Features

■ 2.5 V or 3.3 V operation

- 200 MHz clock support
- Two LVCMOS-/LVTTL-compatible inputs
- Ten clock outputs: drive up to 20 clock lines

■ $1 \times$ or $1 / 2 \times$ configurable outputs
■ Output three-state control
■ 250-ps max output-to-output skew
■ Pin-compatible with MPC946, MPC9446

- Available in commercial and industrial temperature range

■ 32-pin TQFP package

Functional Description

The CY29946 is a low-voltage 200-MHz clock distribution buffer with the capability to select one of two LVCMOS/LVTTL compatible input clocks. These clock sources can be used to provide for test clocks as well as the primary system clocks. All other control inputs are LVCMOS/LVTTL compatible. The 10 outputs are LVCMOS or LVTTL compatible and can drive 50Ω series or parallel terminated transmission lines. For series terminated transmission lines, each output can drive one or two traces giving the device an effective fanout of 1:20.

The CY29946 is capable of generating $1 \times$ and $1 / 2 \times$ signals from a $1 \times$ source. These signals are generated and retimed internally to ensure minimal skew between the $1 \times$ and $1 / 2 \times$ signals. SEL(A:C) inputs allow flexibility in selecting the ratio of $1 \times$ to $1 / 2 \times$ outputs.
The CY29946 outputs can also be three-stated via MR/OE\# input. When MR/OE\# is set HIGH, it resets the internal flip-flops and three-states the outputs.
For a complete list of related documentation, click here.

Block Diagram

Pin Configuration

Pin Description

Pin	Name	PWR	I/O ${ }^{\text {[1] }}$	Description
3, 4	TCLK $(0,1)$		I, PU	External Reference/Test Clock Input
26, 28, 30	QA(2:0)	VDDC	0	Clock Outputs
19, 21, 23	QB(2:0)	VDDC	O	Clock Outputs
10, 12, 14, 16	QC(0:3)	VDDC	\bigcirc	Clock Outputs
5, 6, 7	DSEL(A:C)		I, PD	Divider Select Inputs. When HIGH, selects $\div 2$ input divider. When LOW, selects $\div 1$ input divider.
1	TCLK_SEL		I, PD	TCLK Select Input. When LOW, TCLK0 clock is selected and when HIGH TCLK1 is selected.
32	MR/OE\#		I, PD	Output Enable Input. When asserted LOW, the outputs are enabled and when asserted HIGH, internal flip-flops are reset and the outputs are three-stated. If more than 1 Bank is being used in /2 Mode, a reset must be performed (MR/OE\# Asserted High) after power-up to ensure all internal flip-flops are set to the same state.
$\begin{aligned} & 9,13,17,18,22, \\ & 25,29 \end{aligned}$	VDDC			2.5 V or 3.3 V Power Supply for Output Clock Buffers
2	VDD			2.5 V or 3.3 V Power Supply
$\begin{aligned} & 8,11,15,20,24, \\ & 27,31 \end{aligned}$	VSS			Common Ground

Note

1. $\mathrm{PD}=$ Internal pull-down. $\mathrm{PU}=$ Internal pull-up.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range:
$V_{S S}<\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right)<V_{D D}$.
Unused inputs must always be tied to an appropriate logic voltage level (either V_{SS} or V_{DD}).

DC Electrical Specifications

$V_{D D}=V_{D D C}=3.3 \mathrm{~V} \pm 10 \%$ or $2.5 \mathrm{~V} \pm 5 \%$, over the specified temperature range

Parameter	Description	Conditions	Min	Typ	Max	Unit
$V_{\text {IL }}$	Input Low Voltage		$\mathrm{V}_{S S}$	-	0.8	V
V_{IH}	Input High Voltage		2.0	-	V_{DD}	V
$\mathrm{I}_{\text {IL }}$	Input Low Current ${ }^{[3]}$		-	-	-100	$\mu \mathrm{A}$
I_{IH}	Input High Current ${ }^{[3]}$		-	-	100	$\mu \mathrm{A}$
V_{OL}	Output Low Voltage ${ }^{[4]}$	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$	-	-	0.4	V
V_{OH}	Output High Voltage ${ }^{[4]}$	$\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	2.5	-	-	V
		$\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	1.8	-	-	
IDDQ	Quiescent Supply Current		-	5	7	mA
I_{DD}	Dynamic Supply Current	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, Outputs @ 100 MHz , $C_{L}=30 \mathrm{pF}$	-	130	-	mA
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \text { Outputs @ } 160 \mathrm{MHz}, \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	-	225	-	
		$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$, Outputs @ 100 MHz , $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	-	95	-	
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text {, Outputs @ } 160 \mathrm{MHz}, \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	-	160	-	
$\mathrm{Z}_{\text {Out }}$	Output Impedance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	12	15	18	W
		$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	14	18	22	
$\mathrm{C}_{\text {in }}$	Input Capacitance		-	4	-	pF

Thermal Resistance

Parameter ${ }^{[5]}$	Description	Test Conditions	32-pin TQFP	Unit
θ_{JA}	Thermal resistance (junction to ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, in	65	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	accordance with EIA/JESD51.	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
θ_{JC}	Thermal resistance (junction to case)			

[^0]
AC Electrical Specifications

$V_{D D}=V_{D D C}=3.3 \mathrm{~V} \pm 10 \%$ or $2.5 \mathrm{~V} \pm 5 \%$, over the specified temperature range ${ }^{[6]}$

Parameter	Description	Conditions	Min	Typ	Max	Unit
$\mathrm{F}_{\text {max }}$	Input Frequency ${ }^{[7]}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	-	-	200	MHz
		$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	-	-	170	
T_{pd}	TTL_CLK To Q Delay ${ }^{[7]}$		5.0	-	11.5	ns
$\mathrm{F}_{\text {outDC }}$	Output Duty Cycle ${ }^{[7,8]}$	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$	45	-	55	\%
$\mathrm{t}_{\mathrm{pzL}}, \mathrm{t}_{\mathrm{pzH}}$	Output enable time (all outputs)		2	-	10	ns
$\mathrm{t}_{\mathrm{pLZ}}, \mathrm{t}_{\mathrm{pHZ}}$	Output disable time (all outputs)		2	-	10	ns
$\mathrm{T}_{\text {skew }}$	Output-to-Output Skew ${ }^{[7, ~ 9]}$		-	150	250	ps
$\mathrm{T}_{\text {skew(pp) }}$	Part-to-Part Skew ${ }^{[10]}$		-	2.0	4.5	ns
$\mathrm{T}_{\mathrm{r}} / \mathrm{T}_{\mathrm{f}}$	Output Clocks Rise/Fall Time ${ }^{[9]}$	0.8 V to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	0.10	-	1.0	ns
		0.6 V to 1.8 V, $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	0.10	-	1.3	

[^1]Figure 1. LVCMOS_CLK CY29946 Test Reference for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

Figure 2. LVCMOS Propagation Delay (T_{PD}) Test Reference

Figure 3. Output Duty Cycle ($\mathrm{F}_{\text {outDC }}$)

Figure 4. Output-to-Output Skew $\mathrm{t}_{\text {sk(} 0)}$

Ordering Information

Part Number	Package Type	Production Flow
CY29946AXC	32-pin TQFP	Commercial, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CY29946AXCT	32-pin TQFP - Tape and Reel	Commercial, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CY29946AXI	32-pin TQFP	Industrial, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CY29946AXIT	32-pin TQFP - Tape and Reel	Industrial, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Ordering Code Definitions

Package Drawing and Dimensions

Figure 5. 32 -pin TQFP $7 \times 7 \times 1.0 \mathrm{~mm} \mathrm{~A} 3210$

Acronyms

Acronym	Description
ESD	electrostatic discharge
I/O	input/output
LVCMOS	low voltage complementary metal oxide semiconductor
LVTTL	low-voltage transistor-transistor logic
TQFP	thin quad flat pack

Document Conventions

Units of Measure

Symbol	Unit of Measure
${ }^{\circ} \mathrm{C}$	degree Celsius
kV	kilovolt
MHz	megahertz
$\mu \mathrm{A}$	microampere
mA	milliampere
mm	millimeter
mV	millivolt
ns	nanosecond
Ω	ohm
$\%$	percent
pF	picofarad
ps	picosecond
V	volt
W	watt

Document History Page

Document Title: CY29946, 2.5 V or 3.3 V, 200 MHz, 1:10 Clock Distribution Buffer Document Number: 38-07286

Rev.	ECN No.	Orig. of Change	Issue Date	Description of Change
**	111097	BRK	02/07/02	New data sheet.
*A	116780	HWT	08/15/02	Added the commercial temperature range in the Ordering Information
*B	122878	RBI	12/22/02	Added power-up requirements to Maximum Ratings
*C	130007	RGL	10/15/03	Fixed the block diagram. Fixed the MK/OE\# description in the pin description table.
*D	131375	RGL	11/21/03	Updated document history page (revision *C) to reflect changes that were not listed.
*E	221587	RGL	See ECN	Minor Change: Moved up the word Block Diagram in the first page.
*F	2899714	BRIJ / CXQ	03/26/10	Updated Ordering Information: Updated part numbers. Updated Package Drawing and Dimensions.
*G	3254185	CXQ	05/11/2011	Added Ordering Code Definitions. Added Acronyms and Units of Measure. Updated to new template.
*H	4389717	XHT	05/30/2014	Updated Package Drawing and Dimensions: spec 51-85063 - Changed revision from *C to *D. Completing Sunset Review.
*1	4586288	XHT	12/03/2014	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end.
*J	5270507	PSR	05/13/2016	Added Thermal Resistance. Updated Package Drawing and Dimensions: spec 51-85063 - Changed revision from *D to *E. Updated to new template.
*K	5754145	XHT	05/29/2017	Updated to new template. Completing Sunset Review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
ARM $^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks \& Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

 intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to

 provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

 permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is
 are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
 device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably

 liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
 the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:

Click to view products by Cypress manufacturer:

Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG 4RCD0232KC1ATG 6ES7390-1AF30-0AA0
CDCVF2505IDRQ1 NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 AD246JN AD246JY AD9508SCPZ-EP AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 AD9553BCPZ HMC940LC4B CSPUA877ABVG8 9P936AFLFT 49FCT805CTQG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8V79S680NLGI ISPPAC-CLK5312S-01TN48I ISPPAC-CLK5520V-01TN100I ISPPAC-CLK5510V-01TN48C 83905AMLFT 8S73034AMILF 8538BG-31LF 49FCT805BTPYG 49FCT20805PYGI MAX9320BEUA+ MAX9325EQI

[^0]: Notes
 2. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is not required.
 3. Inputs have pull-up/pull-down resistors that effect input current.
 4. Driving series or parallel terminated 50Ω (or 50Ω to $V_{D D} / 2$) transmission lines.
 5. These parameters are guaranteed by design and are not tested.

[^1]: Notes
 6. Parameters are guaranteed by design and characterization. Not 100% tested in production. All parameters specified with loaded outputs.
 7. Outputs driving 50Ω transmission lines.
 8. 50% input duty cycle.
 9. See Figure 1 on page 5.
 10. Part-to-Part skew at a given temperature and voltage

