

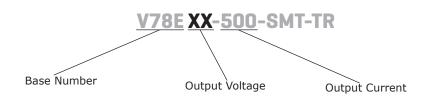
date 06/09/2021

page 1 of 9

SERIES: V78E-500-SMT | DESCRIPTION: NON-ISOLATED DC SWITCHING REGULATOR

FEATURES

- 500 mA of output current
- efficiency up to 95%
- SMT package
- industrial operating temp -40~+85°C
- industry standard footprint
- no load input current of 0.2 mA
- output short circuit protection on output
- EN 62368-1



MODEL		nput Itage¹	output voltage	output current	output power	ripple & noise²	efficiency ³
	typ (Vdc)	range (Vdc)	(Vdc)	max (mA)	max (W)	max (mVp-p)	typ (%)
V78E01-500-SMT	12	4.75~28	1.5	500	0.75	50	76
V78E02-500-SMT	12	4.75~32	2.5	500	1.25	50	81
V78E03-500-SMT	24	4.75~36	3.3	500	1.65	50	86
V78E05-500-SMT	24	6.5~36	5	500	2.5	50	90
V78E06-500-SMT	24	8~36	6.5	500	3.25	50	92
V78E09-500-SMT	24	12~36	9	500	4.5	50	93
V78E12-500-SMT	24	15~36	12	500	6	50	94
V78E15-500-SMT	24	19~36	15	500	7.5	50	95

Notes:

- 1. For input voltages higher than 30 Vdc, a 22 μF / 50 V input capacitor is required.
- 2. Tested at nominal input, 20 MHz bandwidth, with 10 µF electrolytic and 1 µF ceramic capacitor on the output. For 1.5~3.3 Vdc output models, tested at 20~100% load. For all other models, tested at 10~100% load. At loads below 20% for 1.5~3.3 Vdc output models, the max ripple and noise will be 100 mVp-p. At loads below 10% for all other models, the max ripple and noise will be 150 mVp-p.
- 3. Measured at min Vin, full load.
- 4. All specifications are measured at Ta=25°C, humidity < 75%, nominal input voltage, and rated output load unless otherwise specified.

PART NUMBER KEY

INPUT

parameter	conditions/description	min	typ	max	units
operating input voltage ⁵		4.75		36	Vdc
filter	capacitor filter				
input reverse polartiy protection	no				
no-load input current			0.2	1.5	mA
remote on/off ⁶	turn on (3.2~8 Vdc or open circuit) turn off (<0.8 Vdc) input current when switched off		0.03	0.1	mA

Note:

OUTPUT

parameter	conditions/description	min	typ	max	units
maximum capacitive load ⁷				680	μF
voltage accuracy	at full load, input voltage range 1.5, 2.5, 3.3 Vdc output models all other models		±2 ±2	±4 ±3	% %
line regulation	at full load, input voltage range		±0.2	±0.4	%
load regulation	at $10\sim100~\%$ load, input voltage range 1.5, 2.5 Vdc output models all other models			±1 ±0.6	% %
voltage adjustment	input voltage range		±10		%Vo
switching frequency	at full load, input voltage range 1.5 Vdc output model all other models		370 700		kHz kHz
transient recovery time	at nominal input voltage, 25% load step change		0.2	1	ms
transient response deviation	at nominal input voltage, 25% load step change		50	200	mV
temperature coefficient	operating temperature -40 °C to +85 °C			±0.03	%/°C
transient response deviation	at nominal input voltage, 25% load step change		-		

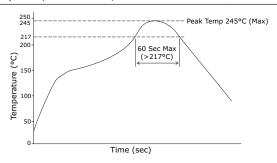
7. The maximum capacitive load was tested at nominal input voltage, full load.

PROTECTIONS

parameter conditions/description		min	typ	max	units
short circuit protection	continuous, auto recovery				

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units			
safety approvals	certified to 62368-1: EN							
conducted emissions	CISPR32/EN55032, class B (external circ	CISPR32/EN55032, class B (external circuit required, see Figure 3-b)						
radiated emissions	CISPR32/EN55032, class B (external circuit required, see Figure 3-b)							
ESD	IEC/EN61000-4-2, contact ± 4kV, class B							
radiated immunity	IEC/EN61000-4-3, 10V/m, class A							
EFT/burst	IEC/EN61000-4-4, ± 1kV, class B (external circuit required, see Figure 3-a)							
surge	IEC/EN61000-4-5, line-line ± 1kV, class I	3 (external circuit requir	ed, see Figur	e 3-a)				
conducted immunity	IEC/EN61000-4-6, 3 Vr.m.s, class A							
MTBF	as per MIL-HDBK-217F, 25°C	2,000,000			hours			
RoHS	yes							


^{5.} See Model section on page 1 for specific input voltage ranges. 6. The voltage of remote ON/OFF pin is relative to GND pin.

ENVIRONMENTAL

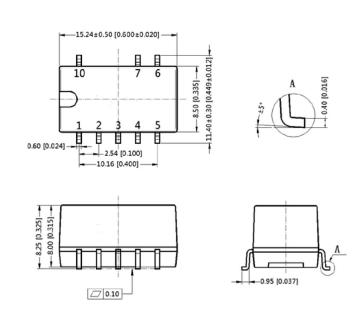
parameter	conditions/description	min	typ	max	units
operating temperature	see derating curve	-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing			95	%

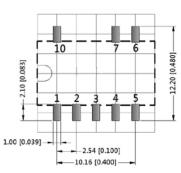
SOLDERABILITY

parameter	conditions/description	min	typ	max	units
reflow soldering	see reflow profile, refer to IPC/JEDEC J-STD-020D.1			245	°C

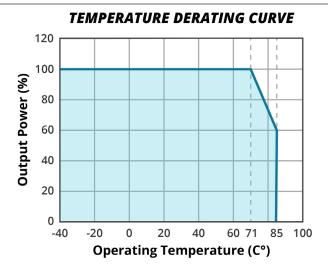
MECHANICAL

parameter	conditions/description	min	typ	max	units
dimensions	15.24 x 8.50 x 8.25 [0.60 x 0.335 x 0.325 inch]				mm
case material	black flame-retardant and heat resistant plastic (UL9	4V-0)			
weight			1.5		g

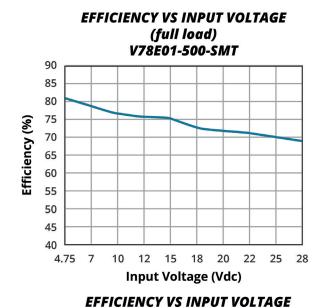

MECHANICAL DRAWING

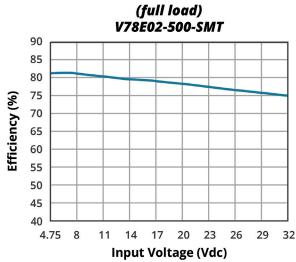

units: mm [inch]

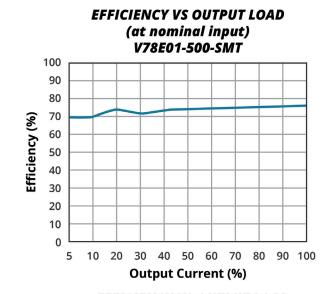
tolerance: $\pm 0.50[\pm 0.020]$

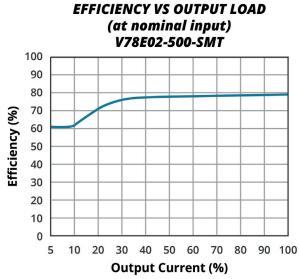

pin section tolerance: $\pm 0.10[\pm 0.004]$

PIN C	ONNECTIONS
PIN	FUNCTION
1	+VIN
2	+VIN
3	GND
4	+VOUT
5	+VOUT
6	V adj
7	GND
10	remote on/off

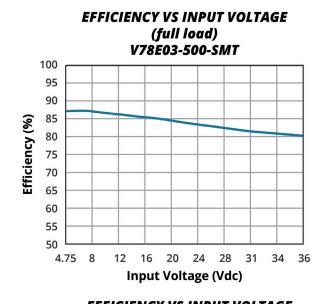


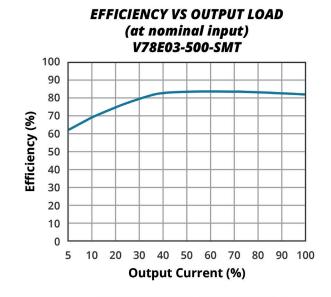


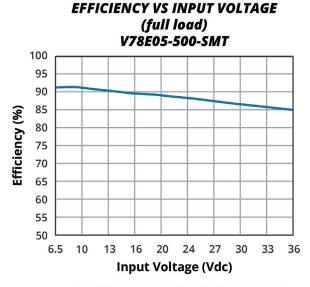

Note: Grid 2.54*2.54mm Recommended PCB Layout Top View

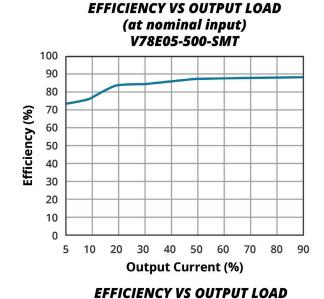


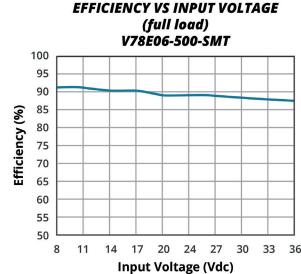
EFFICIENCY CURVES

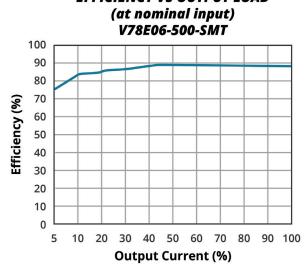


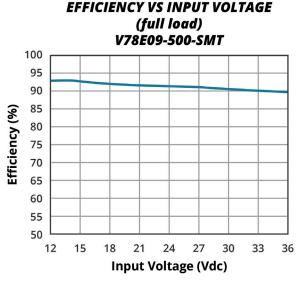


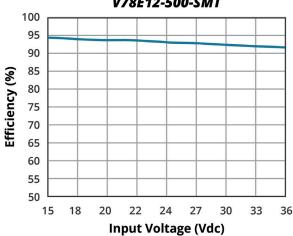


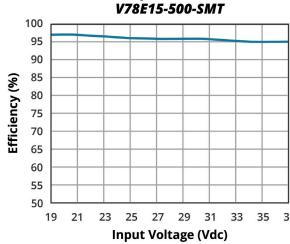


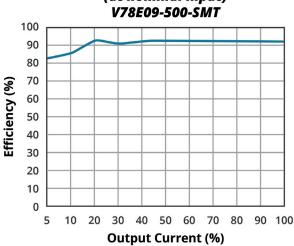

EFFICIENCY CURVES (CONTINUED)

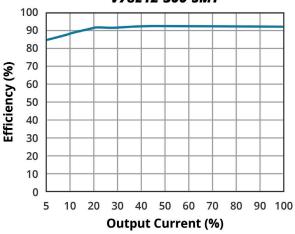


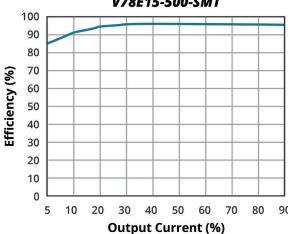





EFFICIENCY CURVES (CONTINUED)




EFFICIENCY VS INPUT VOLTAGE (full load)


EFFICIENCY VS OUTPUT LOAD (at nominal input) V78F09-500-5MT

EFFICIENCY VS OUTPUT LOAD (at nominal input) V78E12-500-SMT

EFFICIENCY VS OUTPUT LOAD (at nominal input) V78E15-500-SMT

TYPICAL APPLICATION CIRCUIT

Figure 1 Figure 2 LC Filter Application Circuit **Application Circuit** vin **V78E** vo vin V78E vo Ra1 Ra1 **∮**LOAD Vo Vin 3.7 3.7 22uF _ C1 Tc2 Ra2 Ra2 ON/OFF ON/OFF

Table 1

Model Number	C1 (ceramic capacitor)	C2 (ceramic capacitor)	Ra1/Ra2 (Vadj resistance)
V78E01-500-SMT	10 μF/50 V	22 μF/10 V	
V78E02-500-SMT	10 μF/50 V	22 μF/10 V	
V78E03-500-SMT	10 μF/50 V	22 μF/10 V	
V78E05-500-SMT	10 μF/50 V	22 μF/16 V	refer to Vadj resistance
V78E06-500-SMT	10 μF/50 V	22 μF/16 V	calculation
V78E09-500-SMT	10 μF/50 V	22 μF/25 V	
V78E12-500-SMT	10 μF/50 V	22 μF/25 V	
V78E15-500-SMT	10 μF/50 V	22 μF/25 V	

EMC RECOMMENDED CIRCUIT

Note:

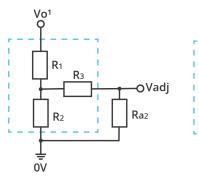
LDM2 /in DC-DC +Vo

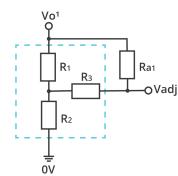
FUSE LDM1 LOAD CO C5 MOV

Figure 3

Table 2

Recomm	Recommended external circuit components				
FUSE	choose according to actual input current				
MOV	S20K30				
LDM1	82 μH				
C0	680 μF/50 V				
C1, C2	refer to table 1				
C5	4.7 μF/50 V				
LDM2	12 µH				


8. C1 & C2 are required and should be connected as close to the module pins as possible.
9. C1 & C2 can be increased as needed and the use of tantalum or low ESR electrolytic capacitors would be recommended.
10. To reduce the output ripple further, it is recommended to add an "LC" filter at the output (see figure 2) with a 10~47 µH L component.


APPLICATION NOTES

1. **Output voltage trimming** Leave open if not used.

Figure 4

Application Circuit for Trim pin
(part in broken line is the interior of models)

Formula for Trim Resistor

up:
$$R_{a2} = \frac{aR_2}{R_{2-a}} - R_3$$
 $a = \frac{Vref}{Vo'_1 - Vref} \cdot R_1$

down:
$$R_{a1} = \frac{aR_1}{R_{1-a}} - R_3$$
 $a = \frac{\text{Vo'} - \text{Vref}}{\text{Vref}} \cdot R_2$

Note: Value for R1, R2, R3, and Vref refer to Table 3

Ra1/Ra2: Trim Resistor

a: User-defined parameter, no actual meanings

Vo': The trim up/down voltage

Table 3

Vout (Vdc)	R1 (kΩ)	R2 (kΩ)	R3 (kΩ)	Vref (V)
1.511	7.5	7.5	15	0.75
2.5	27	11.858	51	0.765
3.3	33	9.9	47	0.765
5	75	13.5	75	0.765
6.5	75	10	51	0.765
9	51	4.7	27	0.765
12	75	5.1	27	0.765
15	82	4.423	27	0.765

Note: 11. The 1.5 Vdc output model can only be adjusted up.

REVISION HISTORY

rev.	description	date
1.0	initial release	09/12/2018
1.01	features and safety line updated, packaging removed	01/14/2021
1.02	product image updated	05/19/2021
1.03	updated derating and efficiency curves and circuit figures	06/09/2021

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Non-Isolated DC/DC Converters category:

Click to view products by CUI Inc manufacturer:

Other Similar products are found below:

PSR152.5-7IR APTH003A0X-SRZ SPM1004-3V3C R-785.0-05 10E24-P15-10PPM 1E24-P4-25PPM-SHV-5KV CA-17205-L4

PROPOWER-3.3V MYGTM01210BZN 40C24-N250-I5-H 40A24-P30-E 3V12-P0.8 10C24-N250-I10-AQ-DA 4AA24-P20-M-H 3V12
N0.8 3V24-P1 3V24-N1 BMR4672010/001 BMR4652010/001 6AA24-P30-I5-M 6AA24-N30-I5-M BM2P101X-Z 35A24-P30 2.5M24-P1

PTV03010WAD PTV05020WAH PTV12010LAH PTV12020WAD R-7212D R-7212P R-78AA15-0.5SMD R-78AA5.0-1.0SMD 30A24
N15-E 10A12-P4-M 10C24-N250-I5 10C24-P125 10C24-P250-I5 6A24-P20-I10-F-M-25PPM 1A24-P30-F-M-C TSR 1-24150SM

1/2AA24-N30-I10 1C24-N125 12C24-N250 V7806-1500 PTV12020LAH PTV05010WAH PTN04050CAZT PTH12020WAD

PTH12020LAS PTH05050YAH