

Spread Spectrum Clock Generator

Features

- 4 to 32 MHz input frequency range
- 4 to 128 MHz output frequency range
- Accepts clock, crystal, and resonator inputs
- 1x, 2x, and 4x frequency multiplication:

 □ CY25811: 1x; CY25812: 2x; CY25814: 4x
- Center and Down Spread modulation
- Low power dissipation:
 - \square 3.3V = 52 mW typ at 6 MHz
 - □ 3.3V = 60 mW typ at 12 MHz
 - □ 3.3V = 72 mW typ at 24 MHz
- Low cycle-to-cycle jitter:
 - □ 8 MHz = 480 ps-max
 - □ 16 MHz = 400 ps-max
 - □ 32 MHz = 450 ps-max
- Available in 8-pin SOIC and TSSOP packages
- Commercial and industrial temperature ranges

Applications

- Printers and MFPs
- LCD panels
- Digital copiers
- PDAs
- CD-ROM, VCD, and DVD
- Networking, LAN, and WAN
- Scanners
- Modems
- Embedded digital systems

Benefits

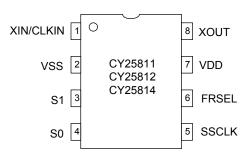
- Peak EMI reduction by 8 to 16 dB
- Fast time to market
- Cost reduction

Functional Description

For a complete list of related documentation, click here.

Logic Block Diagram

Contents


Pin Configuration	3
Pin Definitions	
Functional Overview	3
Input Frequency Range and Selection	3
Spread Percentage Selection	
Input and Output Frequency Selection	5
Absolute Maximum Conditions	6
DC Electrical Specifications	6
DC Electrical Specifications	
Thermal Resistance	
AC Electrical Specifications	8
AC Electrical Specifications	
Characteristic Curves	
SSCG Profiles	
Application Schematic	

Ordering Information	13
Ordering Code Definitions	
Package Drawing and Dimensions	14
Acronyms	16
Document Conventions	16
Units of Measure	16
Document History Page	17
Sales, Solutions, and Legal Information	19
Worldwide Sales and Design Support	19
Products	19
PSoC®Solutions	19
Cypress Developer Community	19
Technical Support	

Pin Configuration

Figure 1. 8-pin SOIC/TSSOP pinout CY25811/12/14

Pin Definitions

Pin No.	Name	Туре	Description
1	XIN/CLKIN	Input	Crystal, Ceramic Resonator or Clock Input Pin.
2	VSS	Power	Power Supply Ground.
3	S1	Input	Digital Spread% Control Pin. 3-Level input (H-M-L). Default = M.
4	S0	Input	Digital Spread% Control Pin. 3-Level input (H-M-L). Default = M.
5	SSCLK	Output	Spread Spectrum Output Clock.
6	FRSEL	Input	Input Frequency Range Selection Digital Control Input. 3-Level input (H-M-L). Default = M.
7	VDD	Power	Positive Power Supply.
8	XOUT	Output	Crystal or Ceramic Resonator Output Pin.

Functional Overview

The CY25811/12/14 products are Spread Spectrum Clock Generator (SSCG) ICs used for the purpose of reducing electromagnetic interference (EMI) found in today's high-speed digital electronic systems.

The devices use a Cypress proprietary phase-locked loop (PLL) and Spread Spectrum Clock (SSC) technology to synthesize and modulate the frequency of the input clock. By frequency modulating the clock, the measured EMI at the fundamental and harmonic frequencies is greatly reduced.

This reduction in radiated energy significantly reduces the cost of complying with regulatory agency requirements and improves time to market without degrading system performance.

The input frequency range is 4 to 32 MHz and accepts clock, crystal and ceramic resonator inputs. The output clock can be selected to produce 1x, 2x, or 4x multiplication of the input frequency with Spread Spectrum Frequency Modulation.

The use of 2x or 4x frequency multiplication eliminates the need for higher order crystals and enables you to generate up to 128 MHz Spread Spectrum Clock (SSC) by using only first-order crystals. This reduces the cost while improving the system clock accuracy, performance, and complexity.

Select the Center Spread or Down Spread frequency modulation based on four discrete values of Spread % for each Spread mode with the option of a Non Spread mode for system test and verification purposes.

The CY25811/12/14 products are available in an 8-pin SOIC (150 mils) package with a commercial operating temperature range of 0 °C to 70 °C and industrial temperature range of –40 °C to 85 °C. Refer to CY25568 for multiple clock output options such as modulated and unmodulated clock outputs or power down function.

Input Frequency Range and Selection

The CY25811/12/14 input frequency range is 4 to 32 MHz. This range is divided into three segments and controlled by a 3-level FRSEL pin as given in Table 1.

Table 1. Input Frequency Selection

FRSEL	Input Frequency Range
0	4.0 to 8.0 MHz
1	8.0 to 16.0 MHz
M	16.0 to 32.0 MHz

Spread Percentage Selection

The CY25811/12/14 SSCG products provide Center Spread, Down Spread, and No Spread functions. The amount of Spread percentage is selected using 3-level. S0 and S1 digital inputs and Spread percent values are given in Table 2.

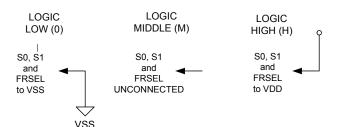
Table 2. Spread Percent Selection

XIN (MHz)	FRSEL	S1 = 0 S0 = 0	S1 = 0 S0 = M	S1 = 0 S0 = 1	S1 = M S0 = 0	S1 = 1 S0 = 1	S1 = 1 S0 = 0	S1 = M S0 = 1	S1 = 1 S0 = M	S1 = M S0 = M
		Center (%)	Center (%)	Center (%)	Center (%)	Down (%)	Down (%)	Down (%)	Down (%)	No Spread
4–5	0	±1.4	±1.2	±0.6	±0.5	-3.0	-2.2	-1.9	-0.7	0
5–6	0	±1.3	±1.1	±0.5	±0.4	-2.7	-1.9	-1.7	-0.6	0
6–7	0	±1.2	±0.9	±0.5	±0.4	-2.5	-1.8	-1.5	-0.6	0
7–8	0	±1.1	±0.9	±0.4	±0.3	-2.3	-1.7	-1.4	-0.5	0
8–10	1	±1.4	±1.2	±0.6	±0.5	-3.0	-2.2	-1.9	-0.7	0
10–12	1	±1.3	±1.1	±0.5	±0.4	-2.7	-1.9	-1.7	-0.6	0
12–14	1	±1.2	±0.9	±0.5	±0.4	-2.5	-1.8	-1.5	-0.6	0
14–16	1	±1.1	±0.9	±0.4	±0.3	-2.3	-1.7	-1.4	-0.5	0
16–20	М	±1.4	±1.2	±0.6	±0.5	-3.0	-2.2	-1.9	-0.7	0
20–24	М	±1.3	±1.1	±0.5	±0.4	-2.7	-1.9	-1.7	-0.6	0
24–28	М	±1.2	±0.9	±0.5	±0.4	-2.5	-1.8	-1.5	-0.6	0
28–32	М	±1.1	±0.9	±0.4	±0.3	-2.3	-1.7	-1.4	-0.5	0

3-Level Digital Inputs

S0, S1, and FRSEL digital inputs are designed to sense three different logic levels designated as High "1", Low "0", and Middle "M". With this 3-Level digital input logic, the 3-Level Logic detects nine different logic states.

S0, S1, and FRSEL pins include an on chip 20K (10K and 10K) resistor divider. No external application resistors are needed to implement the 3-level logic levels as shown here:


Logic Level "0": 3-Level logic pin connected to GND.

Logic Level "M": 3-Level logic pin left floating (no connection).

Logic Level "1": 3-Level logic pin connected to V_{DD}.

Figure 2 illustrates how to implement 3-Level Logic.

Figure 2. 3-Level Logic

Modulation Rate

SSCGs use frequency modulation (FM) to distribute energy over a specific band of frequencies. The maximum frequency of the clock (f_{max}) and minimum frequency of the clock (f_{min}) determine this band of frequencies. The time required to transition from f_{min} to f_{max} and back to f_{min} is the period of the Modulation Rate. The Modulation Rate of SSCG clocks are generally referred to in terms of frequency, or:

$$f_{\text{mod}} = 1/T_{\text{mod}}$$
.

The input clock frequency, $f_{\rm in}$, and the internal divider determine the Modulation Rate.

In CY25811/12/14 devices, the (Spread Spectrum) modulation rate, $f_{\rm mod}$, is given by the following formula:

$$f_{mod} = f_{in}/DR$$

Here f_{mod} is the Modulation Rate, f_{in} is the Input Frequency, and DR is the Divider Ratio as given in Table 3. Note that Input Frequency Range is set by FRSEL.

Table 3. Modulation Rate Divider Ratios

FRSEL	Input Frequency Range (MHz)	Divider Ratio (DR)
0	4 to 8	128
1	8 to 16	256
M	16 to 32	512

Page 5 of 19

Input and Output Frequency Selection

The relationship between input frequency and output frequency in device selection and FRSEL setting is given in Table 4. As shown, the input frequency range is selected by FRSEL and is the same for CY25811, CY25812, and CY25814. The selection of CY25811 (1x), CY25812 (2x), or CY25814 (4x) determines the frequency multiplication at the output (SSCLK, Pin 5) with respect to input frequency (XIN, Pin-1).

Table 4. Input and Output Frequency Selection

Input Frequency Range (MHz)	FRSEL	Product	Multiplication	Output Frequency Range (MHz)
4 to 8	0	CY25811	1x	4 to 8
8 to 16	1	CY25811	1x	8 to 16
16 to 32	M	CY25811	1x	16 to 32
4 to 8	0	CY25812	2x	8 to 16
8 to 16	1	CY25812	2x	16 to 32
16 to 32	M	CY25812	2x	32 to 64
4 to 8	0	CY25814	4x	16 to 32
8 to 16	1	CY25814	4x	32 to 64
16 to 32	М	CY25814	4x	64 to 128

Absolute Maximum Conditions

Both Commercial and Industrial Grades

Parameter [1, 2]	Description	Condition	Min	Max	Unit
V_{DD}	Supply Voltage		-0.5	4.6	V
V _{IN}	Input Voltage	Relative to V _{SS}	-0.5	V _{DD} + 0.5	V
T _S	Temperature, Storage	Non Functional	-65	150	°C
T _{A1}	Temperature, Operating Ambient	Functional, C-Grade	0	70	°C
T _{A2}	Temperature, Operating Ambient	Functional, I-Grade	-40	85	°C
T _J	Temperature, Junction	Functional	_	150	°C
ESD _{HBM}	ESD Protection (Human Body Model)	MIL-STD-883, Method 3015	2000	_	V
UL-94	Flammability Rating	at 1/8 in.	V-	-0	
MSL	Moisture Sensitivity Level		;	3	

DC Electrical Specifications

Commercial Grade

Parameter	Description	Condition	Min	Max	Unit
V_{DD}	3.3 V Operating Voltage	3.3 V ± 10%	2.97	3.63	V
V _{IL}	Input Low Voltage	S0, S1 and FRSEL Inputs	0	0.15 × V _{DD}	V
V _{IM}	Input Middle Voltage	S0, S1 and FRSEL Inputs	0.40 × V _{DD}	0.60 × V _{DD}	V
V _{IH}	Input High Voltage	S0, S1 and FRSEL Inputs	0.85 × V _{DD}	V_{DD}	V
V _{OL1}	Output Low Voltage	I _{OL} = 4 mA, SSCLK Output	_	0.4	V
V _{OL2}	Output Low Voltage	I _{OL} = 10 mA, SSCLK Output	_	1.2	V
V _{OH1}	Output High Voltage	I _{OH} = 4 mA, SSCLK Output	2.4	-	V
V _{OH2}	Output High Voltage	I _{OH} = 6 mA, SSCLK Output	2.0	-	V
C _{IN1}	Input Pin Capacitance	XIN (Pin 1) and XOUT (Pin 8)	3.5	9.0	pF
C _{IN2}	Input Pin Capacitance	All Digital Inputs	2.8	6.0	pF
C _L	Output Load Capacitor	SSCLK Output	_	15	pF
I _{DD1}	Dynamic Supply Current	F _{in} = 12 MHz, no load	_	28	mA
I _{DD2}	Dynamic Supply Current	F _{in} = 24 MHz, no load	_	33	mA
I _{DD3}	Dynamic Supply Current	F _{in} = 32 MHz, no load	_	40	mA

Operation at any Absolute Maximum Rating is not implied.
 Single Power Supply: The voltage on any input or I/O pin cannot exceed the power pin during power up.

DC Electrical Specifications

Industrial Grade

Parameter	Description	Condition	Min	Max	Unit
V_{DD}	3.3 V Operating Voltage	3.3 V ± 5%	3.135	3.465	V
V _{IL}	Input Low Voltage	S0, S1 and FRSEL Inputs	0	0.13 × V _{DD}	V
V _{IM}	Input Middle Voltage	S0, S1 and FRSEL Inputs	0.40 × V _{DD}	0.60 × V _{DD}	V
V _{IH}	Input High Voltage	S0, S1 and FRSEL Inputs	0.85 × V _{DD}	V_{DD}	V
V _{OL1}	Output Low Voltage	I _{OL} = 4 mA, SSCLK Output	_	0.4	V
V _{OL2}	Output Low Voltage	I _{OL} = 10 mA, SSCLK Output	_	1.2	V
V _{OH1}	Output High Voltage	I _{OH} = 4 mA, SSCLK Output	2.4	-	V
V _{OH2}	Output High Voltage	I _{OH} = 6 mA, SSCLK Output	2.0	-	V
C _{IN1}	Input Pin Capacitance	XIN (Pin 1) and XOUT (Pin 8)	3.5	9.0	pF
C _{IN2}	Input Pin Capacitance	All Digital Inputs	2.8	6.0	pF
C _L	Output Load Capacitor	SSCLK Output	_	15	pF
I _{DD1}	Dynamic Supply Current	F _{in} = 12 MHz, no load	_	28	mA
I _{DD2}	Dynamic Supply Current	F _{in} = 24 MHz, no load	_	33	mA
I _{DD3}	Dynamic Supply Current	F _{in} = 32 MHz, no load	_	41	mA

Thermal Resistance

Parameter [3]	Description	Test Conditions	8-pin SOIC	8-pin TSSOP	Unit
- 3/1	,	Test conditions follow standard test methods and procedures for measuring		159	°C/W
- 30	I I narmai racictanca	thermal impedance, in accordance with EIA/JESD51.	54	32	°C/W

Note
3. These parameters are guaranteed by design and are not tested.

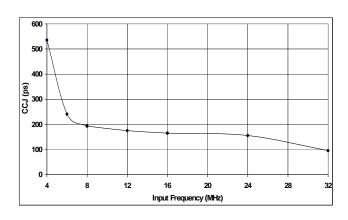
AC Electrical Specifications

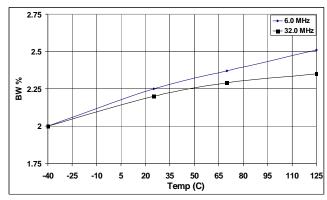
Commercial Grade

Parameter	Description	Condition	Min	Max	Unit
F _{IN}	Input Frequency Range	Clock, Crystal, or Ceramic Resonator Input	4	32	MHz
T _{R1}	Clock Rise Time	SSCLK, CY25811 and CY25812	2.0	5.0	ns
T _{F1}	Clock Fall Time	SSCLK, CY25811 and CY25812	1.6	4.4	ns
T _{R2}	Clock Rise Time	SSCLK, only CY25814 when FRSEL = M	1.0	2.2	ns
T _{F2}	Clock Fall Time	SSCLK, only CY25814 when FRSEL = M	8.0	2.2	ns
T _{DCIN}	Input Clock Duty Cycle	XIN	40	60	%
T _{DCOUT}	Output Clock Duty Cycle	SSCLK	40	60	%
T _{CCJ1}	Cycle to Cycle Jitter, Spread on	F _{in} = 4 MHz, F _{out} = 4 MHz, CY25811	-	800	ps
T _{CCJ2}	Cycle to Cycle Jitter, Spread on	F _{in} = 8 MHZ, F _{out} = 8 MHz, CY25811	-	480	ps
T _{CCJ3}	Cycle to Cycle Jitter, Spread on	F _{in} = 8 MHz, F _{out} = 16 MHz, CY25812	-	400	ps
T _{CCJ4}	Cycle to Cycle Jitter, Spread on	F _{in} = 16 MHz, F _{out} = 32 MHz, CY25812	-	450	ps
T _{CCJ5}	Cycle to Cycle Jitter, Spread on	F _{in} = 16 MHz, F _{out} = 64 MHz, CY25814	_	550	ps
T _{CCJ6}	Cycle to Cycle Jitter, Spread on	F _{in} = 32 MHz, F _{out} = 128 MHz, CY25814	-	380	ps
T _{SU}	PLL Lock Time	From V _{DD} = 3.0 V to valid SSCLK	-	3	ms

AC Electrical Specifications

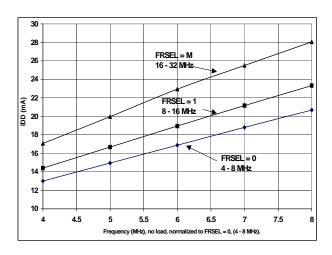
Industrial Grade

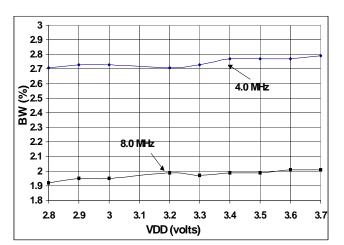

Parameter	Description	Condition	Min	Max	Unit
F _{IN}	Input Frequency Range	Clock, Crystal or Ceramic Resonator Input	4	32	MHz
T _{R1}	Clock Rise Time	SSCLK, CY25811, and CY25812	2.0	5.0	ns
T _{F1}	Clock Fall Time	SSCLK, CY25811, and CY25812	1.6	4.4	ns
T _{R2}	Clock Rise Time	SSCLK, only CY25814 when FRSEL = M	1.0	2.2	ns
T _{F2}	Clock Fall Time	SSCLK, only CY25814 when FRSEL = M	8.0	2.2	ns
T _{DCIN}	Input Clock Duty Cycle	XIN	40	60	%
T _{DCOUT}	Output Clock Duty Cycle	SSCLK	40	60	%
T _{CCJ1}	Cycle to Cycle Jitter, Spread on	Fin = 6 MHz, CY25811/12/14	_	650	ps
T _{CCJ2}	Cycle to Cycle Jitter, Spread on	Fin = 12 MHz, CY25811/12/14	_	630	ps
T _{CCJ3}	Cycle to Cycle Jitter, Spread on	Fin = 24 MHz, CY25811/12/14	_	520	ps
T _{SU}	PLL Lock Time	From V _{DD} = 3.0 V to valid SSCLK	_	4	ms



Characteristic Curves

The following curves demonstrate the characteristic behavior of CY25811/12/14 when tested over a number of environmental and application specific parameters. These are typical performance curves and are not meant to replace any parameter specified in DC and AC Specification tables.

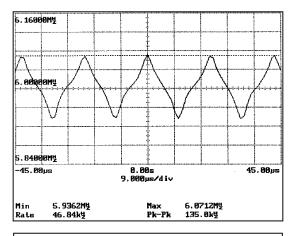

Figure 3. Characteristic Curves

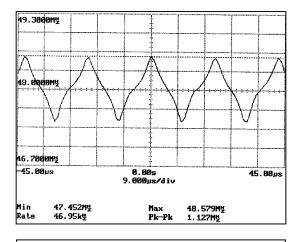


Jitter vs. Input Frequency (No Load)

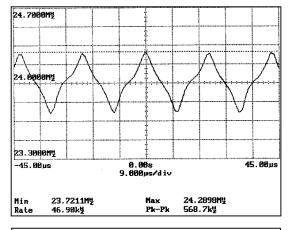
Bandwidth % vs. Temperature

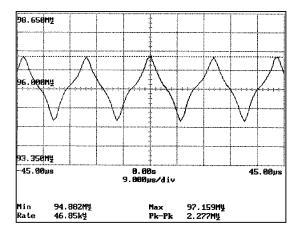
IDD vs. Frequency (FRSEL = 0, 1, M)


Bandwidth % vs. VDD

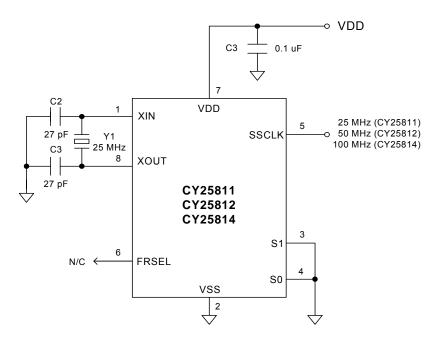

SSCG Profiles

CY25811/12/14 SSCG products use a non-linear "optimized" frequency profile as shown in Figure 4. The use of Cypress proprietary "optimized" frequency profile maintains flat energy distribution over the fundamental and higher order harmonics. This results in additional EMI reduction in electronic systems.


Figure 4. Spread Spectrum Profiles (Frequency versus Time)

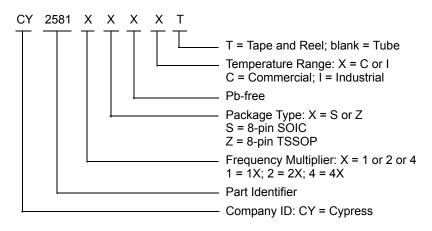

Xin = 6.0 MHz	SSCLK1 = 6.0 MHz
S1, S0 = 0	
FRSEL = 0	P/N = CY25811

Xin = 12.0 MHz	SSCLK1 = 48.0 MHz
S1, S0 = 0	
FRSEL = 1	P/N = CY25814


Xin = 24.0 MHz	SSCLK1 = 24.0 MHz
S1, S0 = 0	
FRSEL = M	P/N = CY25811

Xin = 24.0 MHz	SSCLK1 = 96.0 MHz
S1, S0 = 0 FRSEL = M	P/N = CY25814

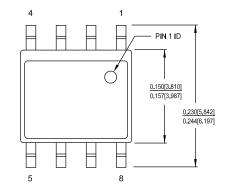
Application Schematic



Ordering Information

Part Number	Package Type	Product Flow
Pb-free Devices		
CY25811SXC	8-pin SOIC	Commercial, 0 °C to 70 °C
CY25811SXCT	8-pin SOIC – Tape and Reel	Commercial, 0 °C to 70 °C
CY25811SXI	8-pin SOIC	Industrial, –40 °C to 85 °C
CY25811SXIT	8-pin SOIC – Tape and Reel	Industrial, –40 °C to 85 °C
CY25812SXC	8-pin SOIC	Commercial, 0 °C to 70 °C
CY25812SXCT	8-pin SOIC – Tape and Reel	Commercial, 0 °C to 70 °C
CY25812ZXC	8-pin TSSOP	Commercial, 0 °C to 70 °C
CY25812ZXCT	8-pin TSSOP – Tape and Reel	Commercial, 0 °C to 70 °C
CY25814SXC	8-pin SOIC	Commercial, 0 °C to 70 °C
CY25814SXCT	8-pin SOIC – Tape and Reel	Commercial, 0 °C to 70 °C
CY25814SXI	8-pin SOIC	Industrial, –40 °C to 85 °C
CY25814SXIT	8-pin SOIC – Tape and Reel	Industrial, –40 °C to 85 °C

Ordering Code Definitions



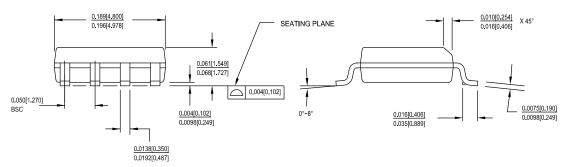
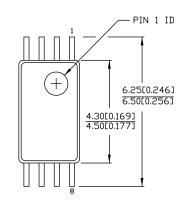

Package Drawing and Dimensions

Figure 5. 8-pin SOIC (150 Mils) S0815/SZ815/SW815 Package Outline, 51-85066

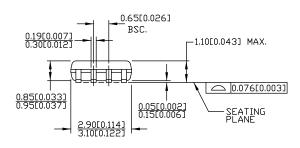
- 1. DIMENSIONS IN INCHES[MM] $\frac{\text{MIN.}}{\text{MAX.}}$
- PIN 1 ID IS OPTIONAL,
 ROUND ON SINGLE LEADFRAME
 RECTANGULAR ON MATRIX LEADFRAME
- 3. REFERENCE JEDEC MS-012
- 4. PACKAGE WEIGHT 0.07gms

PART#				
S08.15	STANDARD PKG			
SZ08.15	LEAD FREE PKG			
SW8.15	LEAD FREE PKG			



51-85066 *H

Package Drawing and Dimensions (continued)


Figure 6. 8-pin TSSOP (4.40 mm Body) Z08.173/ZZ08.173 Package Outline, 51-85093

DIMENSIONS IN MM[INCHES] MIN. MAX.

REFERENCE JEDEC MO-153

PART #				
Z08.173	STANDARD PKG.			
ZZ08.173	LEAD FREE PKG.			

51-85093 *E

Acronyms

Acronym	Description		
CD-ROM	compact disc, read only memory		
DVD	digital versatile/video disc		
EMI	Electromagnetic Interference		
ESD	electrostatic discharge		
FM	frequency modulation		
LAN	local area network		
LCD	liquid crystal display		
PLL	phase locked loop		
SOIC	small outline integrated circuit		
SSC	spread spectrum clock		
SSCG	spread spectrum clock generator		
TSSOP	thin shrink small outline package		
VCD	video compact disc		
VCO	voltage controlled oscillator		
WAN	wide area network		

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	degree Celsius		
dB	decibel		
MHz	megahertz		
μF	microfarad		
mA	milliampere		
mm	millimeter		
ms	millisecond		
mW	milliwatt		
ns	nanosecond		
%	percent		
pF	picofarad		
ps	picosecond		
V	volt		

Document History Page

Document Number: 38-07112 Pavisian FCN Orig. of Submission Pages in the part of Change				
Revision	ECN	Orig. of Change	Date	Description of Change
**	107516	NDP	06/14/02	Converted from IMI to Cypress
*A	108002	NDP	06/29/02	Deleted Junction Temp. in Absolute Maximum Ratings
*B	121578	RGL	01/29/03	Converted from Word to FrameMaker Added 8-pin TSSOP package in Commercial Temp. only Added an Industrial Temperature Range to all existing 8-pin SOIC packages
*C	125550	RGL	05/14/03	Changed IDD values from 19.6/22/27.2 to 25/30/35 in Commercial Grade DC Specs table Changed IDD values from 24/26.5/33 to 26/32/37 in Industrial grade DC Specs table Changed $T_{\rm CCJ1/2}$ values from 675/260 to 800/450 in Commercial grade AC Specs table Changed $T_{\rm CCJ1}$ value from 350 to 650 in Industrial grade AC Specs table
*D	131941	RGL	12/24/03	Removed automotive in the Applications section Changed the Output Clock Duty Cycle (T_{DCOUT}) from min. 45 and max. 55 to 40 and 60% respectively for both industrial and commercial grade Changed the min. Input Low Voltage (V_{IL}) from 0.15 V_{DD} to 0.13 V_{DD} Removed preliminary from the industrial AC/DC Electrical Specifications table
*E	231057	RGL	See ECN	Added Pb Free Devices
*F	1499165	KVM	See ECN	Updated Ordering Information table Corrected jitter values in features section on page 1 Changed:VDD from ±5% to ±10%, CIN1 min from 6 to 3.5 pF, CIN2 min from 3.5 to 2.8 pF, TF1 min from 2 to 1.6 ns, and TF2 min from 1.0 to 0.8 ns. Commercial grade: IDD1 max from 25 to 28 mA, IDD2 max from 30 to 33 mA, IDD3 max from 35 to 40 mA, TCCJ2 from 450 to 480 ps, TCCJ4 from 380 to 450 ps, and TCCJ5 from 380 to 550 ps Industrial grade: IDD1 max from 26 to 28 mA, IDD2 max from 32 to 33 mA, IDD3 max from 37 to 41 mA, TCCJ2 from 400 to 630 ps, and TCCJ3 from 400 to 520 ps
*G	2592288	CXQ / PYRS	10/23/08	Removed Pb package devices from Ordering Table
*H	2761988	CXQ	09/10/09	Removed reference to non-existent "Automotive" version. Fixed typo in DC spec table for VDD from min of 3.97 to 2.97. Fixed typo for PLL Lock time conditions. Removed CY25812SXI, CY25812SXIT, CY25814ZXC, and CY25814ZXCT from Ordering Information.
*	2887509	CXQ	03/04/2010	Updated MSL value in Absolute Maximum Conditions Added Contents Updated 8-pin SOIC and 8-pin TSSOP package drawings. Updated URLs in Sales, Solutions, and Legal Information
*J	3339686	PURU	08/08/2011	Added Ordering Code Definitions. Updated Package Drawing and Dimensions. Added Acronyms and Units of Measure. Updated to new template.
*K	4499792	TAVA	09/11/2014	Updated Package Drawing and Dimensions: spec 51-85066 – Changed revision from *E to *F. spec 51-85093 – Changed revision from *C to *D. Updated to new template. Completing Sunset Review.

Document History Page (continued)

Document Title: CY25811/12/14, Spread Spectrum Clock Generator Document Number: 38-07112					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
*L	4587350	TAVA	12/05/2014	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end. Updated Package Drawing and Dimensions: spec 51-85093 – Changed revision from *D to *E.	
*M	5279207	PSR	05/26/2016	Added Thermal Resistance. Updated Package Drawing and Dimensions: spec 51-85066 – Changed revision from *F to *H. Updated to new template.	
*N	5747567	PSR	05/24/2017	Added the pin type column in Pin Definitions. Corrected unit for the V _{IN} parameter. Updated the Cypress logo, copyright information, Sales, Solutions, and Legal Information based on the new template.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers
Automotive
Clocks & Buffers
Interface
Internet of Things
Cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/interface
cypress.com/iot
cypress.com/memory

Microcontrollers cypress.com/mcu
PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2001-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or systems, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, WICED, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-07112 Rev. *N Revised May 24, 2017 Page 19 of 19

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Phase Locked Loops - PLL category:

Click to view products by Cypress manufacturer:

Other Similar products are found below:

HMC700LP4TR CPLL58-2400-2500 MB15E07SLPFV1-G-BND-6E1 PI6C2409-1HWEX BA4116FV-E2 HMC820LP6CETR
HMC828LP6CETR LMX2430TMX/NOPB HMC837LP6CETR HMC831LP6CETR NB3N5573DTG ADF4153ABCPZ PI6C2405A-1LE
CD74HC4046AM CPLL66-2450-2450 NJM567D CY23S05SXI-1 STW81200T ADF4208BRUZ ADF4218LBRUZ ADF4355-3BCPZ
ADF5355BCPZ ADF4355BCPZ ADF4169WCCPZ ADF4360-7BCPZ ADF4360-6BCPZ ADF4360-5BCPZRL7 ADF4360-5BCPZRL7 ADF4360-5BCPZ
ADF4360-4BCPZRL7 ADF4360-4BCPZ ADF4360-3BCPZ ADF4360-2BCPZRL7 ADF4252BCPZ ADF4159CCPZ ADF4169CCPZ
ADF4252BCPZ-R7 ADF4360-0BCPZ ADF4360-1BCPZ ADF4360-1BCPZRL7 ADF4360-2BCPZ ADF4360-3BCPZRL7 ADF43607BCPZRL7 ADF4360-8BCPZ ADF4360-8BCPZRL7 ADF4360-9BCPZRL7 ADF4360-9BCPZRL7 ADF4159CCPZ-RL7 ADF4159WCCPZ
ADF4360-0BCPZRL7 AD9901KPZ