

date 08/17/2021

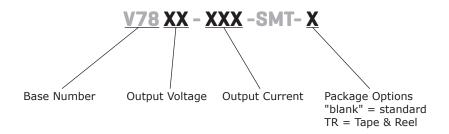
page 1 of 8

## **SERIES:** V78-500-SMT | **DESCRIPTION:** NON-ISOLATED SWITCHING REGULATOR

#### **FEATURES**

- 500 mA current output
- high efficiency up to 96%
- no heat sink required
- SMT package
- remote on/off control
- low ripple and noise
- short circuit protection, thermal shutdown
- wide temperature (-40°C~+85°C)






| MODEL                        |                     | nput<br>Iltage | output<br>voltage | output<br>current | output<br>power | ripple and<br>noise¹  | effic          | iency          |
|------------------------------|---------------------|----------------|-------------------|-------------------|-----------------|-----------------------|----------------|----------------|
|                              | <b>typ</b><br>(Vdc) | range<br>(Vdc) | (Vdc)             | (mA)              | max<br>(W)      | <b>max</b><br>(mVp-p) | Vin min<br>(%) | Vin max<br>(%) |
| V7803-500-SMT                | 12                  | 4.5 ~ 28       | 3.3               | 500               | 1.65            | 25                    | 90             | 75             |
| V7805-500-SMT                | 12                  | 6 ~ 28         | 5                 | 500               | 2.5             | 25                    | 94             | 81             |
| V7812-500-SMT <sup>2</sup>   | 24                  | 14 ~ 28        | 12                | 500               | 6               | 25                    | 95             | 90             |
| V7815-500-SMT <sup>2</sup> * | 24                  | 17 ~ 28        | 15                | 500               | 7.5             | 25                    | 96             | 92             |

Notes:

- 1. ripple & noise are measured at 20 MHz BW with 1  $\mu F$  ceramic cap and 10  $\mu F$  electrolytic capacitors on the output
- 2. must operate with a minimum of 5% loading \*. Discontinued model

#### **PART NUMBER KEY**



## **INPUT**

| parameter                                | conditions/description                                                                                            | min | typ  | max | units |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----|------|-----|-------|
|                                          | 3.3 Vdc output                                                                                                    | 4.5 | 12   | 28  | Vdc   |
| innut valtana                            | 5 Vdc output                                                                                                      | 6   | 12   | 28  | Vdc   |
| input voltage                            | 12 Vdc output                                                                                                     | 14  | 24   | 28  | Vdc   |
|                                          | 15Vdc output                                                                                                      | 17  | 24   | 28  | Vdc   |
| remote on/off shutdown threshold voltage |                                                                                                                   | 1.1 | 1.25 | 1.4 | Vdc   |
| on/off control current                   | on: open or 1.5 <vc≤6v<br>off: GND or 0V<vc<1v< td=""><td></td><td>2</td><td></td><td>μΑ</td></vc<1v<></vc≤6v<br> |     | 2    |     | μΑ    |
| shutdown input current                   |                                                                                                                   |     | 15   | 30  | μA    |

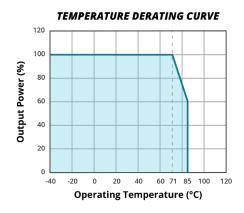
#### **OUTPUT**

| conditions/description                           | min                                                                                                                                               | typ                                                                                                                                               | max                                                                                                                                                                           | units                                                                                                                                                                                                                            |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                                                                                                                                                   |                                                                                                                                                   | 1000                                                                                                                                                                          | μF                                                                                                                                                                                                                               |
| measured from low line to high line at 100% load |                                                                                                                                                   | ±0.2                                                                                                                                              | ±0.5                                                                                                                                                                          | %                                                                                                                                                                                                                                |
| measured from 10% to full load at nominal input  |                                                                                                                                                   | ±0.3                                                                                                                                              | ±0.75                                                                                                                                                                         | %                                                                                                                                                                                                                                |
| measured from low line to high line at 100% load |                                                                                                                                                   | ±2                                                                                                                                                | ±3                                                                                                                                                                            | %                                                                                                                                                                                                                                |
| see application notes                            |                                                                                                                                                   |                                                                                                                                                   |                                                                                                                                                                               |                                                                                                                                                                                                                                  |
|                                                  |                                                                                                                                                   |                                                                                                                                                   | ±0.02                                                                                                                                                                         | %/°C                                                                                                                                                                                                                             |
|                                                  | measured from low line to high line at 100% load measured from 10% to full load at nominal input measured from low line to high line at 100% load | measured from low line to high line at 100% load measured from 10% to full load at nominal input measured from low line to high line at 100% load | measured from low line to high line at 100% load $\pm 0.2$ measured from 10% to full load at nominal input $\pm 0.3$ measured from low line to high line at 100% load $\pm 2$ | measured from low line to high line at 100% load $\pm 0.2$ $\pm 0.5$ measured from 10% to full load at nominal input $\pm 0.3$ $\pm 0.75$ measured from low line to high line at 100% load $\pm 2$ $\pm 3$ see application notes |

Notes: 1. output voltage adjustment must meet Vin-Vo > 2V requirement

## **PROTECTIONS**

| parameter conditions/description |                                        | min | typ | max | units |
|----------------------------------|----------------------------------------|-----|-----|-----|-------|
| short circuit protection         | hiccup, continuous, automatic recovery |     |     |     |       |
| thermal shutdown                 | internal IC junction                   |     | 160 |     | °C    |
| current limit                    |                                        |     | 1.8 |     | А     |


## **SAFETY AND COMPLIANCE**

| parameter | conditions/description     | min       | typ max | units |
|-----------|----------------------------|-----------|---------|-------|
| RoHS      | 2011/65/EU                 |           |         |       |
| MTBF      | as per MIL-HDBK-217F, 25°C | 2,000,000 | ,       | hours |

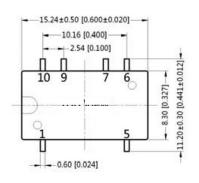
## **ENVIRONMENTAL**

| parameter                  | conditions/description                                                 | min | typ | max | units |
|----------------------------|------------------------------------------------------------------------|-----|-----|-----|-------|
| case operating temperature |                                                                        |     |     | 100 | °C    |
| operating temperature      | see derating curve                                                     | -40 |     | 85  | °C    |
| storage temperature        |                                                                        | -55 |     | 125 | °C    |
| storage humidity           |                                                                        |     |     | 95  | %     |
| hand soldering             | for 10 seconds                                                         |     |     | 300 | °C    |
| reflow soldering           | at maximum duration time ≤60s at 217°C refer to IPC/JEDEC J-STD-020D.1 |     |     | 240 | °C    |

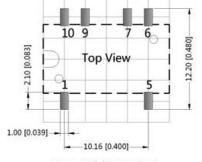
### **DERATING CURVES**

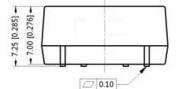


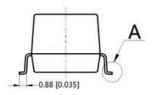
#### **MECHANICAL**


| parameter     | conditions/description                           | min | typ | max | units |
|---------------|--------------------------------------------------|-----|-----|-----|-------|
| dimensions    | 15.24 x 8.30 x 7.25 (0.600 x 0.327 x 0.285 inch) |     |     |     | mm    |
| case material | plastic (UL94-V0)                                |     |     |     |       |
| weight        |                                                  |     | 2.3 |     | g     |


#### **MECHANICAL DRAWING**

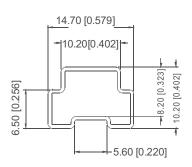

units: mm [in]


pin tolerance:  $\pm 0.10$  mm [ $\pm 0.004$  in] general tolerance:  $\pm 0.25$  mm [ $\pm 0.010$  in]


| PIN C | PIN CONNECTIONS |  |  |  |  |
|-------|-----------------|--|--|--|--|
| 1     | Vin             |  |  |  |  |
| 5     | Vout            |  |  |  |  |
| 6     | Vadj            |  |  |  |  |
| 7     | GND             |  |  |  |  |
| 9     | GND             |  |  |  |  |
| 10    | On/Off          |  |  |  |  |





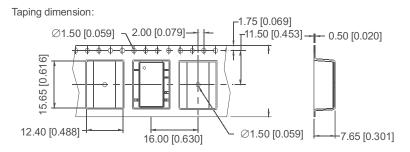


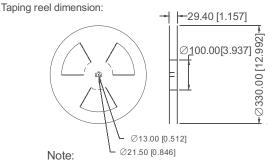





Note: Grid 2.54\*2.54mm

#### **PACKAGING DIMENSIONS**



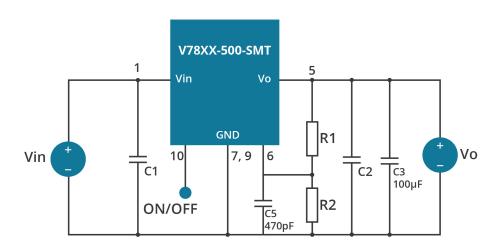


Note:

Unit:mm[inch]

General tolerances: ± 0.50mm[± 0.020inch]

L=530mm[20.866inch] Tube Quantity: 33pcs L=220mm[8.661inch] Tube Quantity: 13pcs






Unit:mm[inch]

General tolerances: ±0.50mm[ ±0.020inch]

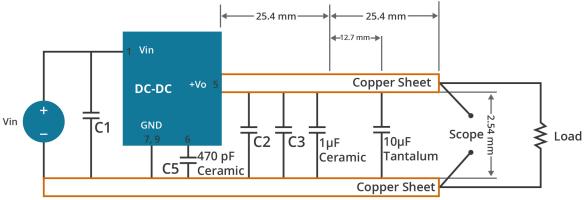
Devices per reel quantity:500pcs

#### TYPICAL APPLICATION CIRCUIT

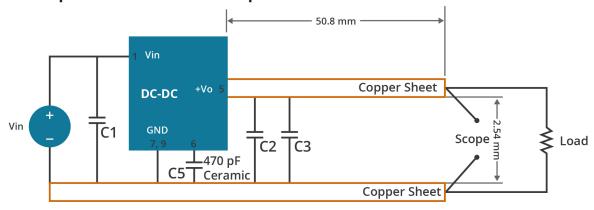


- 1. C1, C2: Use ceramic capacitors (see table below); C3: For best performance, use a 100 µF or more capacitor.
- 2. C1, C2, & C3 are required and should be placed close to the pins of the converter, with shortest possible leads.
- 3. R1 is used when trimming down. R2 is used when trimming up.
- 4. No parallel connection or plug and play.

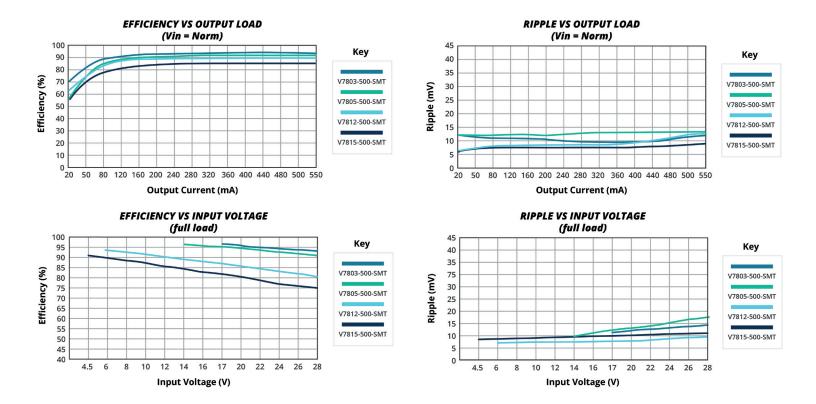
| Part Number   | C1<br>(ceramic capacitor) | C2<br>(ceramic capacitor) |
|---------------|---------------------------|---------------------------|
| V7803-500-SMT | 10uF/50V                  | 22uF/16V                  |
| V7805-500-SMT | 10uF/50V                  | 22uF/16V                  |
| V7812-500-SMT | 10uF/50V                  | 10uF/25V                  |
| V7815-500-SMT | 10uF/50V                  | 10uF/25V                  |


#### **OUTPUT TRIMMING**

|                     |        | Trim Down      | Trim Up       |
|---------------------|--------|----------------|---------------|
| Part Name           | Vo nom | R1(KΩ)         | R2(KΩ)        |
| V7803-500-SMT       | 3.3V   | = 61*Vo-75.10  | 75.10-10*Vo   |
| V / 603-500-5IVI I  | 3.3 V  | 3.3-Vo         | Vo-3.3        |
| V7805-500-SMT       | 5.0V   | _ 61*Vo-91.52  | _ 91.52-10*Vo |
| V / 605-500-5IVI I  | 5.00   | 5.0-Vo         | Vo-5.0        |
| V7812-500-SMT       | 12V    | 71*Vo-287.02   | _287.02-20*Vo |
| V / O 12-500-51VI I | 1 Z V  | 12-Vo          | -<br>Vo-12    |
| V7815-500-SMT       | 45)/   | _ 66*Vo-269.37 | _269.37-15*Vo |
| V / 0 13-300-31VI I | 15V    | 15-Vo          | Vo-15         |


To trim the output of the device input the desired output voltage (Vo) into the proper equation. R1 trims the output voltage down and R2 trims the voltage up. If not using the trim feature R1 and R2 are left open. Make sure that the desired output voltage is within the trim range.

#### **TEST CIRCUIT**


## **Efficiency and Output Voltage Ripple Test**

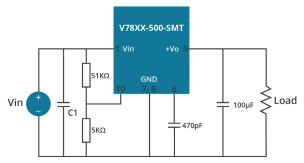


#### **Start-up and Load Transient Response Test**



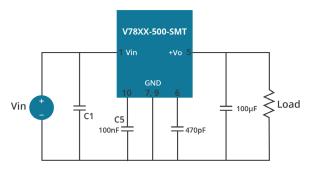
#### **EFFICIENCY AND RIPPLE**

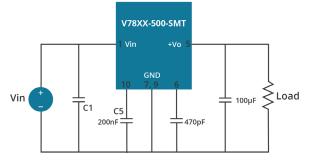


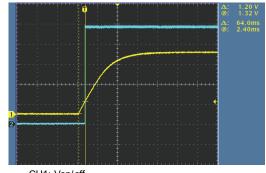

#### **SHUTDOWN CONTROL**

The ON/OFF pin provides several features for adjusting and sequencing the power supply, a user has the flexibility of using the ON/OFF pin as:

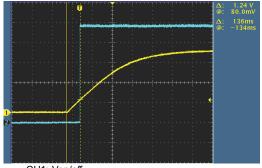
1) A digital on/off control by pulling down the ON/OFF pin with an open-drain transistor.





2) Line UVLO. If desired to achieve a UVLO voltage, a resistor divider from Vin to ON/OFF to GND can be used to disable the converter until a higher input voltage is achieved. For example, it is not useful for a converter with 12V output to start up with a 12V input, as the output cannot each regulation. To enable the converter when the input voltage reaches 14V, a 51kΩ/5kΩ voltage divider from Vin to GND can be connected to the ON/OFF pin. Both the precision 1.25V threshold and 150mV hysteresis are multiplied by the resistor ratio, providing a proportional 12% hysteresis for any startup threshold. So, the turn off threshold would be between 12.3V to 15.7V.




3) Power supply sequencing. By connecting a small capacitor from ON/OFF to GND, the 2µA current source and 1.25V threshold can provide a stable and predictable delay between startup of multiple power supplies. For example, a startup delay of roughly 64mS is provided using


100nF, and roughly 136mS by using 200nF.







CH1: Von/off CH2: Vo Delay time: 64mS



CH1: Von/off CH2: Vo Delay time: 136mS

#### **REVISION HISTORY**

| rev. | description                                                   | date       |
|------|---------------------------------------------------------------|------------|
| 1.0  | initial release                                               | 01/04/2008 |
| 1.01 | new template applied                                          | 04/28/2009 |
| 1.02 | V-Infinity branding removed                                   | 09/06/2012 |
| 1.03 | added TR package option                                       | 10/31/2012 |
| 1.04 | added minimum loading requirement note                        | 01/30/2013 |
| 1.05 | updated spec                                                  | 03/08/2013 |
| 1.06 | housing width changed, updated datasheet                      | 01/26/2016 |
| 1.07 | discontinued V7815-500-SMT model                              | 06/24/2019 |
| 1.08 | reflow soldering updated                                      | 09/14/2020 |
| 1.09 | derating curve, efficiency curves and circuit figures updated | 08/17/2021 |

The revision history provided is for informational purposes only and is believed to be accurate.



**Headquarters** 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899** 

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Non-Isolated DC/DC Converters category:

Click to view products by CUI Inc manufacturer:

Other Similar products are found below:

PSR152.5-7IR APTH003A0X-SRZ SPM1004-3V3C R-785.0-05 10E24-P15-10PPM 1E24-P4-25PPM-SHV-5KV PROPOWER-3.3V MYGTM01210BZN 40C24-N250-I5-H 40A24-P30-E 3V12-P0.8 10C24-N250-I10-AQ-DA 4AA24-P20-M-H 3V12-N0.8 3V24-P1 3V24-N1 BMR4672010/001 BMR4652010/001 6AA24-P30-I5-M 6AA24-N30-I5-M BM2P101X-Z 35A24-P30 2.5M24-P1 PTV03010WAD PTV05020WAH PTV12010LAH PTV12020WAD R-7212D R-7212P R-78AA15-0.5SMD R-78AA5.0-1.0SMD 30A24-N15-E 10A12-P4-M 10C24-N250-I5 10C24-P125 10C24-P250-I5 6A24-P20-I10-F-M-25PPM 1A24-P30-F-M-C TSR 1-24150SM 1/2AA24-N30-I10 1C24-N125 12C24-N250 V7806-1500 PTV12020LAH PTV05010WAH PTN04050CAZT PTH12020WAD PTH12020LAS PTH05050YAH PTH05T210WAH