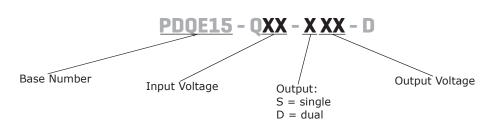


SERIES: PDQE15-D **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- 15 W isolated output
- ultra-wide input voltage range
- single/dual regulated outputs
- 1500 Vdc isolation
- extended temperature range (-40~105°C)
- input under-voltage protection
- output short circuit, over-current, over-voltage protection
- DIP package
- EN 62368-1, UL 62368-1

ROHS	c FL [®] us	C	E
------	-----------------------------	---	---


MODEL	•	input o voltage v		•		output power	ripple & noise ¹	efficiency ²
	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	typ (%)
PDQE15-Q24-S3-D	24	9~36	3.3	0	4000	13.2	100	88
PDQE15-Q24-S5-D	24	9~36	5	0	3000	15	100	90
PDQE15-Q24-S12-D	24	9~36	12	0	1250	15	100	90
PDQE15-Q24-S15-D	24	9~36	15	0	1000	15	100	91
PDQE15-Q24-S24-D	24	9~36	24	0	625	15	100	91
PDQE15-Q24-D5-D3	24	9~36	±5	0	±1500	15	200	87
PDQE15-Q24-D12-D3	24	9~36	±12	0	±625	15	200	90
PDQE15-Q24-D15-D3	24	9~36	±15	0	±500	15	200	90
PDQE15-Q24-D24-D3	24	9~36	±24	0	±312	15	200	89
PDQE15-Q48-S3-D	48	18~75	3.3	0	4000	13.2	100	88
PDQE15-Q48-S5-D	48	18~75	5	0	3000	15	100	90
PDQE15-Q48-S12-D	48	18~75	12	0	1250	15	100	91
PDQE15-Q48-S15-D	48	18~75	15	0	1000	15	100	91
PDQE15-Q48-S24-D	48	18~75	24	0	625	15	100	91
PDQE15-Q48-D5-D3	48	18~75	±5	0	±1500	15	200	86
PDQE15-Q48-D12-D3	48	18~75	±12	0	±625	15	200	90
PDQE15-Q48-D15-D3	48	18~75	±15	0	±500	15	200	90
PDQE15-Q48-D24-D3	48	18~75	±24	0	±312	15	200	90

1. From 5~100% load, nominal input, 20 MHz bandwidth oscilloscope, with 10 µF tantalum and 1 µF ceramic capacitors on the output. From 0~5% load, ripple and noise is <5% Vo. Notes: 2. Measured at nominal input voltage, full load.

.....

All specifications are measured at Ta=25°C, humidity < 75%, nominal input voltage, and rated output load unless otherwise specified.

PART NUMBER KEY

INPUT

parameter	conditions/descriptions/	on	min	typ	max	units
operating input voltage	24 Vdc input models		9	24	36	Vdc
operating input voltage	48 Vdc input models		18	48	75	Vdc
start up voltage	24 Vdc input models				9	Vdc
start-up voltage	48 Vdc input models				18	Vdc
	for maximum of 1 seco	nd				
surge voltage	24 Vdc input models		-0.7		50	Vdc
	48 Vdc input models		-0.7		100	Vdc
	24 Vdc input models		5.5	6.5		Vdc
under voltage shutdown	48 Vdc input models		12	15.5		Vdc
		3.3 Vdc output models			640	mA
	24 Vdc input models	5, 12 Vdc output models			710	mA
	24 Vue input models	15, 24 Vdc output models			703	mA
current		all dual output models		958		mA
current		3.3 Vdc output models			320	mA
	48 Vdc input models	5 Vdc output models			356	mA
	48 vue input models	12, 15, 24 Vdc output models	5		352	mA
		all dual output models		703		mA
remote on/off (CTRL)⁵		or pulled high (3.5~12 Vdc)) d low to GND (0~1.2 Vdc))				
	input current when swit			2	7	mA
filter	Pi filter					

Notes: 5. The voltage of the CTRL pin is referenced to input GND pin.

OUTPUT

parameter	conditions/description	min	typ	max	units
-	3.3, 5 Vdc output models			4,700	μF
	12 Vdc output models			1,000	μF
	15 Vdc output models			820	μF
maximum capacitive loads	24 Vdc output models			270	μF
maximum capacitive load ⁶	±5 Vdc output models			1,500	μF
	±12 Vdc output models			470	μF
	±15 Vdc output models			330	μF
	±24 Vdc output models			200	μF
	single output models: 0% to full load		±1	±3	%
voltage accuracy ⁷	dual output models: 5% to full load		±1	±3	%
	from low line to high line, full load				
line regulation	positive outputs		±0.2	±0.5	%
	negative outputs		±0.4	±1	%
load regulation ⁸	from 5% to full load		±0.5	±1	%

Note:

.....

6. Tested at input voltage range and full load. 7. At 0~5% load, the max output voltage accuracy for the dual output models is ±4%. 8. At 0~100% load, the max load regulation for the dual output models is ±5%.

OUTPUT (CONTINUED)

parameter	conditions/description	min	typ	max	units
cross regulation	dual output models: main output 50% load secondary output from 10~100% load			±5	%
start-up time	nominal input, constant resistive load		10		ms
adjustability ⁹	see application notes		±10		%
switching frequency ¹⁰	PWM mode 3.3, 5 Vdc output models all other models		300 270		kHz kHz
transient recovery time	25% load step change, nominal input voltage		300	500	μs
transient response deviation	25% load step change, nominal input voltage		±3 ±3 ±3	±7 ±8 ±5	% % %
temperature coefficient	at full load			±0.03	%/°C

Note:

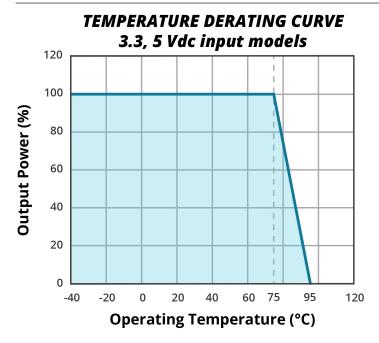
For single output models only.
Value is based on full load. At loads <50%, the switching frequency decreases with decreasing load

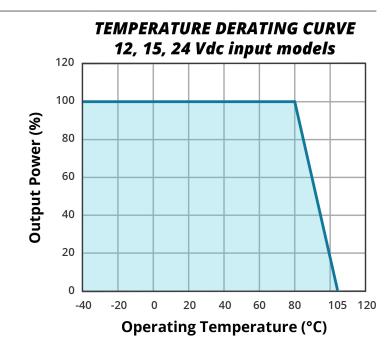
PROTECTIONS

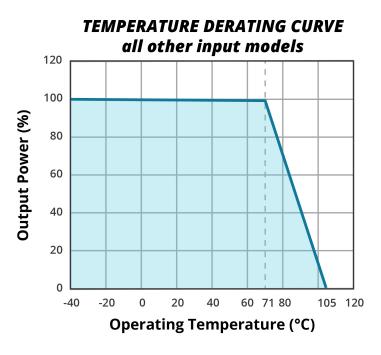
parameter	conditions/description	min	typ	max	units
over voltage protection		110		160	%
over current protection	single output models dual output models	110 110	150 200	190 270	% %
short circuit protection	hiccup, continuous, self recovery				

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units	
isolation voltage	input to output for 1 minute at 1 mA input/output to case for 1 minute at 1 mA	1,500 1,000			Vdc Vdc	
isolation resistance	input to output at 500 Vdc	1,000			MΩ	
isolation capacitance	input to output, 100 kHz / 0.1 V		2,000		pF	
safety approvals ¹¹	certified to 62368-1: IEC, EN, UL					
conducted emissions	CISPR32/EN55032, class A (no external circuit); class B (external circuit required, see Figure 3-b, 4-b)					
radiated emissions	CISPR32/EN55032, class A (no external circuit); class B (external circuit required, see Figure 3-b, 4-b)					
ESD	IEC/EN61000-4-2, contact \pm 6 kV; air \pm 8 kV, class B (single output models) IEC/EN61000-4-2, contact \pm 4 kV, class B (dual output models)					
radiated immunity	IEC/EN61000-4-3, 10 V/m, class A					
EFT/burst	IEC/EN61000-4-4, ±2 kV, class B (external circu	it required, see F	igure 3-a, 4-	a)		
surge	IEC/EN61000-4-5, line-line ± 2 kV, class B (external circuit required, see Figure 3-a, 4-a)					
conducted immunity	IEC/EN61000-4-6, 3 Vr.m.s, class A					
MTBF	as per MIL-HDBK-217F, 25°C	1,000,000			hours	
RoHS	yes					

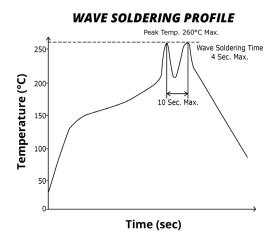

Note: 11. UL approval only on single output models.


.....


ENVIRONMENTAL

parameter	conditions/description	min	typ	max	units
	see derating curves				
operating temperature	3.3, 5 Vdc output models	-40		95	°C
	all other models	-40		105	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%
vibration	10~150 Hz, 0.75 mm for 90 minutes on each axis		5		G

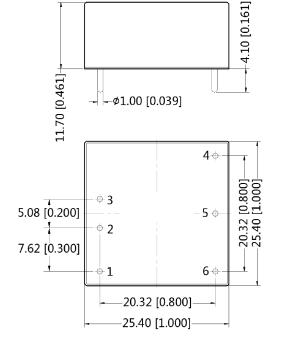
DERATING CURVES

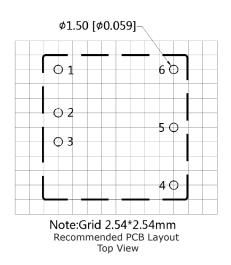


SOLDERABILITY

parameter	conditions/description	min	typ	max	units
hand soldering	1.5 mm from case for 10 seconds			300	°C
wave soldering	see wave soldering profile			260	°C

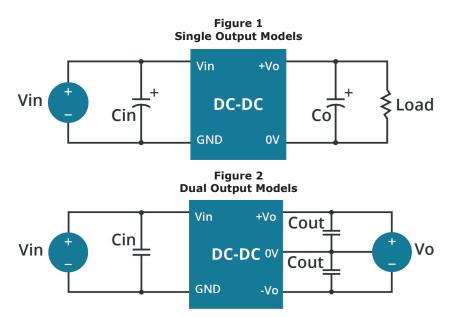
MECHANICAL


parameter	conditions/description	min	typ	max	units
dimensions	25.40 x 25.40 x 11.70 [1.000 x 1.000 x 0.461 inch]				mm
case material	aluminum alloy				
weight			15		q


MECHANICAL DRAWING

units: mm [inch] tolerance: $\pm 0.50[\pm 0.020]$ pin diameter tolerance: $\pm 0.10[\pm 0.004]$

PIN CONNECTIONS					
Fund	ction				
Single	Dual				
CTRL	CTRL				
GND	GND				
Vin	Vin				
+Vo	+Vo				
trim	0V				
0V	-Vo				
	Fund Single CTRL GND Vin +Vo trim				


.....

APPLICATION CIRCUIT

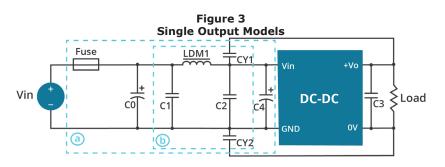
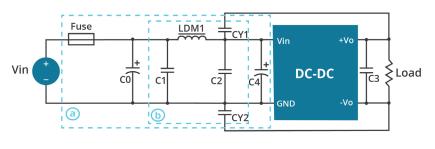

This series has been tested according to the following recommended circuits (Figures 1 & 2) before leaving the factory. If you want to further reduce the input and output ripple, you can increase the input and output capacitors or select capacitors of low equivalent series resistance provided that the capacitance is less than the maximum capacitive load of the model.

Table 1						
Vout (Vdc)	Cin (µF)	Cout (µF)				
3.3/5/12/15	100	100				
24	100	47				

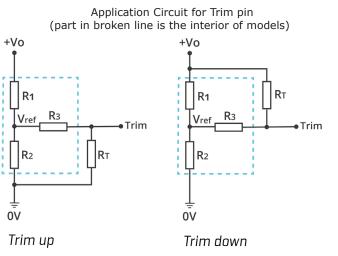

Table 2			
Vin (Vdc)	Cin (µF)	Cout (µF)	
24	100	10	
48	10~47	10	

EMC RECOMMENDED CIRCUIT

Table 3			
Recommended External Circuit Components			
Vin (Vdc)	24	48	
FUSE	choose according to actual input current		
C0, C4	330 µF / 50 V	330 µF / 100 V	
C1, C2	4.7 μF / 50 V	4.7 µF / 100 V	
C3	Refer to the Cout in Table 1		
LDM1	2.2 µH / 4 A	2.2 µH / 2 A	
CY1, CY2	1 nF / 2 kV		

Figure 4 Dual Output Models

Table 4			
Recommended External Circuit Components			
Vin (Vdc)	24 48		
FUSE	choose according to actual input current		
C0, C4	330 µF / 50 V	330 µF / 100 V	
C1, C2	4.7 μF / 50 V	4.7 µF / 100 V	
C3	Refer to the Cout in Table 2		
LDM1	4.7 µH		
CY1, CY2	1 nF / 2 kV		
CY1, CY2	1 nF / 2 kV		


Table 4

APPLICATION NOTES

Output voltage trimming Leave open if not used.

.....

Figure 5

Formula for Trim Resistor

up:	R⊤=	aR 2 R2-a	-R3	$a = \frac{Vref}{Vo' - Vref} \cdot R_1$
down:	R⊤= ·	aR 1 R1-a	-R₃	$a = \frac{Vo' - Vref}{Vref} R_2$

Note: Value for R1, R2, R3, and Vref refer to Table 5 R_{τ} : Trim Resistor a: User-defined parameter, no actual meanings Vo': The trim up/down voltage

Table 5

Vout (Vdc)	R1 (kΩ)	R2 (kΩ)	R3 (kΩ)	Vref (V)
3.3	4.801	2.87	15	1.24
5	2.894	2.87	10	2.5
12	11.000	2.87	17.4	2.5
15	14.494	2.87	17.4	2.5
24	24.872	2.87	20	2.5

REVISION HISTORY

rev.	description	date
1.0	initial release	05/16/2019
1.01	features and safety line updated, packaging removed	01/14/2021
1.02	derating curves and circuit figures updated	07/29/2021

The revision history provided is for informational purposes only and is believed to be accurate.

a bel group

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

.....

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

.....

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters category:

Click to view products by CUI Inc manufacturer:

Other Similar products are found below :

ESM6D044440C05AAQ FMD15.24G PSL486-7LR Q48T30020-NBB0 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 GQ2541-7R RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS-2415 XKS-1215 06322 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033-PGB0 XKS-2415 XKS-2412 XKS-1212 XKS-1205 XKS-0515 XKS-0505 XGS-2405 XGS-1215 XGS-0515 PS9Z-6RM4 73-551-5038I AK1601-9RT VI-N61-CM VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH VI-M5F-CQ VI-LN2-EW VI-PJW01-CZY