SERIES: PQM3-M | DESCRIPTION: DC-DC CONVERTER

FEATURES

- 3 W isolated output
- smaller package
- single regulated output
- 1,500 Vdc isolation
- continuous short circuit
- temperature range $\left(-40 \sim 105^{\circ} \mathrm{C}\right)$
- high efficiency at light load
- high power density
- high vibration tolerance
- efficiency up to 81%

ROHS

MODEL	input voltage		output voltage	output current		output power max (W)	ripple and noise ${ }^{1}$$\max _{(\mathrm{mVp}-\mathrm{p})}$	efficiency typ (\%)
	$\begin{gathered} \text { typ } \\ \text { (Vdc) } \\ \hline \end{gathered}$	range (Vdc)	(Vdc)	$\min _{(\mathrm{mA})}$	$\max _{(\mathrm{mA})}$			
PQM3-D12-S5-M	12	9~18	5	30	600	3	60	75
PQM3-D12-S12-M	12	$9 \sim 18$	12	12	250	3	60	77
PQM3-D12-S15-M	12	9~18	15	10	200	3	60	79
PQM3-D24-S5-M	24	18~36	5	30	600	3	60	76
PQM3-D24-S12-M	24	18~36	12	12	250	3	60	81
PQM3-D24-S15-M	24	18~36	15	10	200	3	60	80
PQM3-D48-S5-M	48	36~75	5	30	600	3	60	77
PQM3-D48-S12-M	48	36~75	12	12	250	3	60	80
PQM3-D48-S15-M	48	36~75	15	10	200	3	60	80

Notes: $\quad 1$. Ripple and noise are measured at 20 MHz BW by "parallel cable" method with $1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ electrolytic capacitors on the output.

PART NUMBER KEY

parameter	conditions/description	min	typ	max	units
operating input voltage	12 V input models	9	12	18	Vdc
	24 V input models	18	24	36	Vdc
	48 V input models	36	48	75	Vdc
start-up voltage	12 V input models	4.5	8	9	Vdc
	24 V input models	11	16	18	Vdc
	48 V input models	24	33	36	Vdc
surge voltage	for maximum of 1 second				
	12 V input models	-0.7		25	Vdc
	24 V input models	-0.7		50	Vdc
	48 V input models	-0.7		100	Vdc
filter	pi filter				
OUTPUT					
parameter	conditions/description	min	typ	max	units
line regulation	full load, input voltage from low to high		± 0.2	± 0.4	\%
load regulation	5\% to 100\% load		± 0.2	± 0.75	\%
voltage accuracy	5\% to 100\% load		± 1	± 3	\%
no-load output voltage accuracy	5 V models all other models		$\begin{aligned} & \pm 1.5 \\ & \pm 1.5 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$
switching frequency	100\% load, nominal input voltage (PFM mode)		350		KHz
transient recovery time	25\% load step change		0.5	1	ms
transient response deviation	25\% load step change		± 2	± 5	\%
temperature coeffecient	100\% load		± 0.02	± 0.03	\%/ ${ }^{\circ} \mathrm{C}$

PROTECTIONS

parameter	conditions/description	$\boldsymbol{m i n}$	typ	max
short circuit protection	continuous, automatic recovery			

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units
isolation voltage	for 1 minute at 1 mA max.	1,500			Vdc
isolation resistance	at 500 Vdc	1,000			$\mathrm{M} \Omega$
conducted emissions	CISPR22/EN55022, class B (external circuit required, see Figure 1-b)				
radiated emissions	CISPR22/EN55022, class B (external circuit required, see Figure 1-b)				
ESD	IEC/EN61000-4-2, class B, contact $\pm 4 \mathrm{kV}$				
radiated immunity	IEC/EN61000-4-3, class A, 10V/m				
EFT/burst	IEC/EN61000-4-4, class B, $\pm 2 \mathrm{kV}$ (external circuit required, see Figure 1-a)				
surge	IEC/EN61000-4-5, class B, $\pm 2 \mathrm{kV}$ (external circuit required, see Figure 1-a)				
conducted immunity	IEC/EN61000-4-6, class A, 3 Vr.m.s				
voltage dips \& interruptions	IEC/EN61000-4-29, class B, 0\%-70\%				
MTBF	as per MIL-HDBK-217F @ $25^{\circ} \mathrm{C}$	1,000,000			hours
RoHS	2011/65/EU				

ENVIRONMENTAL

parameter	conditions/description	$\boldsymbol{m i n}$	typ	$\boldsymbol{m a x}$
operating temperature	see derating curve	-40	units	
storage temperature		-55	105	${ }^{\circ} \mathrm{C}$
storage humidity	non-condensing		125	${ }^{\circ} \mathrm{C}$
temperature rise	at full load, $\mathrm{Ta}=25^{\circ} \mathrm{C}$		95	$\%$

SOLDERABILITY

parameter	conditions/description	$\boldsymbol{m i n}$	typ	max
hand soldering	1.5 mm from case for 10 seconds	units		
reflow soldering	see reflow soldering profile	300	${ }^{\circ} \mathrm{C}$	

MECHANICAL

parameter	conditions/description	min	typ	max
dimensions	$23.86 \times 13.70 \times 8.00(0.939 \times 0.539 \times 0.315 \mathrm{inch})$		units	
case material	epoxy resin $($ UL94-V0 $)$		mm	
weight		5.2		

MECHANICAL DRAWING

units: mm[inch]
tolerance: $\pm 0.25[\pm 0.010]$
pin section tolerance: $\pm 0.10[\pm 0.004]$

PIN CONNECTIONS	
PIN	Function
1	GND
7	NC
8	NC
9	+ Vo
10	OV
16	Vin

DERATING CURVES

EMC RECOMMENDED CIRCUIT

Figure 1

Recommended external circuit components			
Vin (Vdc)	12	24	48
FUSE	choose according to practical input current		
MOV	--	$10 D 560$	10 D 101
LDM1	--	$56 \mu \mathrm{H}$	$56 \mu \mathrm{H}$
TVS	SMCJ28A	SMCJ48A	SMCJ90A
C0	$680 \mu \mathrm{~F} / 25 \mathrm{~V}$	$120 \mu \mathrm{~F} / 50 \mathrm{~V}$	$120 \mu \mathrm{~F} / 100 \mathrm{~V}$
LDM2	$12 \mu \mathrm{H}$	$12 \mu \mathrm{H}$	$12 \mu \mathrm{H}$
C1	$4.7 \mu \mathrm{~F} / 50 \mathrm{~V}$	$4.7 \mu \mathrm{~F} / 50 \mathrm{~V}$	$4.7 \mu \mathrm{~F} / 100 \mathrm{~V}$
C2	$4.7 \mu \mathrm{~F} / 50 \mathrm{~V}$	$4.7 \mu \mathrm{~F} / 50 \mathrm{~V}$	$4.7 \mu \mathrm{~F} / 100 \mathrm{~V}$

TEST CONFIGURATION

Figure 2

Table 2

External components	
Lin	$4.7 \mu \mathrm{H}$
Cin	$220 \mu \mathrm{~F}, \mathrm{ESR}<1.0 \Omega$ at 100 KHz

[^0]
APPLICATION NOTES

1. Output load requirement

To ensure this module can operate efficiently and reliably, the minimum output load may not be less than 5% of the full load during operation. If the actual output power is low, connect a resistor at the output end in parallel to increase the load.

2. Recommended circuit

This series has been tested according to the following recommended testing circuit before leaving the factory. This series should be tested under load (see Figure 3 \& Table 3). If you want to further decrease the input/output ripple, you can increase the capacitance accordingly or choose capacitors with low ESR. However, the capacitance of the output filter capacitor must be appropriate. If the capacitance is too high, a startup problem might arise. For every channel of the output, to ensure safe and reliable operation, the maximum capacitance must be less than the maximum capacitive load (see Table 4).

Figure 3

Table 3

Vin (Vdc)	Cin $(\mu \mathrm{F})$	Cout $(\mu \mathrm{F} / \mathrm{mA})$
12	100	$10 / 100$
24	$10 \sim 47$	$10 / 100$
48	$10 \sim 47$	$10 / 100$

Table 4

Vout (Vdc)	Max. Capacitive Load $(\mu \mathrm{F})$
5	3300
12	1800
15	1000

3. Input Current

When it is used in an unregulated condition, make sure that the input fluctuations and ripple voltage do not exceed the module standard. Refer to Figure 4 \& Table 5 for the startup current of this dc-dc module.

Figure 4

Input Voltage (V)

Table 5

Vin (Vdc)	Ip (mA)
12	640
24	320
48	160

REVISION HISTORY

rev.	description	date
1.0	initial release	$03 / 19 / 2013$
1.01	updated emc recommendations, updated spec	$05 / 14 / 2014$
1.02	company logo updated	$03 / 30 / 2021$
1.03	derating curve and circuit figures updated	$07 / 16 / 2021$

The revision history provided is for informational purposes only and is believed to be accurate.
a bel group

Headquarters

20050 SW 112th Ave.
Tualatin, OR 97062
800.275.4899

Fax 503.612.2383
cui.com
techsupport@cui.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by CUI Inc manufacturer:

Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR Q48T30020-NBB0 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 18952 19-130041
CE-1003 CE-1004 GQ2541-7R RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS2415 XKS-1215 06322 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033-PGB0 XKS-2415 XKS-2412 XKS-1212 XKS-1205 XKS-0515 XKS-0505 XGS-2405 XGS-1215 XGS-0515 PS9Z-6RM4 73-551-5038I AK1601-9RT VI-N61-CM VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH VI-M5F-CQ VI-LN2-EW VI-PJW01-CZY

[^0]: Note: Input reflected-ripple current is measured with an inductor Lin and Capacitor Cin to simulate source impedance.

