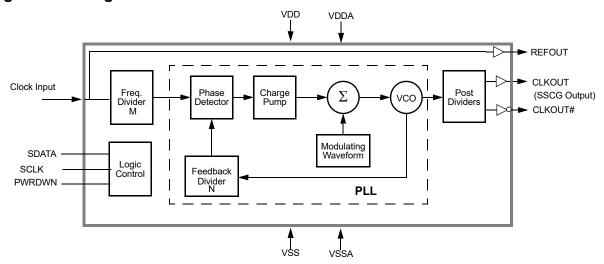


CK-SSCD Spread Spectrum Differential Clock Specification

Features


- 3.3 V operation
- 96 MHz and 100 MHz frequency support
- Selectable slew rate control
- 200 ps jitter
- I²C programmability

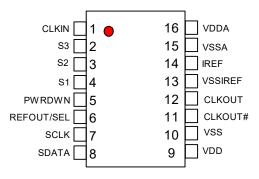
- 250 µA power-down current
- Lexmark Spread Spectrum for best electromagnetic interference (EMI) reduction
- 16-pin TSSOP package

Functional Description

For a complete list of related documentation, click here.

Logic Block Diagram

Contents


Pin Configuration	3
Pin Definitions	
Functional Overview	4
Serial Data Interface	4
Control All Test Mode	4
Control All Charge Pump	4
Data Protocol	5
Spread Enable and Spread Select[3:0]	7
Charge Pump Select Byte1[1:0]	
PWRDWN (Power-down) Clarification	9
CLKOUT/CLKOUT# Enable Clarification	10
Current Reference, IREF	10
Absolute Maximum Conditions	11
DC Electrical Specifications	11
Thermal Resistance	11
Application Schematic	12

AC Electrical Specifications	13
Switching Waveforms	14
Ordering Information	15
Ordering Code Definitions	
Package Drawing and Dimensions	16
Acronyms	17
Document Conventions	
Units of Measure	17
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC®Solutions	19
Cypress Developer Community	
Technical Support	

Pin Configuration

Figure 1. 16-pin TSSOP pinout

Pin Definitions

Pin No.	Name	Type	Description
1	CLKIN	Input	3.3 V 14.131818-MHz single-ended clock input
2,3,4	S[3:1]	Input	Spread Spectrum configuration
5	PWRDWN	Input	3.3 V LVTTL input for power-down active high, no pull-up or pull-down
6	REFOUT/SEL	I/O	Latched input during power-up , 1 (10K external pull-up) = 100 MHz or 0 (10K external pull-down) = 96 MHz. After power-up it becomes 14.31818-MHz REFOUT clock.
7	SCLK	Input	SMBus-compatible SCLK
8	SDATA	I/O	SMBus-compatible SDATA
9	VDD	3.3 V	3.3 V power supply for logic and outputs
10	VSS	Ground	Ground for logic and outputs
11	CLKOUT#	Output	0.7 V 96-MHz or 100-MHz Spread Spectrum differential clock output
12	CLKOUT	Output	0.7 V 96-MHz or 100-MHz Spread Spectrum differential clock output
13	VSSIREF	Ground	Current reference ground
14	IREF	Input	Typically a precision 475 Ω external resistor is connected between this pin and VSSIREF to set IOUT (drive current) of CLKOUT differential driver.
15	VSSA	Ground	Ground for PLL
16	VDDA	3.3 V	3.3 V power supply for PLL

Functional Overview

Serial Data Interface

To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions such as individual clock output buffers can be individually enabled or disabled.

The registers associated with the Serial Data Interface initializes to their default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface can also be used during system operation for power management functions.

Byte 0: Control Register

Bit	@Power-up	Pin#	Name	Pin Description
7	0	11, 12	SS0	-
6	S1	11, 12	SS1	-
5	S2	11, 12	SS2	-
4	S3	11, 12	SS3	-
3	SEL100/96#	6	SEL100/96#	Select output frequency, 1 = 100 MHz, 0 = 96 MHz
2	0			Reserved must equal 0
1	1	11, 12	Spread Enable	Spread spectrum enable, 0 = Disable, 1 = Enable
0	0		HW/SW Control	Hardware/software control of S[3:0], and output frequency. 0 = hardware control, 1 = software control.

Byte 1: [7:2] Control Register

Bit	@Pup	Pin#	Name	Pin Description	
7	0			Reserved set equal to '0'	
6	0			Reserved set equal to '0'	
5	0			Reserved set equal to '0'	
4	0			Reserved set equal to '0'	
3	0			Reserved set equal to '0'	
2	1	11,12	CLKEN	CLKOUT/CLKOUT# enable 0 =Disable, 1 = Enable	

Byte 1: [1:0] Control Register (Charge Pump Settings)

Bit	Bit @Pup Default Value		One Step Higher Than Default	Two Steps Higher Than Default	
1	0	0	1	1	
0	0	0	1	0	

Bytes 2 through 5: Reserved Registers

Bytes 2 through 5 are Reserved Registers.

Byte 6: Vendor/Revision ID Register

Bit	@Pup	Pin#	Name	Pin Description
7	0	_	-	Revision ID Bit 3
6	0	_	-	Revision ID Bit 2
5	0	_	-	Revision ID Bit 1
4	0	_	-	Revision ID Bit 0
3	1	_	-	Vendor ID Bit 3
2	0	_	-	Vendor ID Bit 2
1	0	_	_	Vendor ID Bit 1
0	0	-	-	Vendor ID Bit 0

Document Number: 38-07579 Rev. *J Page 4 of 19

Data Protocol

The clock driver serial protocol accepts byte write, byte read, block write, and block read operation from the controller. For block write/read operation, the bytes must be accessed in sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. For byte write and byte read operations, the system controller can access individual indexed bytes. The offset of the

indexed byte is encoded in the command code, as described in Table 1.

The block write and block read protocol is outlined in Table 2 while Table 3 outlines the corresponding byte write and byte read protocol. The combined 7 bits slave address and read/write bit form a complete block write (D4h) or block read (D5h) command.

Table 1. Command Code Definition

Bit	Description
7	0 = Block read or block write operation 1 = Byte read or byte write operation
(6:0)	Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'

Table 2. Block Read and Block Write Protocol

	Block Write Protocol		Block Read Protocol		
Bit	Description	Bit	Description		
1	Start	1	Start		
2:8	Slave address – 7 bits (D4)	2:8	Slave address – 7 bits (D5)		
9	Write = 0	9	Read = 0		
10	Acknowledge from slave	10	Acknowledge from slave		
11:18	Command Code – 8 bits '00000000' stands for block operation	11:18	Command Code – 8 bits '00000000' stands for block operation		
19	Acknowledge from slave	19	Acknowledge from slave		
20:27	Byte Count – 8 bits	20	Repeat start		
28	Acknowledge from slave	21:27	Slave address – 7 bits		
29:36	Data byte 0 – 8 bits	28	Read = 1		
37	Acknowledge from slave	29	Acknowledge from slave		
38:45	Data byte 1 – 8 bits	30:37	Byte count from slave – 8 bits		
46	Acknowledge from slave	38	Acknowledge		
		39:46	Data byte from slave – 8 bits		
	Data Byte (N–1) –8 bits	47	Acknowledge		
	Acknowledge from slave	48:55	Data byte from slave – 8 bits		
	Data Byte N –8 bits	56	Acknowledge		
	Acknowledge from slave		Data bytes from slave/Acknowledge		
	Stop		Data byte N from slave – 8 bits		
			Not Acknowledge		
			Stop		

Table 3. Byte Read and Byte Write Protocol

	Byte Write Protocol	Byte Read Protocol		
Bit	Description	Bit	Description	
1	Start	1	Start	
2:8	Slave address – 7 bits (D4)	2:8	Slave address – 7 bits (D5)	
9	Write = 1	9	Read = 1	
10	Acknowledge from slave	10	Acknowledge from slave	
11:18	Command Code – 8 bits '100000xx' stands for byte operation, bits[1:0] of the command code represents the offset of the byte to be accessed	11:18	Command Code – 8 bits '100000xx' stands for byte operation, bits[1:0] of the command code represents the offset of the byte to be accessed	
19	Acknowledge from slave	19	Acknowledge from slave	
20:27	Data byte from master – 8 bits	20	Repeat start	
28	Acknowledge from slave	21:27	Slave address – 7 bits	
29	Stop	28	Read = 1	
		29	Acknowledge from slave	
		30:37	Data byte from slave – 8 bits	
		38	Not Acknowledge	
		39	Stop	

Spread Enable and Spread Select[3:0]

Spread Enable and Spread Select[3:0] register bits are used to enable and disable spread spectrum on CLKOUT and to change the spread modulation. When the spread selection changes, the CLKOUT output transits to the target spread selection without deviating from clock specifications.

At device power-up spread spectrum is enabled and hardware control mode is enabled. The initial spread-spectrum configuration is determined by the S[3:1] pins, which correspond to the S[3:1] bits in Table 4. The S0 configuration bit is hard-coded to zero when hardware control mode is selected. All four spread spectrum configuration bits, S[3:0], can also be set when the device is in the software control mode.

Table 4. Spread Spectrum Select (Charge Pump = 00 or Default Condition)

SS3	SS2	SS1	SS0	Spread Mode	Spread Amount %
0	0	0	0	Down	0.65
0	0	0	1	Down	0.80
0	0	1	0	Down	0.90
0	0	1	1	Down	1.10
0	1	0	0	Down	1.30
0	1	0	1	Down	1.40
0	1	1	0	Down	1.80
0	1	1	1	Down	2.25
1	0	0	0	Center	±0.25
1	0	0	1	Center	±0.30
1	0	1	0	Center	±0.40
1	0	1	1	Center	±0.45
1	1	0	0	Center	±0.60
1	1	0	1	Center	±0.80
1	1	1	0	Center	±1.00
1	1	1	1	Center	±1.10

Charge Pump Select Byte1[1:0]

Programming these bits (Byte1[1:0]) via I²C enables the user to have more spread percentage options as described in Table 5. At the start up the default value for byte1[1:0] bits is set to '00', this value can be changed via I²C to have higher spread

percentage on CLKOUT and CLKOUT#. Setting the byte[1:0] bits to '11' allows the user to have a slightly higher spread percentage than the default value(00). The '01' option is the highest spread option for maximum EMI reduction.

Table 5. Spread Spectrum Select (Charge Pump = 11 and 01)

SS3	SS2	SS1	SS0	Spread Mode	Spread Amount % (Charge pump = 11)	Spread Amount % (Charge pump = 01)
0	0	0	0	Down	0.80	0.90
0	0	0	1	Down	0.90	1.10
0	0	1	0	Down	1.20	1.40
0	0	1	1	Down	1.40	1.60
0	1	0	0	Down	1.60	2.00
0	1	0	1	Down	1.75	2.20
0	1	1	0	Down	2.20	2.75
0	1	1	1	Down	2.60	3.30
1	0	0	0	Center	±0.38	±0.40
1	0	0	1	Center	±0.40	±0.50
1	0	1	0	Center	±0.50	±0.60
1	0	1	1	Center	±0.60	±0.70
1	1	0	0	Center	±0.75	±0.90
1	1	0	1	Center	±1.00	±1.25
1	1	1	0	Center	±1.15	±1.45
1	1	1	1	Center	±1.30	±1.65

PWRDWN (Power-down) Clarification

The PWRDWN (Power-down) pin is used to shut off the clock prior to shutting off power to the device. PWRDWN is an asynchronous active HIGH input. This signal is synchronized internally to the device powering down the clock synthesizer. PWRDWN also is an asynchronous function for powering up the system. When PWRDWN is high, all clocks are tri-stated and the oscillator and PLL are also powered down. All clocks are shut down in a synchronous manner so has not to cause glitches

while transitioning to the stopped state. The CLKIN input must be on and within specified operating parameters before PWRDWN is asserted and it must remain in this state while PWRDWN is asserted, see Figure 2.

When PWRDWN is de-asserted (CLKIN starts after powerdown de-assertion to meet the IDD $\leq 250 \mu A$ specification) the clocks should remain stopped until the VCO is stable and within specification (t_{STABLE})., see Figure 3.

Figure 2. Power-down Assertion

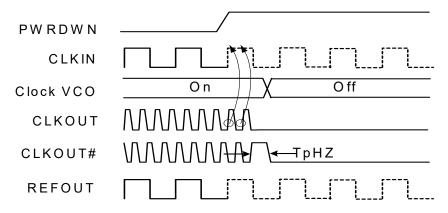
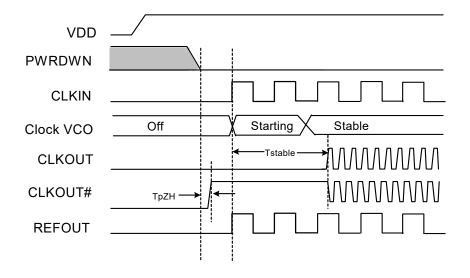



Figure 3. Power-down Deassertion

CLKOUT/CLKOUT# Enable Clarification

The CLKOUT enable I2C register bit (Byte1, bit2) is used to enable/disable the CLKOUT clock. The PLL and crystal oscillator remains on when the outputs are disabled.

When CLKOUT is disabled, the disabled clock is three-stated. The transition to this mode (three-state) is glitch free. Similarly, when CLKOUT is enabled the clock starts in a predictable manner without any glitches or abnormal behavior.

Current Reference, IREF

The details of the current reference circuit are shown in Figure 4. The operational amplifier in the current reference circuit drives

the gate of M_{IREF} with feedback to establish V_{REF} = 1.1 V at both inputs of the amplifier. Thus the reference current is established according to the following formula:

$I_{REF} = 1.1 \text{ V} / R_{REF}$

where R_{REF} is the external resistor and 1.1 V is the reference voltage.

The I_{REF} is scaled by 6x at the output stage and I_{OUT} is given as: I_{OUT} = 6 x I_{REF} .

The recommended value for $R_{\mbox{\scriptsize REF}}$ is 475 Ohms, which corresponds to the $I_{\mbox{\scriptsize REF}}$ of 2.32 mA.

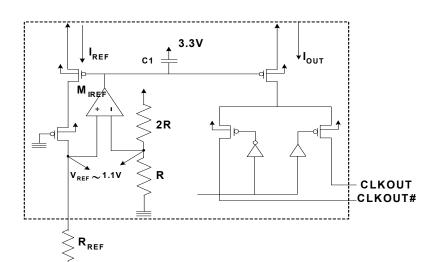


Figure 4. Current Reference Circuit

Absolute Maximum Conditions

Parameter	Description	Condition	Min	Max	Unit
V_{DD}	Core Supply Voltage		-0.5	4.6	V
V_{DDA}	Analog Supply Voltage		-0.5	4.6	V
V _{IN}	Input Voltage	Relative to V _{SS}	-0.5	V _{DD} + 0.5	VDC
T _S	Temperature, Storage	Non-functional	-65	150	°C
T _A	Temperature, Operating Ambient	Functional	0	70	°C
TJ	Temperature, Junction	Functional	-	150	°C
ESD _{HBM}	ESD Protection (Human Body Model)	MIL-STD-883, Method 3015	2000	_	V

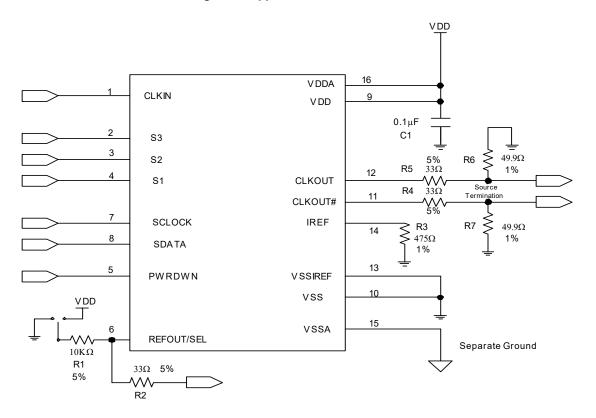
DC Electrical Specifications

Parameter	Description	Condition	Min	Max	Unit
VDD	Power supply for logic and outputs	3.3 ± 5%	3.135	3.465	V
VDDA	Power supply for PLL	3.3 ± 5%	3.135	3.465	V
V _{ILI2C}	Input Low Voltage	SDATA, SCLK	V _{SS} – 0.5	0.8	V
V _{IHI2C}	Input High Voltage	SDATA, SCLK	2.0	V_{DD}	V
V _{IL}	Input Low Voltage		V _{SS} – 0.5	0.8	V
V _{IH}	Input High Voltage		2.0	V_{DD}	V
I _{IL}	Input Leakage Current	except internal pull-ups resistors, $0 < V_{IN} < V_{DD}$	- 5	5	μА
I _{OZ}	High-impedance Output Current		-10	10	μА
I _{DD}	Dynamic Supply Current	without output load	_	50	mA
I _{DDS}	Total Power Supply Current in Shutdown mode (No Input Clock)	Shutdown active	-	250	μА
C _{IN}	Input Pin Capacitance		2	5	pF
C _{OUT}	Output Pin Capacitance		3	6	pF
L _{IN}	Input Pin Inductance		_	5	nΗ
R _{PU}	SCLK and SDATA pull-up resistors	when PWRDWN = 1	50	200	kΩ
R _{REF}	I _{REF} external reference resistor	1% tolerance	200	500	Ω

Thermal Resistance

Parameter [1]	Description	Test Conditions	16-pin TSSOP	Unit
θ_{JA}	,	Test conditions follow standard test methods and procedures for measuring thermal impedance, in		°C/W
θ_{JC}	Thermal resistance (junction to case)	accordance with EIA/JESD51.	15	°C/W

Note


Document Number: 38-07579 Rev. *J Page 11 of 19

^{1.} These parameters are guaranteed by design and are not tested.

Application Schematic

Figure 5. Application Schematic [2, 3]

Notes

^{2.} V_{DD} and V_{DDA} should be tied together and connected to 3.3 V. 3. V_{SSIREF} and V_{SS} are tied together and are common ground.

AC Electrical Specifications

Parameter	Description	Min	Max	Unit			
CLKIN/REFOUT AC Specifications							
T _{DC}	Duty Cycle	Measured at 1.5 V crossing point		60	%		
T _R / T _F	Rise and Fall Times	Measured between 0.8 V and 2.0 V (REFOUT with max. 30 pF Lumped capacitive load)	_	1.2	ns		
T _{CCJ}	Cycle to Cycle Jitter	As an average over 1-μs duration	_	1000	ps		
L _{ACC}	Long-term Accuracy	Over 150 ms	_	300	ppm		
CLKOUT/CLK	OUT# AC Specifications						
T _{DC}	CLKOUT and CLKOUT# Duty Cycle	Measured at crossing point V _{OX}	45	55	%		
T _{PERIOD}	100 MHz CLKOUT and CLKOUT# Period	Measured at crossing point V _{OX}	9.990	10.010	ns		
T _{PERIOD}	96 MHz CLKOUT and CLKOUT# Period	96 MHz CLKOUT and CLKOUT# Measured at crossing point V _{OX} Period		10.427	ns		
T _{CCJ}	CLKOUT/CLKOUT# Cycle to Cycle Jitter with Spread Spectrum Enabled			200	ps		
T _R / T _F	CLKOUT and CLKOUT# Rise and Fall Times	Measured from V_{OL} = 0.175 to V_{OH} = 0.525 V	175	700	ps		
T _{RFM}	Rise/Fall Matching	Determined as a fraction of $2 \times ((T_R - T_F)/(T_R + T_F))$	_	20	%		
Tstable ^[4]	All clock stabilization from Power-up		_	3.0	ms		
ΔT_R	Rise Time Variation		_	125	ps		
ΔT_{F}	Fall Time Variation		_	125	ps		
V_{HIGH}	Voltage High		660	850	mv		
V_{LOW}	Voltage Low		-150	_	mν		
V _{OX}	Crossing Point Voltage at 0.7 V Swing			550	mv		
V _{OVS}	Maximum Overshoot Voltage		_	V _{HIGH} + 0.3	V		
V _{UDS}	Minimum Undershoot Voltage		-0.3	_	V		
V_{RB}	Ring Back Voltage	Measure SE	_	0.2	V		

Note
4. Not 100% tested, guaranteed by design.

Switching Waveforms

Figure 6. Single-ended Measurement Points for TRise and TFall (CLKOUT and CLKOUT#)

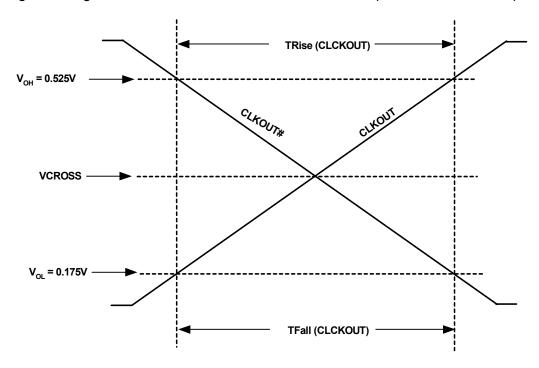
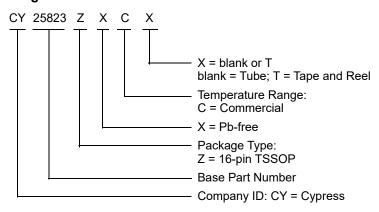
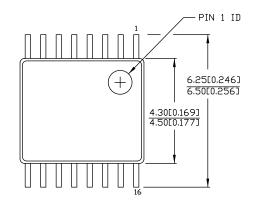



Figure 7. 0.7 V Load Configuration

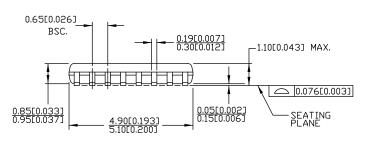


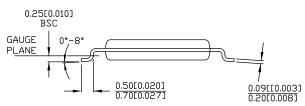
Ordering Information

Part Number	Package Type	Product Flow
CY25823ZXC	16-pin TSSOP (Lead-free)	Commercial, 0 °C to 70 °C
CY25823ZXCT	16-pin TSSOP – Tape and Reel (Lead-free)	Commercial, 0 °C to 70 °C


Ordering Code Definitions

Package Drawing and Dimensions


Figure 8. 16-pin TSSOP (4.40 mm Body) Z16.173/ZZ16.173 Package Outline, 51-85091



DIMENSIONS IN MMCINCHESJ MIN. MAX.

REFERENCE JEDEC MO-153
PACKAGE WEIGHT 0.05gms

PART #		
Z16.173	STANDARD PKG.	
ZZ16.173	LEAD FREE PKG.	

51-85091 *E

Acronyms

Table 6. Acronyms Used in this Document

Acronym	Description	Acronym	Description
CLKIN	Reference Clock IN	LVCMOS	Low Voltage Complementary Metal Oxide Semiconductor
DL	Drive Level	OE	Output Enable
DNU	Do Not Use	osc	Oscillator
DUT	Device Under Test	PD	Power-Down
EIA	Electronic Industries Alliance	PLL	Phase Locked Loop
EMI	Electromagnetic Interference	PPM	Parts Per Million
ESD	Electrostatic Discharge	QFN	Quad Flat No Lead
EXCLKIN	External Clock IN	SS	Spread Spectrum
FAE	Field Application Engineer	SSC	Spread Spectrum Clock
FS	Frequency Select	SSON	Spread Spectrum ON
JEDEC	Joint Electron Device Engineering Council		

Document Conventions

Units of Measure

Table 7. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	μVrms	microvolts root-mean-square
dB	decibel	μW	microwatt
dBc/Hz	decibel relative to the carrier per Hertz	mA	milliampere
fC	femtoCoulomb	mm	millimeter
fF	femtofarad	ms	millisecond
Hz	hertz	mV	millivolt
KB	1024 bytes	nA	nanoampere
Kbit	1024 bits	ns	nanosecond
kHz	kilohertz	nV	nanovolt
kΩ	kilohm	Ω	ohm
MHz	megahertz	рА	picoampere
ΜΩ	megaohm	pF	picofarad
μΑ	microampere	рр	peak-to-peak
μF	microfarad	ppm	parts per million
μΗ	microhenry	ps	picosecond
μs	microsecond	sps	samples per second
μV	microvolt	σ	sigma: one standard deviation

Document History Page

	Document Title: CY25823, CK-SSCD Spread Spectrum Differential Clock Specification Document Number: 38-07579				
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	131662	RGL	12/10/03	New data sheet.	
*A	203801	RGL	See ECN	Updated Functional Overview: Updated Data Protocol: Updated Table 2. Updated Table 3.	
*B	252269	RGL	See ECN	Corrected to New Lead Free Code	
*C	260155	RGL	See ECN	Minor Change: Corrected the package diagram	
*D	3196237	BASH	03/15/11	Added Ordering Code Definitions under Ordering Information. Updated Package Drawing and Dimensions: spec 51-85091 – Changed revision from *A to *C. Added Acronyms and Units of Measure. Updated to new template.	
*E	4296180	XHT	03/03/2014	Updated Package Drawing and Dimensions: spec 51-85091 – Changed revision from *C to *D. Updated to new template. Completing Sunset Review.	
*F	4587350	XHT	12/05/2014	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end. Updated Package Drawing and Dimensions: spec 51-85091 – Changed revision from *D to *E.	
*G	4669367	XHT	02/27/2015	No technical updates. Completing Sunset Review.	
*H	5279025	PSR	11/24/2016	Updated Absolute Maximum Conditions: Removed \emptyset_{JC} , \emptyset_{JA} parameters and their details. Added Thermal Resistance. Updated to new template.	
*	5993961	AESATMP9	12/14/2017	Updated logo and copyright.	
*J	6091326	XHT	04/19/2018	Sunset review.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/mcu

cypress.com/wireless

Products

Arm® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

Cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/iot

cypress.com/memory

Microcontrollers

Wireless Connectivity

PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb

PSoC®Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2003-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress prants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Phase Locked Loops - PLL category:

Click to view products by Cypress manufacturer:

Other Similar products are found below:

HMC700LP4TR CPLL58-2400-2500 MB15E07SLPFV1-G-BND-6E1 PI6C2409-1HWEX BA4116FV-E2 HMC820LP6CETR
HMC828LP6CETR LMX2430TMX/NOPB HMC837LP6CETR HMC831LP6CETR NB3N5573DTG ADF4153ABCPZ PI6C2405A-1LE
CD74HC4046AM CPLL66-2450-2450 NJM567D CY23S05SXI-1 STW81200T ADF4208BRUZ ADF4218LBRUZ ADF4355-3BCPZ
ADF5355BCPZ ADF4355BCPZ ADF4169WCCPZ ADF4360-7BCPZ ADF4360-6BCPZ ADF4360-5BCPZRL7 ADF4360-5BCPZRL7 ADF4360-5BCPZ
ADF4360-4BCPZRL7 ADF4360-4BCPZ ADF4360-3BCPZ ADF4360-2BCPZRL7 ADF4252BCPZ ADF4159CCPZ ADF4169CCPZ
ADF4252BCPZ-R7 ADF4360-0BCPZ ADF4360-1BCPZ ADF4360-1BCPZRL7 ADF4360-2BCPZ ADF4360-3BCPZRL7 ADF43607BCPZRL7 ADF4360-8BCPZ ADF4360-8BCPZRL7 ADF4360-9BCPZ ADF4360-9BCPZRL7 ADF4159CCPZ-RL7 ADF4159WCCPZ
ADF4360-0BCPZRL7 AD9901KPZ