

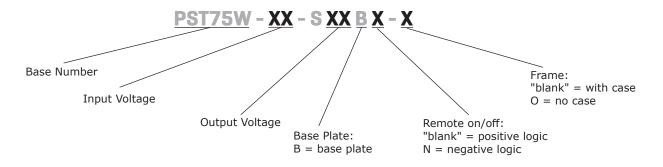
late 01/24/2024

page 1 of 7

SERIES: PST75W | **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- 75 W isolated output
- certified to IEC/EN 62368, reinforced insulation
- meets EN 50155 and EN 45545-2
- 8:1 input range, 9.5 ~ 75 Vdc
- built-in EMI filter and baseplate
- wide operating temperature range (-40 ~ 105 °C)
- remote on/off
- short circuit, over current, over voltage, over temperature, & UVLO protections



MODEL	input voltage	output voltage	output current	output power	ripple and noise¹	efficiency
	range (Vdc)	(Vdc)	max (A)	max (W)	max (mVp-p)	typ (%)
PST75W-36-S12B	9.5~75	12	6.25	75	150	90
PST75W-36-S15B	9.5~75	15	5	75	150	90
PST75W-36-S24B	9.5~75	24	3.12	75	240	90
PST75W-36-S28B	9.5~75	28	2.67	75	240	90
PST75W-36-S48B	9.5~75	48	1.56	75	480	90

Note:

- 1. Ripple and noise are measured peak to peak at full load, 5 \sim 20 MHz BW with 1 μ F ceramic capacitor, full load.
- 2. All specifications are measured at Ta=25°C, nominal input voltage and full output load unless otherwise specified.

PART NUMBER KEY

CUI Inc | SERIES: PST75W | DESCRIPTION: DC-DC CONVERTER

INPUT

condition	ns/description	min	typ	max	units
		9.5	36	75	Vdc
	,	8.4 7.5	8.8 7.9	9.3 8.4	Vdc Vdc
at full load	d		0.9		Vdc
at full load	d, 9.5 Vdc input voltage		7.5		А
12 Vdc ou 15 Vdc ou 24 & 48 V	tput models tput models dc output models		10/2,315 10/2,315 12/2,311 12/2,307		mA mA mA mA
positive	models ON: V_{remote} at $I_{remote} = 0.0uA$, Pin open = on	4.0		75	Vdc
logic	models OFF: V_{remote} at $I_{remote} = 1.0$ mA	0		1.0	Vdc
		0		1.0	Vdc
logic	models OFF: V _{remote} at I _{remote} = 0.0uA, Pin open = off	4.0		75	Vdc
I _{remote} at '	$V_{\text{remote}} = 0V$		0.3	1	mA
				30	μΑ
	remote		5	10	mA
	turn-on voturn-off vot	Pin open = on models OFF: V_{remote} at I_{remote} = 1.0mA models ON: V_{remote} at I_{remote} = 1.0mA		turn-on voltage threshold, at full load turn-off voltage threshold, at full load turn-off voltage threshold, at full load 7.5 7.9 at full load 0.9 at full load 0.9 at full load, 9.5 Vdc input voltage 7.5 $Vin=36V, Io=0A 12 \ Vdc \ output \ models 10/2,315 15 \ Vdc \ output \ models 10/2,315 15 \ Vdc \ output \ models 10/2,315 12/2,311 12/2,311 12/2,307 \frac{positive}{positive} \begin{cases} positive \ pin \ open = on \\ models \ ON: \ V_{remote} \ at \ I_{remote} = 0.0 \ uA, \\ Pin \ open = on \end{cases} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note:

3. For positive and negative logic.

OUTPUT

parameter	conditions/description	min	typ	max	units
	12 Vdc output models			14,000	μF
	15 Vdc output models			10,000	μF
maximum capacitive load	24 Vdc output models			3,900	μF
	28 Vdc output models			3,200	μF
	48 Vdc output models			1,100	μF
line regulation	measured from high line to low line			±0.2	%
load regulation	measured from full load to zero load			±0.2	%
voltage accuracy	at full load, 36 Vdc input voltage, 25°C		±1		%
switching frequency		180	200	220	kHz
transient response	75 ~ 100% step load change			250	μs
temperature coefficient	40 ~ 105°C			±0.02	%/°C
remote on/off start-up time ⁴	V _{remote} to 10% Vo _{set} , remote on		20		ms
input start-up time ⁴	Vin _{min} to 10% Vo _{set} , power up		20		ms
rise time	10% Vo _{set} to 90% Vo _{set}		10		ms
voltage trim range	Po ≤ max rated power, Io ≤ Io _{max}	-20		15	%
remote sense range	Po \leq max rated power, Io \leq Io _{max} % of nominal Vo			15	%

Note:

4. At full constant resistive load.

PROTECTIONS

parameter	conditions/description	min	typ	max	units
over current protection	auto recovery, hiccup	110	150	210	%
over voltage protection	limited voltage, % of nominal Vo	117	125	140	%
short circuit protection	auto recovery, continuous				
over temperature protection ⁵	shutdown restart threshold		110 100		°C

Note: 5. Temperature at the center part of base plate, non-latching.

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units
	input to output, for 1 minute			3,000 4,200	Vac Vdc
isolation voltage	input to case (base plate), for 1 minute			2,100 3,000	Vac Vdc
	output to case (base plate), for 1 minute			1,500 2,100	Vac Vdc
isolation resistance	input to output	100			MΩ
isolation capacitance	input to output input to case (base plate) output to case (base plate)		15,000 16,000 23,000		pF pF pF
safety approvals	certified to 62368-1: EN, IEC designed to meet 62368-1: UL				
conducted emissions	EN 55032 and EN 50155 compliant, class A				
radiated emissions	EN 55032 and EN 50155 compliant, class A				
ESD	EN 61000-4-2 Level 3: Air ±8kV, Contact ±6kV,	perf. criteria A			
radiated immunity	EN 61000-4-3 Level 3: 80~1000MHz, 20V/m, pe	rf. criteria A			
surge	EN 61000-4-5 Level 4: Line to earth, ±4kV, Line	to line, ±2kV, p	erf. criteria A		
conducted immunity	EN 61000-4-6 Level 3: 0.15~80MHz, 10V, perf. o	criteria A			
MTBF	as per MIL-HDBK-217F, 25°C 12 Vdc output models 15 Vdc output models 24 Vdc output models 28 Vdc output models 48 Vdc output models		526,000 585,000 577,000 568,000 594,000		hours hours hours hours hours
RoHS	yes				

ENVIRONMENTAL

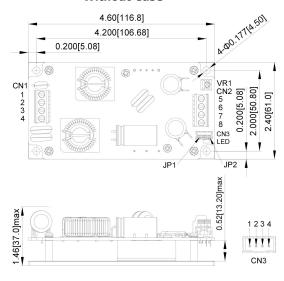
parameter	conditions/description	min	typ	max	units
operating temperature	see derating curve	-40		105	°C
storage temperature		-40		105	°C
humidity	non condensing	-		95	%
operating altitude			5,000		m

MECHANICAL

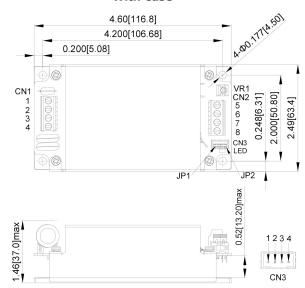
parameter	conditions/description	min	typ	max	units
base plate material	aluminum				
potting material	UL 94V-0 (DC Module)				
dimensions	without case: 4.60 x 2.40 x 1.46 [116.8 x 61.0 x 37.0 mm] with case: 4.60 x 2.49 x 1.46 [116.8 x 63.4 x 37.0 mm]				inch inch
weight	without case with case		215 250		g g

MECHANICAL DRAWING

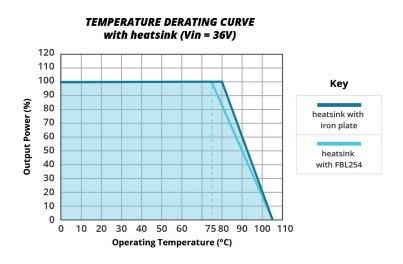
units: inch[mm] general tolerance: inches: $x.xx = \pm 0.02$, $x.xxx = \pm 0.010$

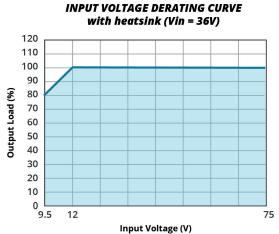

milimeters: $x.x = \pm 0.5$, $x.xx = \pm 0.25$

PIN CONNECTIONS CN1 & CN2					
FUNCTION					
+Vin					
-Vin					
remote					
case					
+Vout					
+Vout					
-Vout					
-Vout					

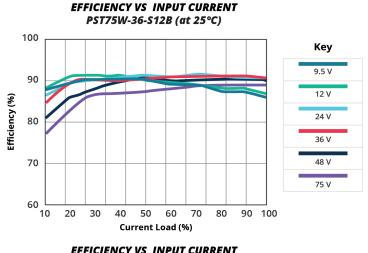

PIN CONNECTIONS CN3					
PIN	PIN FUNCTION				
1	-Vout				
2	-sense				
3	+sense				
4	+Vout				

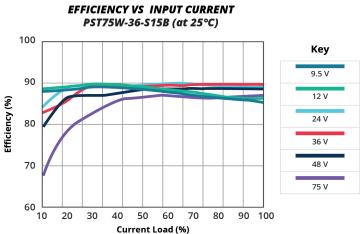
* JP1: Short PIN1 & PIN2 * JP2: Short PIN3 & PIN4

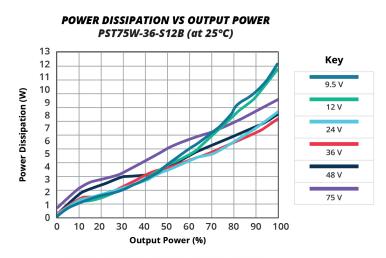

Without Case

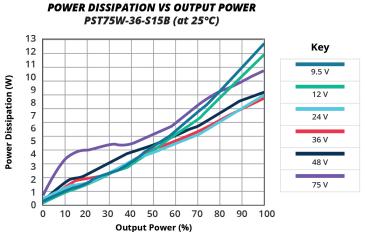


With Case

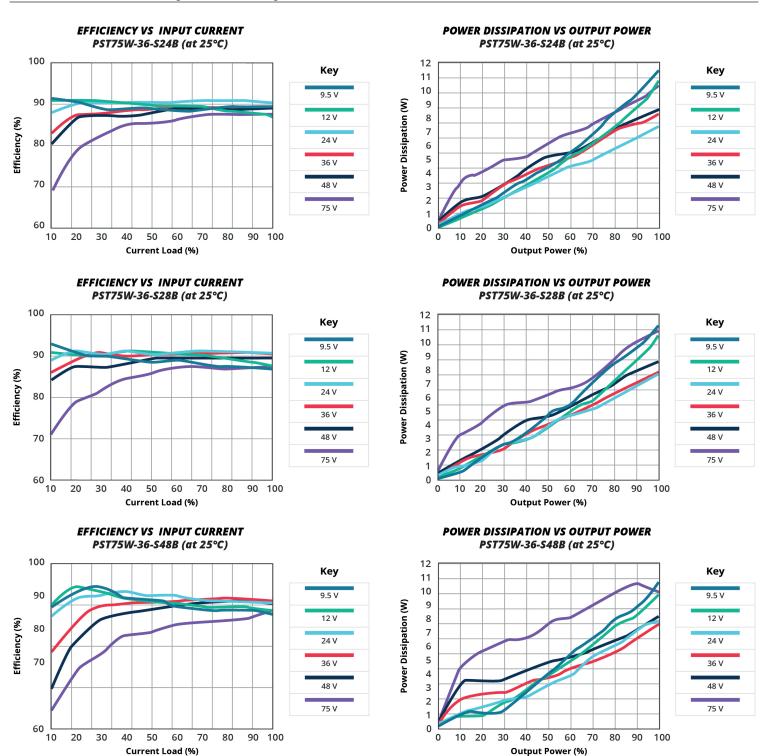



DERATING CURVES





EFFICIENCY CURVES



EFFICIENCY CURVES (CONTINUED)

Additional Resources: Product Page | 3D Model

CUI Inc | SERIES: PST75W | DESCRIPTION: DC-DC CONVERTER date 01/24/2024 | page 7 of 7

REVISION HISTORY

rev.	description	date
1.0	initial release	01/24/2024

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters - Chassis Mount category:

Click to view products by CUI Inc manufacturer:

Other Similar products are found below:

RPS8-350ATX-XE AK-1615-7R EBC4050N042N75 FK1601-7RT AM3040-9G BQ2660-9RF B62SR24125CC B40SR12424CC VTD24SC24-O VTB05SC110-O B62SR13722AC TMDC 20-4811 TMDC 20-4815 TMDC 40-2411 TMDC 40-4811 TMDC 60-2411 TMDC 60-4815 RSD-300D-5 STMGFS152412 TMDC 20-2411 TMDC 20-2412 TMDC 20-2418 TMDC 60-4811 TMDC 60-4812 TMDC 60-4818 VHK150W-Q24-S48 EQ2001-9RG SD-100A-12 RSD-30G-3.3 RSD-30H-3.3 RSD-30H-5 RSD-30L-3.3 RSD-30L-5 RSD-60G-5 RSD-60H-24 RSD-60H-3.3 RSD-60H-5 RSD-30G-5 VHK200W-Q24-S12 RSD-60L-5 MGFS32412 VHK150W-Q24-S12 TEQ 300-7216WIR MGFS32415 MGFS3243R3 PS8-250ATX-ZE RPS8-750ATX-XE PS8-300ATX-ZBE RPM40-2412DG TEQ 300-7215WIR