

date 08/24/2021

page 1 of 7

SERIES: PQA30-D | **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- up to 30 W isolated output
- 2:1 input range (18~36 Vdc, 36~75 Vdc)
- smaller package
- single, regulated output
- 1,500 Vdc isolation
- short circuit, over current, and over voltage protections
- remote on/off
- operating temperature range (-40~85°C)
- six sided metal shielding
- efficiency up to 89%
- EN 62368-1

MODEL		nput oltage	output voltage		tput rrent	output power	ripple and noise¹	efficiency
	typ (Vdc)	range (Vdc)	(Vdc)	min (A)	max (A)	max (W)	max (mVp-p)	typ (%)
PQA30-D24-S3-D	24	18~36	3.3	0.60	6	20	120	87
PQA30-D24-S5-D	24	18~36	5	0.60	6	30	120	88
PQA30-D24-S9-D	24	18~36	9	0.333	3.333	30	120	88
PQA30-D24-S12-D	24	18~36	12	0.25	2.5	30	120	88
PQA30-D24-S15-D	24	18~36	15	0.20	2	30	120	89
PQA30-D24-S24-D	24	18~36	24	0.125	1.25	30	120	89
PQA30-D48-S3-D	48	36~75	3.3	0.60	6	20	120	87
PQA30-D48-S5-D	48	36~75	5	0.60	6	30	120	88
PQA30-D48-S12-D	48	36~75	12	0.25	2.5	30	120	89
PQA30-D48-S15-D	48	36~75	15	0.20	2	30	120	89
PQA30-D48-S24-D	48	36~75	24	0.125	1.25	30	120	88

Notes: 1. Ripple and noise are measured at 20 MHz BW by "parallel cable" method with 1 µF ceramic and 10 µF electrolytic capacitors on the output.

PART NUMBER KEY

PQA30 - DXX - SXX - DX

Base Number

Input Voltage

Output Voltage

Packaging Style

DIP

Heatsink*
"blank" = no heatsink
H = with heatsink
DIP

Notes: *Discontinued heatsink versions.

INPUT

parameter	conditions/description	min	typ	max	units
operating input voltage	24 Vdc input models 48 Vdc input models	18 36	24 48	36 75	Vdc Vdc
start-up voltage	24 Vdc input models 48 Vdc input models		17.8 35.8	18 36	Vdc Vdc
under voltage shutdown	24 Vdc input models 48 Vdc input models	16 32			Vdc Vdc
surge voltage	for maximum of 1 second 24 Vdc input models 48 Vdc input models	-0.7 -0.7		50 100	Vdc Vdc
start-up time	nominal input, constant load		10		ms
	models ON (CTRL open or connect TTL hig	h level, 2.5~12 Vdc)			
CTRL ¹	models OFF (CTRL connect GND or low level, 0~1.2 Vdc)				
	input current (models OFF)		1		mA
filter	pi filter				

OUTPUT

parameter	conditions/description	min	typ	max	units
line regulation	full load, input voltage from low to high		±0.2	±0.5	%
load regulation	10% to 100% load		±0.5	±1	%
voltage accuracy			±1	±3	%
adjustability			±10		%
switching frequency	PWM mode		300		kHz
transient recovery time	25% load step change		300	500	μs
transient response deviation	25% load step change		±3	±5	%
temperature coefficient	100% load		±0.02		%/°C

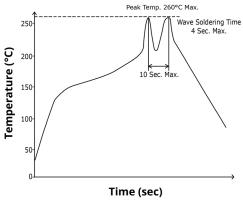
PROTECTIONS

parameter	conditions/description	min	typ	max	units
short circuit protection	hiccup, automatic recovery				
over current protection		120	130	150	%
	3.3 Vdc output models		3.96		Vdc
	5 Vdc output models		6		Vdc
	9 Vdc output models		10.8		Vdc
over voltage protection	12 Vdc output models	15		Vdc	
	15 Vdc output models		18		Vdc
	24 Vdc output models		28		Vdc

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units
isolation voltage	input to output for 1 minute at 1 mA max.	1,500			Vdc
isolation resistance	input to output at 500 Vdc	1,000			MΩ
safety approvals ¹	certified to 62368-1: EN				
conducted emissions	CISPR22/EN55022 class A (no circuit required); class B (external	circuit requi	red, see Figur	e 1-b)
radiated emissions	CISPR22/EN55022 class A (no circuit required); class B (external	circuit requi	red, see Figur	e 1-b)
ESD	IEC/EN61000-4-2 class B, contact ± 4kV				
radiated immunity	IEC/EN61000-4-3 class A, 10V/m				
EFT/burst	IEC/EN61000-4-4 class B, ± 2kV (external circ	cuit required, see Fi	gure 1-a)		
surge	IEC/EN61000-4-5 class B, ± 2kV (external circ	cuit required, see Fi	gure 1-a)		
conducted immunity	IEC/EN61000-4-6 class A, 3 Vr.m.s				
voltage dips & interruptions	IEC/EN61000-4-29 class B, 0%-70%				
MTBF	as per MIL-HDBK-217F @ 25°C	1,000,000			hours
RoHS	2011/65/EU				

Note 1. CE mark is only on models without heatsink.


ENVIRONMENTAL

parameter	conditions/description	min	typ	max	units
operating temperature	see derating curves	-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%
case temperature at full load, operating temperature curve range			105	°C	
vibration	10∼55Hz, 30 min. along x, y, and z axis			10	G

SOLDERABILITY

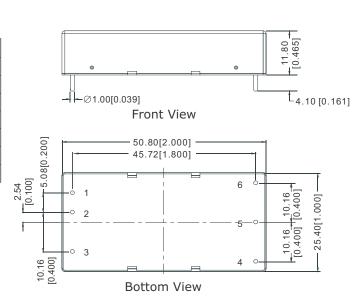
parameter	conditions/description	min	typ	max	units
hand soldering	1.5 mm from case for 10 seconds			300	°C
wave soldering	see wave soldering profile			260	°C

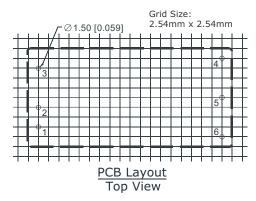
WAVE SOLDERING PROFILE

MECHANICAL

parameter	conditions/description	min	typ	max	units
dimensions	board mount: $50.80 \times 25.40 \times 11.80$ board mount with heatsink: $50.80 \times 25.40 \times 16.30$				mm mm
case material	aluminum alloy				
weight	board mount board mount with heatsink		22 35		g g

MECHANICAL DRAWING

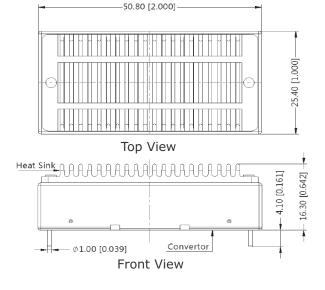

BOARD MOUNT

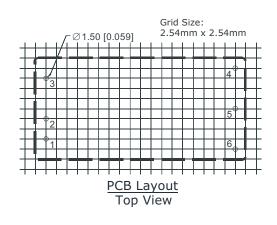

units: mm[inch]

tolerance: $\pm 0.30[\pm 0.012]$

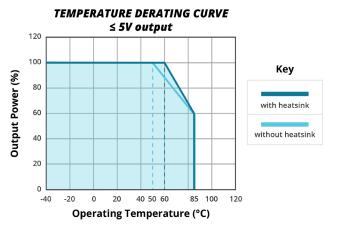
pin diameter tolerance: $\pm 0.10[\pm 0.004]$ pin height tolerance: $\pm 0.50[\pm 0.020]$

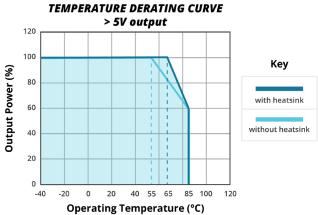
PIN CONNECTIONS		
PIN	Function	
1	Vin	
2	GND	
3	Ctrl	
4	Trim	
5	0V	
6	+Vo	


BOARD MOUNT WITH HEATSINK


units: mm[inch]

tolerance: $\pm 0.30[\pm 0.012]$


pin diameter tolerance: $\pm 0.10[\pm 0.004]$ pin height tolerance: $\pm 0.50[\pm 0.020]$


PIN CONNECTIONS		
PIN	Function	
1	Vin	
2	GND	
3	Ctrl	
4	Trim	
5	0V	
6	+Vo	

DERATING CURVES

EMC RECOMMENDED CIRCUIT

Figure 1

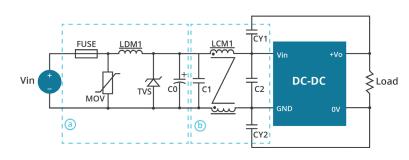


Table 1

Recomme	nded external cir	cuit components
Vin (Vdc)	24	48
FUSE	choose accordin	g to input current
MOV	S14K35	S14K60
LDM1	56µH	56µH
TVS	SMCJ48A	SMCJ90A
C0	330µF/50V	330µF/100V
C1, C2	4.7μF/50V	2.2µF/100V
LCM1	1mH	1mH
CY1, CY2	1nF/2kV	1nF/2kV

TEST CONFIGURATION

Figure 2

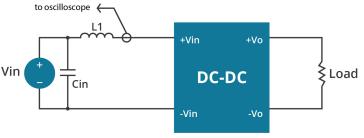


Table 2

External components		
Lin	in 4.7μH	
Cin	220μF, ESR < 1.0Ω at 100 kHz	

Note:

1. Input reflected-ripple current is measured with an inductor Lin and Capacitor Cin to simulate source impedance.

APPLICATION NOTES

Requirement on output load

To ensure this module can operate efficiently and reliably, the minimum output load cannot be less than 10% of the full load during operation. If the actual output power is small, please connect a resistor at the output end in parallel to increase the load.

Recommended circuit

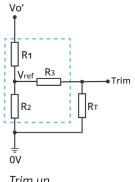
This series has been tested according to the following recommended testing circuit before leaving the factory. This series should be tested under load (see Figure 3). If you want to further decrease the input/output ripple, you can increase capacitance properly or choose capacitors with low ESR (see Table 3). However, the capacitance must not exceed the maximum capacitive load or a start-up problem might arise (see Table 4).

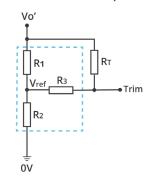
Figure 3

Table 3

Vout (Vdc)	Cin (µF)	Cout (µF)	
3.3	100	220	
5	100	220	
9	100	100	
12	100	100	
15	100	100	
24	100	47	

Table 4


Vout (Vdc)	Max. Capacitive Load (μF)
3.3	6800
5	6800
9	680
12	680
15	680
24	470


Output Voltage Trimming

Leave open if not used.

Figure 4

Application Circuit for Trim Pin (part in broken line is the interior of models)

Trim up

Trim down

Table 5

Formula for Trim Resistor

up:
$$R_T = \frac{aR_2}{R_2 - a} - R_3$$
 $a = \frac{Vref}{Vo' - Vref} \cdot R_3$

down:
$$R_T = \frac{aR_1}{R_1-a} - R_3$$
 $a = \frac{Vo'-Vref}{Vref} \cdot R_2$

Note: Value for R1, R2, R3, and Vref (see Table 5)

R₊: Trim Resistor

a: User-defined parameter, no actual meanings

Vo': The trim up/down voltage

Vout (Vdc)	R1 (kΩ)	R2 (kΩ)	R3 (kΩ)	Vref (V)
3.3	4.801	2.863	12	1.24
5	2.883	2.864	10	2.5
9	7.5	2.864	15	2.5
12	10.971	2.864	15	2.5
15	14.497	2.864	15	2.5
24	24.872	2.863	20	2.5

Notes:

- 1. Minimum load shouldn't be less than 10%, otherwise ripple may increase dramatically. Operation under minimum load will not damage the converter, however, they may not meet all specifications listed.
- Maximum capacitive load is tested at input voltage range and full load.
 All specifications are measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.

Additional Resources: Product Page | 3D Model | PCB Footprint

CUI Inc | SERIES: PQA30-D | DESCRIPTION: DC-DC CONVERTER date 08/24/2021 | page 7 of 7

REVISION HISTORY

rev.	description	date
1.0	initial release	07/08/2014
1.01	discontinued heat sink versions	06/21/2019
1.02	safeties updated in features and safety approvals line	01/19/2021
1.03	derating curves and circuit figures updated	08/24/2021

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters category:

Click to view products by CUI Inc manufacturer:

Other Similar products are found below:

ESM6D044440C05AAQ FMD15.24G PSL486-7LR Q48T30020-NBB0 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 18952 19-130041
CE-1003 CE-1004 GQ2541-7R RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS2415 XKS-1215 06322 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033-PGB0 XKS-2415 XKS-2412
XKS-1212 XKS-1205 XKS-0515 XKS-0505 XGS-2405 XGS-1215 XGS-0515 PS9Z-6RM4 73-551-5038I AK1601-9RT VI-N61-CM VIR5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH VI-M5F-CQ VI-LN2-EW VI-PJW01-CZY