

SERIES: PYBJ6 | **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- up to 6 W isolated output
- 2:1 input voltage range
- single regulated output
- output short circuit, over current, over voltage protection
- efficiency up to 86%
- DIP and SMT mounting styles
- available with or without case
- 1500 Vdc isolation
- EN 62368-1

MODEL		out tage	output voltage		tput rent	output power	ripple & noise ¹	efficiency ²
	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	typ (%)
PYBJ6-D12-S5	12	9~18	5	0	1200	6	100	81
PYBJ6-D12-S12	12	9~18	12	0	500	6	100	84
PYBJ6-D12-S15	12	9~18	15	0	400	6	100	85
PYBJ6-D24-S3	24	18~36	3.3	0	1500	4.95	100	79
PYBJ6-D24-S5	24	18~36	5	0	1200	6	100	83
PYBJ6-D24-S12	24	18~36	12	0	500	6	100	85
PYBJ6-D24-S15	24	18~36	15	0	400	6	100	86

Notes: 1. From 5~100% load, nominal input, 20 MHz bandwidth oscilloscope, with 10 µF tantalum and 1 µF ceramic capacitors on the output. From 0~5% load, ripple and noise is <5% Vo.

2. Measured at nominal input voltage, full load.

3. All specifications are measured at Ta=25°C, humidity < 75%, nominal input voltage, and rated output load unless otherwise specified.

PART NUMBER KEY

CUI Inc | SERIES: PYBJ6 | DESCRIPTION: DC-DC CONVERTER

INPUT

parameter	conditions/descriptions/description	on	min	typ	max	units
operating input voltage	12 Vdc input models 24 Vdc input models		9 18	12 24	18 36	Vdc Vdc
start-up voltage	12 Vdc input models 24 Vdc input models				9 18	Vdc Vdc
surge voltage	12 Vdc input models for 1 second max 24 Vdc input models for 1 second max		-0.7 -0.7		25 50	Vdc Vdc
under voltage shutdown	12 Vdc input models 24 Vdc input models		5.5 13	6.5 15		Vdc Vdc
	12 Vdc input models	5 Vdc output models 12 Vdc output models 15 Vdc output models			633 610 603	mA mA mA
current	24 Vdc input models	3.3 Vdc output models 5 Vdc output models 12 Vdc output models 15 Vdc output models			268 308 302 298	mA mA mA mA
remote on/off (CTRL)⁴	turn on (CTRL pin pulled low to GND (0~0.3 Vdc)) turn off (CTRL pin open or pulled high (2.0~12 Vdc)) input current when switched off			5	10	mA
filter	Pi filter					
no load power consumption			0.12		W	

Notes: 4. The voltage of the CTRL pin is referenced to input GND pin.

OUTPUT

Note:

parameter	conditions/description	min	typ	max	units
	3.3 Vdc output models			1,800	μF
maximum capacitive load⁵	5 Vdc output models			1,000	μF
	12 Vdc output models			680	μF
	15 Vdc output models			470	μF
voltage accuracy	from 0% to full load		±1	±3	%
line regulation	from low line to high line, full load		±0.2	±0.5	%
load regulation ⁶	from 5% to full load		±0.5	±1	%
adjustability	see application notes		±5		%
switching frequency ⁷	PWM mode		330		kHz
transient recovery time	25% load step change, nominal input voltage		300	500	μs
	25% load step change, nominal input voltage				
transient response deviation	3.3, 5 Vdc output models		±5	±8	%
	all other output models		±3	±5	%
temperature coefficient	at full load			±0.03	%/°C

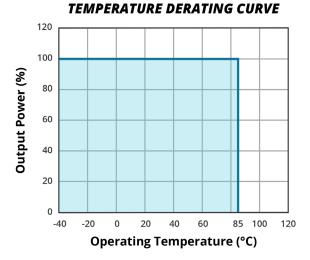
.....

5. Tested at input voltage range and full load. 6. At $0 \sim 100\%$ load, the max load regulation is $\pm 5\%$. 7. Value is based on full load. At loads <50%, the switching frequency decreases with decreasing load for efficiency improvement.

PROTECTIONS

parameter	conditions/description	min	typ	max	units
over voltage protection	output shut down	110		160	%
over current protection	hiccup, auto recovery	110	140	200	%
short circuit protection	hiccup, continuous, auto recovery				

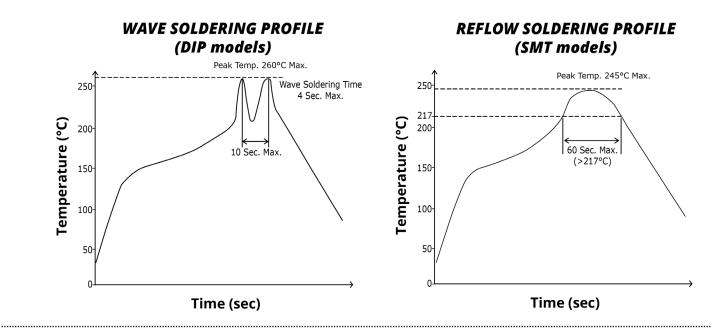
SAFETY AND COMPLIANCE


er conditions/description		typ	max	units	
input to output for 1 minute at 5 mA	500			Vac	
•				Vac	
•				Vac	
				Vdc	
· · · · · · · · · · · · · · · · · · ·	'			Vdc	
output to case ⁸ for 1 minute at 1 mA	1,500			Vdc	
input to output at 500 Vdc	100			MΩ	
input to case ⁸ at 500 Vdc	100			MΩ	
output to case ⁸ at 500 Vdc	100			MΩ	
input to output, 100 kHz / 0.1 V 1,000			pF		
certified to 62368-1: IEC, EN, UL					
CISPR32/EN55032, class A (no external circuit); class B (external circuit required, see Figure 3)					
CISPR32/EN55032, class B (external circuit required, see Figure 4)					
IEC/EN61000-4-2, contact ±6 kV, class B					
IEC/EN61000-4-3, 10 V/m, class A					
IEC/EN61000-4-4, ±2 kV, class B (external cir	cuit required, see F	igure 2)			
IEC/EN61000-4-5, line-line ± 2 kV, class B (ex	ternal circuit require	ed, see Figure	e 2)		
IEC/EN61000-4-6, 3 Vr.m.s, class A					
as per MIL-HDBK-217F, 25°C 1,000,000				hours	
	input to output for 1 minute at 5 mA input to case ⁸ for 1 minute at 5 mA output to case ⁸ for 1 minute at 5 mA input to output for 1 minute at 1 mA input to case ⁸ for 1 minute at 1 mA output to case ⁸ for 1 minute at 1 mA input to output at 500 Vdc input to case ⁸ at 500 Vdc output to case ⁸ at 500 Vdc input to case ⁸ at 500 Vdc input to output, 100 kHz / 0.1 V certified to 62368-1: IEC, EN, UL CISPR32/EN55032, class A (no external circuit CISPR32/EN55032, class B (external circuit re IEC/EN61000-4-2, contact ±6 kV, class B IEC/EN61000-4-3, 10 V/m, class A IEC/EN61000-4-5, line-line ±2 kV, class B (ext IEC/EN61000-4-6, 3 Vr.m.s, class A	input to output for 1 minute at 5 mA500input to case ⁸ for 1 minute at 5 mA500output to case ⁸ for 1 minute at 5 mA500input to output for 1 minute at 1 mA1,500input to case ⁸ for 1 minute at 1 mA1,500output to case ⁸ for 1 minute at 1 mA1,500input to output at 500 Vdc100input to case ⁸ at 500 Vdc100output to case ⁸ at 500 Vdc100output to case ⁸ at 500 Vdc100input to output, 100 kHz / 0.1 Vcertified to 62368-1: IEC, EN, ULCISPR32/EN55032, class A (no external circuit); class B (externalCISPR32/EN55032, class B (external circuit required, see Figure 4IEC/EN61000-4-2, contact ±6 kV, class BIEC/EN61000-4-3, 10 V/m, class AIEC/EN61000-4-5, line-line ±2 kV, class B (external circuit required, see Figure 4IEC/EN61000-4-5, line-line ±2 kV, class B (external circuit required, see Figure 4	input to output for 1 minute at 5 mA 500 input to case ⁸ for 1 minute at 5 mA 500 output to case ⁸ for 1 minute at 5 mA 500 input to output for 1 minute at 1 mA 1,500 input to case ⁸ for 1 minute at 1 mA 1,500 output to case ⁸ for 1 minute at 1 mA 1,500 input to case ⁸ for 1 minute at 1 mA 1,500 input to case ⁸ at 500 Vdc 100 input to case ⁸ at 500 Vdc 100 output to case ⁸ at 500 Vdc 100 input to case ⁸ at 500 Vdc 100 certified to 62368-1: IEC, EN, UL CISPR32/EN55032, class A (no external circuit); class B (external circuit require CISPR32/EN55032, class B (external circuit required, see Figure 4) IEC/EN61000-4-2, contact ±6 kV, class B IEC/EN61000-4-3, 10 V/m, class A IEC/EN61000-4-4, ±2 kV, class B (external circuit required, see Figure 2) IEC/EN61000-4-5, line-line ±2 kV, class B (external circuit required, see Figure 4) IEC/EN61000-4-6, 3 Vr.m.s, class A	input to output for 1 minute at 5 mA500input to case ⁸ for 1 minute at 5 mA500output to case ⁸ for 1 minute at 5 mA500input to output for 1 minute at 1 mA1,500input to case ⁸ for 1 minute at 1 mA1,500output to case ⁸ for 1 minute at 1 mA1,500input to output at 500 Vdc100input to case ⁸ at 500 Vdc100output to case ⁸ at 500 Vdc100output to case ⁸ at 500 Vdc100output to case ⁸ at 500 Vdc100input to output, 100 kHz / 0.1 V1,000certified to 62368-1: IEC, EN, ULCISPR32/EN55032, class A (no external circuit); class B (external circuit required, see FiguCISPR32/EN55032, class B (external circuit required, see Figure 4)IEC/EN61000-4-2, contact ±6 kV, class BIEC/EN61000-4-3, 10 V/m, class AIEC/EN61000-4-4, ±2 kV, class B (external circuit required, see Figure 2)IEC/EN61000-4-5, line-line ±2 kV, class B (external circuit required, see Figure 2)IEC/EN61000-4-6, 3 Vr.m.s, class A	

Note: 8. Only applies to versions with case.

ENVIRONMENTAL

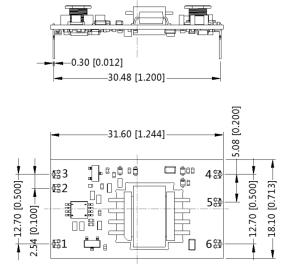
parameter	conditions/description	min	typ	max	units
operating temperature	see derating curves	-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%
vibration	10~150 Hz, for 90 minutes on each axis		5		G

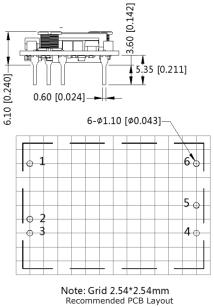

DERATING CURVES

SOLDERABILITY

parameter	conditions/description	min	typ	max	units
hand soldering	1.5 mm from case for 10 seconds	1.5 mm from case for 10 seconds		300	°C
wave soldering ⁹	see wave soldering profile		260	°C	
reflow soldering ¹⁰	see reflow soldering profile Maximum duration >217°C is 60 seconds. For actual application, refer to IPC/JEDEC J-STD-020D.1		245	°C	

Note: 9. For DIP models only. 10. For SMT models only.

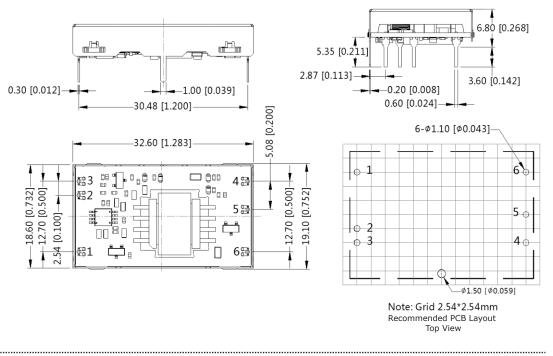

MECHANICAL


parameter	conditions/description	min	typ	max	units
dimensions	DIP without case: $31.60 \times 18.10 \times 6.10$ [$1.244 \times 0.713 \times 0.240$ inch] DIP with case: $32.60 \times 19.10 \times 6.80$ [$1.283 \times 0.752 \times 0.268$ inch] SMT without case: $31.60 \times 18.10 \times 6.30$ [$1.244 \times 0.713 \times 0.248$ inch] SMT with case: $32.60 \times 19.10 \times 7.00$ [$1.283 \times 0.752 \times 0.276$ inch]			mm mm mm mm	
case material	aluminum alloy				
weight	models without case4.7models with case5.7			g g	

MECHANICAL DRAWING (DIP WITHOUT CASE)

units: mm [inch] tolerance: $\pm 0.50[\pm 0.020]$ pin section tolerance: $\pm 0.10[\pm 0.004]$

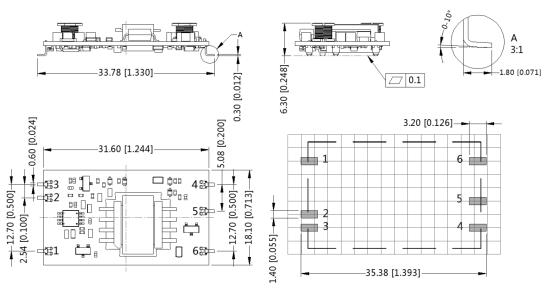
PIN CONNECTIONS		
PIN	Function	
1	Vin	
2	CTRL	
3	GND	
4	0V	
5	trim	
6	+Vo	



Top View

MECHANICAL DRAWING (DIP WITH CASE)

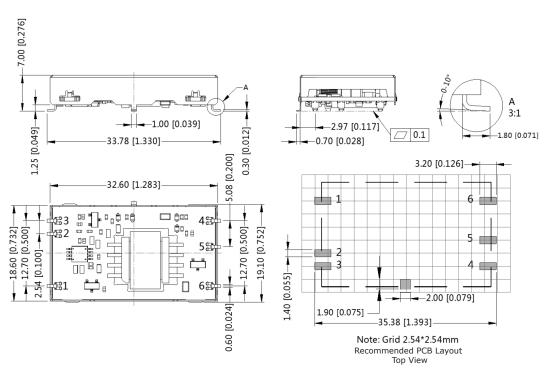
units: mm [inch] tolerance: $\pm 0.50[\pm 0.020]$ pin section tolerance: $\pm 0.10[\pm 0.004]$


PIN CO	PIN CONNECTIONS		
PIN	Function		
1	Vin		
2	CTRL		
3	GND		
4	0V		
5	trim		
6	+Vo		

MECHANICAL DRAWING (SMT WITHOUT CASE)

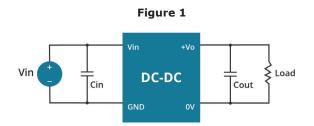
units: mm [inch] tolerance: $\pm 0.50[\pm 0.020]$ pin section tolerance: $\pm 0.10[\pm 0.004]$

PIN CONNECTIONS			
PIN	Function		
1	Vin		
2	CTRL		
3	GND		
4	0V		
5	trim		
6	+Vo		

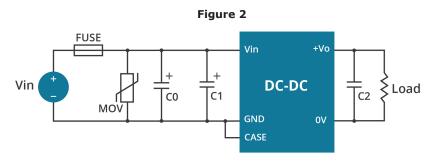


Note: Grid 2.54*2.54mm Recommended PCB Layout Top View

MECHANICAL DRAWING (SMT WITH CASE)


units: mm [inch] tolerance: $\pm 0.50[\pm 0.020]$ pin section tolerance: $\pm 0.10[\pm 0.004]$

PIN CONNECTIONS		
PIN	Function	
1	Vin	
2	CTRL	
3	GND	
4	0V	
5	trim	
6	+Vo	


APPLICATION CIRCUIT

This series has been tested according to the following recommended circuit (Figure 1) before leaving the factory. If you want to further reduce the input and output ripple, you can increase the input and output capacitors or select capacitors of low equivalent impedance provided that the capacitance is less than the maximum capacitive load of the model.

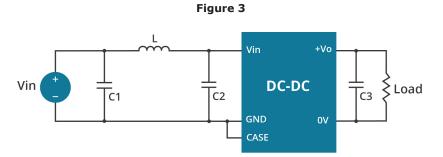


Table 1			
Vout (Vdc)	Cin (µF)	Cout (µF)	
3.3/5/12/15	10	10	

EMC RECOMMENDED CIRCUIT

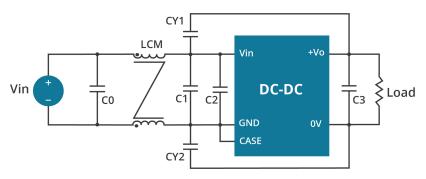


Table 2			
Recomm	Recommended External Circuit Components		
Vin (Vdc)	12, 24		
FUSE	choose according to actual input current		
MOV	S20K30		
C0	680 µF / 100 V		
C1	330 µF / 25 V		
C2	10 µF / 25 V		

Table 3		
Recommended External Circuit Components		
12, 24		
4.7 μF / 50 V		
4.7 μH		
10 µF / 25 V		

Table 4			
Recommended External Circuit Components			
Vin (Vdc)	12, 24		
C0	4.7 µF / 50 V		
C1	4.7 µF / 50 V		
C2	4.7 µF / 50 V		
C3	10 µF / 25 V		
LCM	3.3 mH		
CY1, CY2	1000 pF / ≥2000 Vdc		

APPLICATION NOTES

Output voltage trimming Leave open if not used.

.....

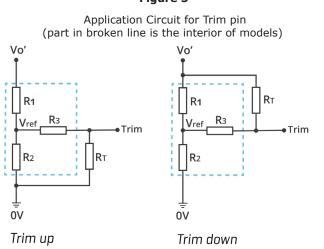


Figure 5

Formula for Trim Resistor

up:	R⊤=	$\frac{aR_2}{R_2-a} -R_3$	$a = \frac{Vref}{Vo' - Vref} \cdot R_1$
down:	R⊤=	<u>aR1</u> R1-a -R3	a= <u>Vo'-Vref</u> R2

Note: Value for R1, R2, R3, and Vref refer to Table 5 R_{τ} : Trim Resistor a: User-defined parameter, no actual meanings Vo': The trim up/down voltage

Table	5
-------	---

Model No.	R1 (kΩ)	R2 (kΩ)	R3 (kΩ)	Vref (V)
PYBJ6-D12-S5	2.94	2.87	10	2.5
PYBJ6-D12-S12	11	2.87	15	2.5
PYBJ6-D12-S15	14.5	2.87	15	2.5
PYBJ6-D24-S3	4.8	2.87	12	1.24
PYBJ6-D24-S5	2.94	2.87	15	2.5
PYBJ6-D24-S12	11.0	2.87	33	2.5
PYBJ6-D24-S15	14.5	2.87	15	2.5

REVISION HISTORY

rev.	description	date
1.0	initial release	06/24/2019
1.01	packaging removed, safeties updated in features and safety line	01/14/2021
1.02	derating curve and circuit figures updated	07/20/2021

The revision history provided is for informational purposes only and is believed to be accurate.

a bel group

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

.....

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

.....

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters category:

Click to view products by CUI Inc manufacturer:

Other Similar products are found below :

ESM6D044440C05AAQ FMD15.24G PSL486-7LR Q48T30020-NBB0 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 GQ2541-7R RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS-2415 XKS-1215 06322 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033-PGB0 XKS-2415 XKS-2412 XKS-1212 XKS-1205 XKS-0515 XKS-0505 XGS-2405 XGS-1215 XGS-0515 PS9Z-6RM4 73-551-5038I AK1601-9RT VI-N61-CM VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH VI-M5F-CQ VI-LN2-EW VI-PJW01-CZY