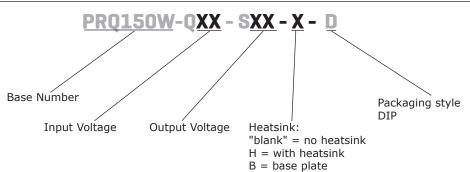


SERIES: PRQ150W | **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- 150 W isolated output
- ¼-brick package with industry standard pin-out
- 4:1 ultra-wide input voltage range
- single regulated output
- high efficiency up to 91%
- output short circuit, over current, over voltage, & over temperature protection
- 2250 Vdc isolation
- EN 62368-1
- available with heat sink or base plate
- remote on/off control



MODEL		put tage	output voltage	output current	output power	ripple and noise ¹	efficiency ²
	typ (Vdc)	range (Vdc)	(Vdc)	max (A)	max (W)	max (mVp-p)	typ (%)
PRQ150W-Q48-S5-D	48	18~75	5	30.0	150	250	88
PRQ150W-Q48-S12-D	48	18~75	12	12.5	150	250	91
PRQ150W-Q48-S15-D	48	18~75	15	10.0	150	250	89
PRQ150W-Q48-S24-D	48	18~75	24	6.25	150	250	91
PRQ150W-Q48-S48-D	48	18~75	48	3.13	150	250	91

Notes: 1. 20MHz bandwidth, nominal input, full load

2. Efficiency is measured In nominal input voltage and rated output load.

PART NUMBER KEY

.....

INPUT

parameter	conditions/description	min	typ	max	units
operating input voltage		18	48	80	Vdc
start-up voltage				18	Vdc
surge voltage	for maximum 1 second	-0.7		90	Vdc
remote on/off ¹	module ON: REM pin open or pulled high (3.5~12 Vdc) module OFF: REM pin pulled low to GND (0~1.2 Vdc)				
	input current when OFF		2	10	mA
filter	Pi filter				
current	full load/no load			3634/200	mA

Note: 1. The voltage of ctrl pin is relative to input pin GND.

OUTPUT

parameter	conditions/description	min	typ	max	units
	5 Vdc output models			6,000	μF
maximum capacitive load	12 Vdc & 15 Vdc output models			2,000	μF
	24 Vdc output models			1,000	μF
	48 Vdc output models			450	μF
line regulation	low line to high line		±0.2	±0.5	%
load regulation	5~100% load		±0.5	±0.75	%
set-point accuracy	0~100% load		±1	±3	%
switching frequency	PWM mode		250		kHz
	25% load step change				
transient response	5 Vdc output model		±3	±7.5	%
·	all other output models		±3	±5	%
temperature coefficient	full load			±0.03	%/°C
trim range		90		110	%
sense range				105	%

PROTECTIONS

.....

parameter	conditions/description	min	typ	max	units
over voltage protection		110		160	%
over current protection		110		150	%
short circuit protection	continuous, auto recovery, hiccup				
over temperature protection			115	120	°C

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units			
isolation voltage	input to output, 5mA for 1 minute input to case, 5mA for 1 minute output to case, 5mA for 1 minute	2,250 1,500 500			Vdc Vdc Vdc			
isolation resistance	input-output at 500 Vdc	100			MΩ			
isolation capacitance	input to output at 100 KHz/0.1 V		pF					
safety approvals	certified to 62368: EN, IEC	certified to 62368: EN, IEC						
conducted emmisions	CISPR32/EN55032 CLASS A (see Fig. 2 for recommended circuit)							
radiated emmisions	CISPR32/EN55032 CLASS A (see Fig. 2 for recommended circuit)							
ESD	IEC/EN61000-4-2, EN50121-3-2 Contact ±6KV Air ±8KV, perf. Criteria B							
radiated immunity	IEC/EN61000-4-3, EN50121-3-2 10V/m, per	IEC/EN61000-4-3, EN50121-3-2 10V/m, perf. Criteria A						
EFT/burst	IEC/EN61000-4-4, EN50121-3-2 ±2KV, perf.	. Criteria A						
surge	EN50121-3-2 differential mode ±1KV, 1.2/50	EN50121-3-2 differential mode \pm 1KV, 1.2/50us, source impedance 42 Ω , perf. Criteria B						
conducted immunity	IEC/EN61000-4-6, EN50121-3-2 10 Vr.m.s,	IEC/EN61000-4-6, EN50121-3-2 10 Vr.m.s, perf. Criteria A						
MTBF	MIL-HDBK-217 at 25°C	500			kHours			
RoHS	yes							

ENVIRONMENTAL

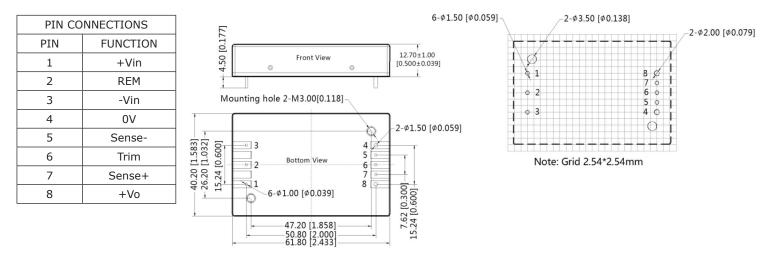
parameter	conditions/description	min	typ	max	units
operating temperature	see derating curve	-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%

SOLDERABILITY

.....

pin soldering resistance	wave-soldering, 10 seconds	260	°C
temperature	soldering spot is 1.5 mm away from case for 10 seconds	300	°C

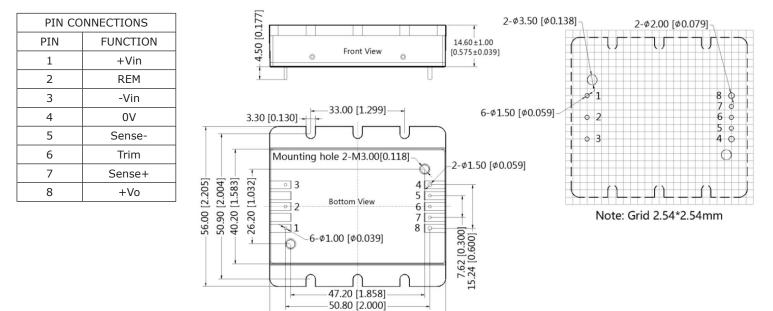
MECHANICAL


parameter	conditions/description	min	typ	max	units
	61.8 x 40.2 x 12.7				mm
dimensions	with base plate 62.0 x 56.0 x 14.6				mm
	with heat sink 61.8 x 40.2 x 27.7				mm
case material	aluminum alloy case, black plastic bottom, flan	ne-retardant and h	eat-resistant	(UL94 V-0)	
			89		g
weight	with base plate		109		g
	with heat sink		120		g
cooling method	natural convection (20 LFM)				

MECHANICAL DRAWING

units: mm [inches]

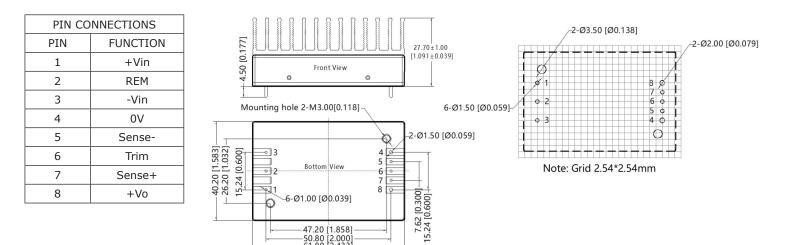
.....


pin 1,2,3,5,6,7's diameter: 1.00 [0.039] pin 4,8's diameter: 1.50 [0.059] pin diameter tolerance: ± 0.10 [± 0.004] general tolerance: ± 0.50 [± 0.020] mounting hole screwing torque: Max 0.4 N·m

MECHANICAL DRAWING (CONTINUED)

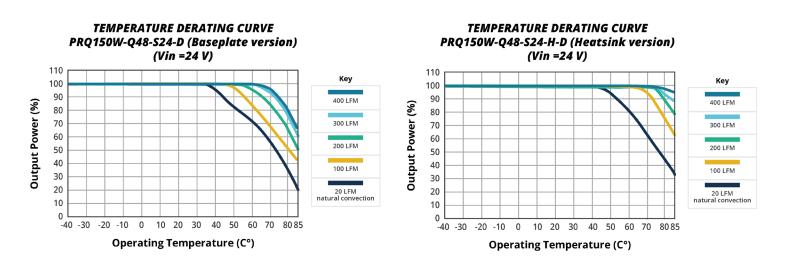
with base plate

units: mm [inches] pin 1,2,3,5,6,7's diameter: 1.00 [0.039] pin 4,8's diameter: 1.50 [0.059] pin diameter tolerance: ± 0.10 [± 0.004] general tolerance: $\pm 0.50 [\pm 0.020]$ mounting hole screwing torque: Max 0.4 N·m

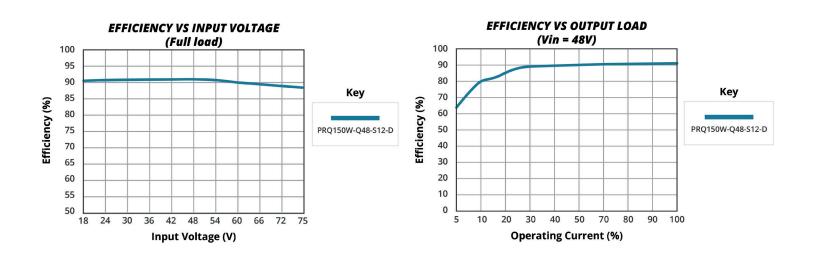


62.00 [2.441]

with heatsink


.....

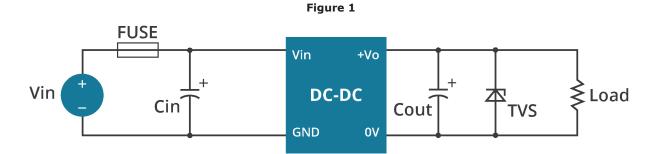
units: mm [inches] pin 1,2,3,5,6,7's diameter: 1.00 [0.039] pin 4,8's diameter: 1.50 [0.059] pin diameter tolerance: ±0.10 [±0.004] general tolerance: ± 0.50 [± 0.020] mounting hole screwing torque: Max 0.4 N·m


50.80 [2.000 61.80 [2.433

DERATING CURVES

EFFICIENCY CURVES

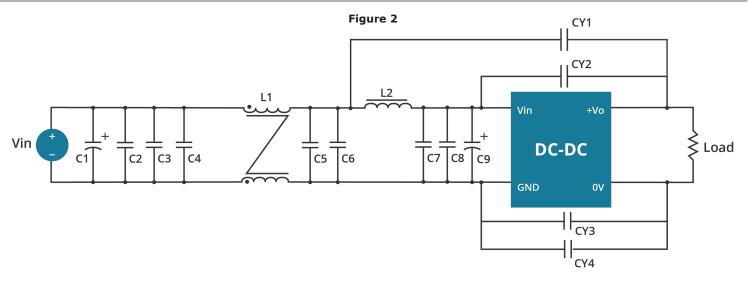
.....


APPLICATION CIRCUIT

1. Let's change to: It is recommended to use the circuit shown in Fig. 1 during product testing and application, or otherwise ensure that at least 220 μ F of electrolytic capacitors are connected at the input in order to ensure adequate voltage surge suppression and protection.

2. It is recommended to increase the value of Cin and pay attention to the unstable input voltage if the product input side is paralleled with motor drive circuit and/or larger energy transient circuits, to ensure the stability of input terminal and avoid repeatedly start-up problems due to input voltage lower than under-voltage protection point.

3. It is recommended to increase the output capacitance, limited to the capactive load specification and/or increasing the voltage clamping circuit (such as TVS) if the output terminal is inductive device such as relay or a motor, to ensure adequate voltage surge suppression and protection.


4. Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified maximum capacitive load value of the product.

Output voltage (Vdc)	FUSE	Cin (µF)	Cout (uF)	TVS
5			470µF	SMDJ6.0A
12	15A slow blow	220µF	220.45	SMDJ14A
15			220µF	SMDJ17A
24			110E	SMDJ28A
48			110µF	SMDJ54A

Note: Please pay attention to the ambient temperature of the product when using an external capacitor, increase the electrolytic capacitor values to at least 1.5 times the original parameterif the ambient temperature is low (such as -25°C).

EMC RECOMMENDED CIRCUITS

Table 2

List of Components	Recommended Component value
C1	150µF electrolytic capacitor
C9	47µF electrolytic capacitor
C2, C3, C4, C5, C6, C7, C8	2.2µF/100V ceramic capacitor
L1	1.0mH/15A common mode inductor
L2	1.5µF/15A inductance
CY1, CY2, CY3, CY4	1nF Y1 safety capacitor

APPLICATION NOTES

.....

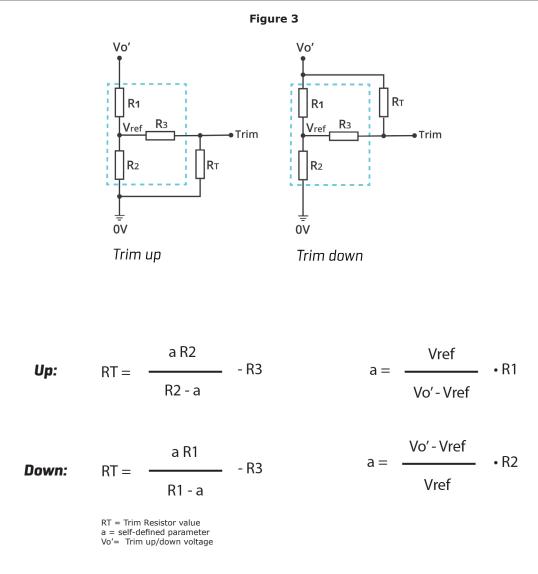
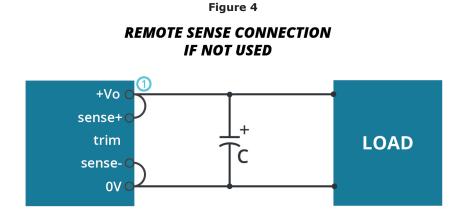
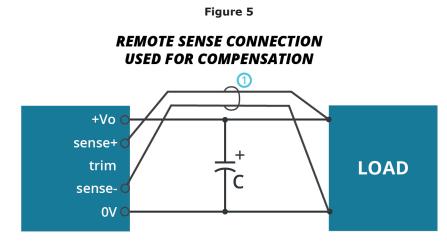



Table 3

Vout (Vdc)	R1 (KΩ)	R2 (KΩ)	R3 (KΩ)	Vref (V)
5	3.036	3.0	10	2.5
12	11.0	2.87	15	2.5
15	14.03	2.8	15	2.5
24	24.872	2.87	15	2.5
48	53.017	2.913	15	2.5

Note: When using the Trim down function make sure that the RT resistor value is calculated correctly. If the Trim pin is shorted with + Vo, or its value is too low, the or the output voltage Vo' would be lower than 0.9Vo, which may cause the product to fail.

REMOTE SENSE APPLICATION



Note: 1. Lines must be kept as short as possible.

.....

2. If the sense function is not used for remote regulation the user must connect the +Sense to + Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.

3. The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

- Note: 1. In cables and discrete wiring applications, twisted pair or other techniques should be implemented.
 - Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used
 PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wires are suggested for remote compensation and must be kept as short as possible.
 - 4. We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
 - voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range. 5. Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical sup port or factory for further advice of sense operation.

REVISION HISTORY

rev.	description	date
1.0	initial release	10/25/2021

The revision history provided is for informational purposes only and is believed to be accurate.

a bel group

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

.....

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters category:

Click to view products by CUI Inc manufacturer:

Other Similar products are found below :

ESM6D044440C05AAQ FMD15.24G PSL486-7LR Q48T30020-NBB0 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 GQ2541-7R RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS-2415 XKS-1215 06322 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033-PGB0 XKS-2415 XKS-2412 XKS-1212 XKS-1205 XKS-0515 XKS-0505 XGS-2405 XGS-1215 XGS-0515 PS9Z-6RM4 73-551-5038I AK1601-9RT VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 VI-LJ11-iz PQA30-D24-S24-DH VI-LN2-EW VI-PJW01-CZY CK2540-9ERT