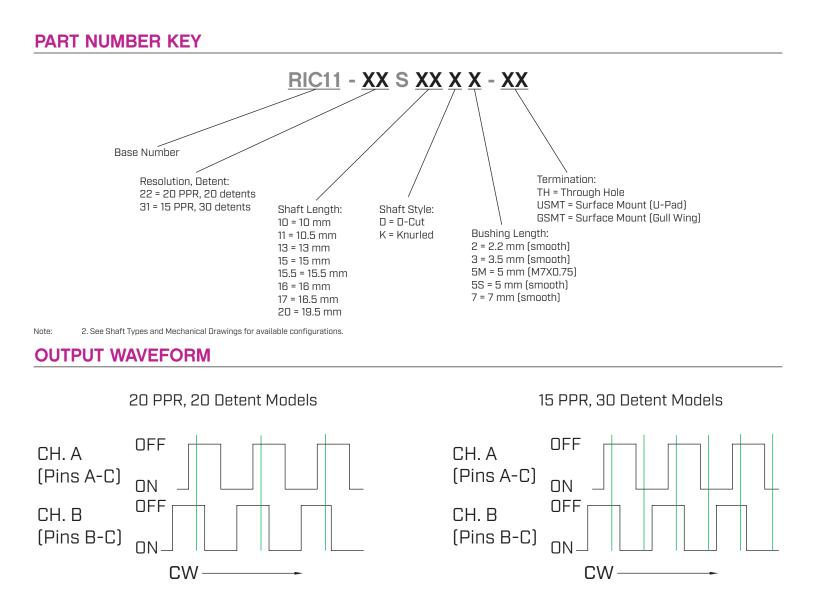
arameter conditions/description		min	typ	max	units
power supply			5		V
urrent consumption each lead common lead		0.5 0.5	1	10 10	mA mA
output2-bit quadrature, channel A leads channel B by 90° with counter-clockwise rotation					
output phase difference $\Delta T \ge 6 \text{ ms } @ 60 \text{ rpm}$ (see output waveform)					
output resolution	15, 20 PPR				
detent step angle	20 detent models1630 detent models10		18 12	20 14	0
insulation resistance	at 250 Vdc, for 1 minute between terminals and bushing	100			MΩ
dielectric strength for 1 minute between terminals and bushing			300		Vac
Notes: 1. All specifications measure	ed at 15~35°C, humidity at 25~85%, under 86~106 kPa pressure, unless otherwise noted.				

PUSH SWITCH SPECIFICATIONS

parameter	neter conditions/description		typ	max	units
rating	5 Vdc, 10 mA (1 mA min)				
contact resistance	voltage step-down test at 5 Vdc, 1 mA			100	mΩ
insulation resistance at 250 Vdc, for 1 minute between terminals and bushing		100			MΩ
dielectric strength	between terminals and bushing for 1 minute (leakage current 1 mA) for 2 seconds (leakage current 1 mA)		250 300		Vac Vac
operating push force		З	5	7	N
travel		0.3	0.5	0.7	mm
bounce	shaft rotated at 1 cycles/s (OFF-ON-OFF)			10	ms
push switch life at 1800~2000 cycles/hour without electrical load			20,000		cycles


MECHANICAL

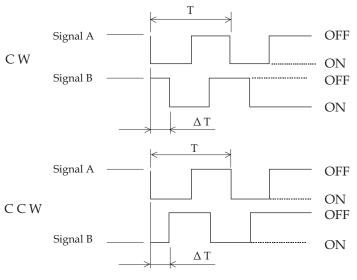
parameter	conditions/description	min	typ	max	units
shaft load	pull static load for 20 seconds push static load for 10 seconds	100 100			N N
rotational torque		10	15	20	mN•m
terminal strength	ninal strength a static load of 3 N applied to tip of terminals for 10 s				
side thrust strength of shaft	a load of 80 N applied at the point 5 mm from the tip of the shaft perpendicular to the shaft axis for 10 s				
shaft play in rotational wobble	tional wobble testing by angle board			2	٥
shaft play in axial direction	pull/push load of 0.5 N applied on the shaft			0.2	mm
rotational life	tational life at 600~800 cycles/hour without electrical load		100,000		cycles
ENVIRONMENTAL					
parameter	conditions/description	min	tvn	max	units


parameter	conditions/description	rnin	сур	max	units
operating temperature		-40		85	°C
storage temperature		-40		85	°C
RoHS	yes				

SOLDERABILITY

parameter	conditions/description	min	typ	max	units
hand soldering	for maximum 3 seconds			350	°C
reflow soldering	only suitable for surface mount models		260		°C

Additional Resources: Product Page

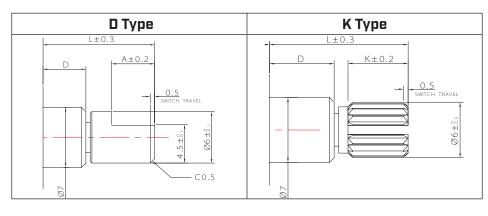


SWITCHING CHARACTERISTICS

parameter	conditions/description	value
chattering signal's passage of time from 1.5 V to 3.5 V of each switching position (OFF to ON or ON to OFF)		t1, t3≤ 3 ms
time of voltage change exceeds 1.5 V in code ON area. When the bounce has code ON time less sliding noise (bounce) 1 ms between chattering (t1 or t3), the voltage change shall be regarded as a part of chattering the code ON time between 2 bounces is less than 1 ms, they are regarded as 1 linked bounce.		t2≤ 2 ms
sliding noise	voltage change in code OFF area	3.5 V min
Notes: 3. Testing at 60 RPM. 4. Code OFF: The area which the	voltage is 3.5 V or more. Code ON: The area which the voltage is 1.5 V or less.	
Terminal A	$\begin{array}{c ccccc} OFF \\ 3.5 V \\ \hline \\ 0 K\Omega \\ \hline 0 K\Omega \\ \hline \\ 0 K\Omega \\ \hline 0 K\Omega \\ \hline 0 K\Omega \\ \hline 0 K\Omega \\ \hline \\ 0 K\Omega \\ \hline 0$	-

cuidevices.com

PHASE DIFFERENCE



At 60 RPM constant speed: $\Delta T \geq \! 6 \mbox{ ms}$

SHAFT TYPES

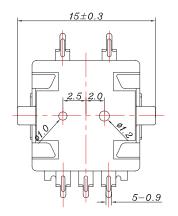
units: mm tolerance: X≤10.00: ±0.30 mm 10.00<X≤100.00: ±0.50 mm unless otherwise noted

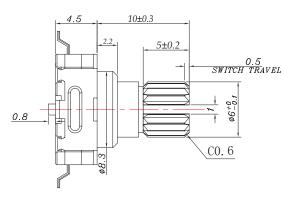
.....

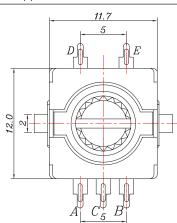
D=5			
	100	13D	16D
L	10	13	16
А	4	5	10

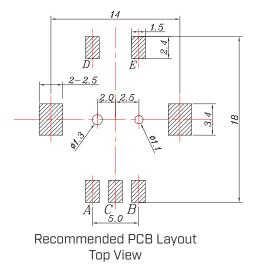
	10K	10K	11K	15K
D	2.2	3.5	5	7
L	10	10	10.5	15
А	5	5	3.5	6.5

.....

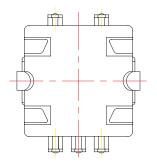

D=7

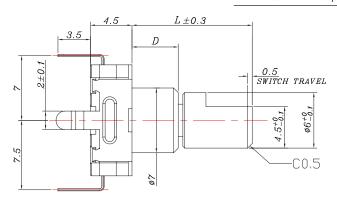

∐=/				
	15D	15.5D	170	200
L	15	15.5	16.5	19.5
А	7	6	8	11

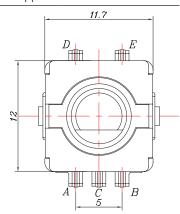

MECHANICAL DRAWING (RIC11-31S10K2-GSMT)

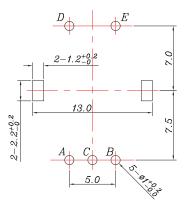

units: mm tolerance: X≤10.00: ±0.30 mm 10.00<X≤100.00: ±0.50 mm unless otherwise noted

DESCRIPTION	MATERIAL	PLATING/COLOR
housing	LCP	
bracket	SPCC	
bushing	zinc alloy	
shaft	aluminum	
terminals	phosphor copper	

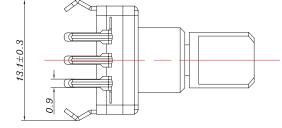


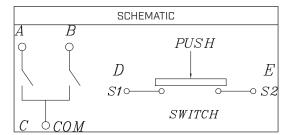

.....


MECHANICAL DRAWING (THROUGH HOLE MODELS)


units: mm tolerance: X≤10.00: ±0.30 mm 10.00<X≤100.00: ±0.50 mm unless otherwise noted

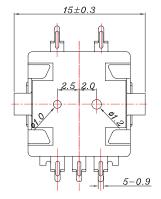
DESCRIPTION	MATERIAL	PLATING/COLOR
housing	PBT	
bracket	SPCC	
bushing	zinc alloy	
shaft	aluminum/zinc alloy	
terminals	phosphor copper	

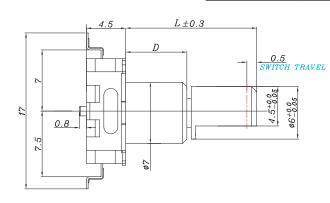


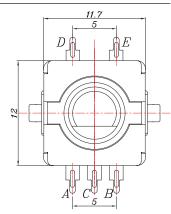


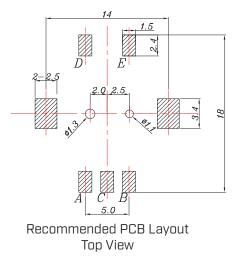
Recommended PCB Layout Top View

.....

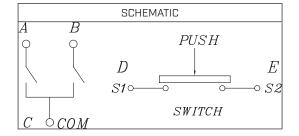


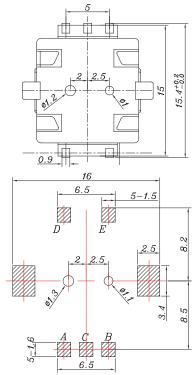



MECHANICAL DRAWING (GULL WING SMT MODELS)

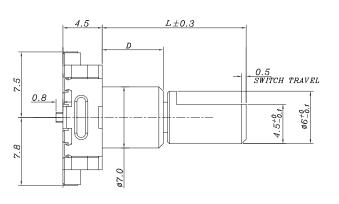

units: mm tolerance: X≤10.00: ±0.30 mm 10.00<X≤100.00: ±0.50 mm unless otherwise noted

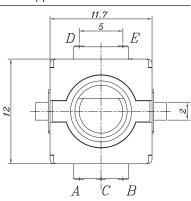
DESCRIPTION	MATERIAL	PLATING/COLOR
housing	LCP	
bracket	SPCC	
bushing	zinc alloy	
shaft	aluminum/zinc alloy	
terminals	phosphor copper	

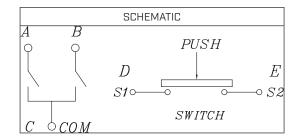



.....

MECHANICAL DRAWING (U SHAPE SMT MODELS)


units: mm tolerance: X≤10.00: ±0.30 mm 10.00<X≤100.00: ±0.50 mm unless otherwise noted


DESCRIPTION	MATERIAL	PLATING/COLOR
housing	LCP	
bracket	SPCC	
bushing	zinc alloy	
shaft	aluminum/zinc alloy	
terminals	phosphor copper	



Recommended PCB Layout Top View

.....



MOUNTING HARDWARE

.....

units: mm

REVISION HISTORY

rev.	description	date
1.0	initial release	09/20/2023

The revision history provided is for informational purposes only and is believed to be accurate.

CUI Devices offers a one (1) year limited warranty. Complete warranty information is listed on our website.

CUI Devices reserves the right to make changes to the product at any time without notice. Information provided by CUI Devices is believed to be accurate and reliable. However, no responsibility is assumed by CUI Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI Devices products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders category:

Click to view products by CUI Devices manufacturer:

Other Similar products are found below :

6-1393048-0 6-1393048-5 62AG22-H5-P 700-09-36 1393047-3 ECW1J-C36-SE0/077L 2-1393047-2 25LB22-G-Z T101-5C3-111-M1 385001M0439 385001M0216 V23401H1409B101 V23401T8002B802 V23401U6019B609 62B11-LPP-040C 62HS22-H0-040S 700-16-16 700-24-24 V23401D1001B102 3-1393048-1 288T220R161A2 1-1879391-5 GH65C11-N-SO 1393047-1 702-01-24 703-20-00 62V22-02-P 62D15-02-140S 61K128-075 EC21C1520402 62AG18-L5-020C E6F-AG5C 720 2M 62B22-SPP-030C 60016-005 31215-003 01039-2677 ACZ11BR2E-20FD1-20CZ-0546 DXM510-2000S002 01002-2133 01002-9375 01002-9572 01026-476 01039-1102 01039-1981 01070-1315 01072-513 01080-056 01084-089 01094-017 01102-031