

312.5 MHz LVPECL Clock Generator

Features

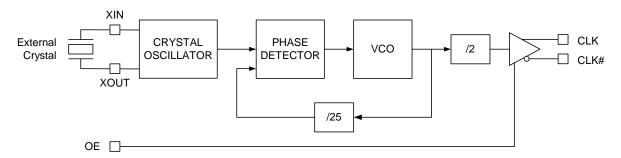
■ One LVPECL output pair

■ Output frequency: 312.5 MHz

■ External crystal frequency: 25 MHz

■ Low RMS phase jitter at 312.5 MHz, using 25 MHz crystal (1.875 MHz to 20 MHz): 0.3 ps (typical)

■ Pb-free 8-Pin TSSOP package


■ Supply voltage: 3.3 V or 2.5 V

■ Commercial and industrial temperature ranges

Functional Description

The CY2XP31 is a PLL (Phase Locked Loop) based high performance clock generator. It is optimized to generate 10 Gb Ethernet, SONET, and other high performance clock frequencies. It also produces an output frequency that is 12.5 times the crystal frequency. It uses Cypress's low noise VCO technology to achieve less than 1 ps typical RMS phase jitter, which meets both 10 Gb Ethernet and SONET jitter requirements. The CY2XP31 has a crystal oscillator interface input and one LVPECL output pair.

Logic Block Diagram

Pinouts

Figure 1. Pin Diagram - 8-Pin TSSOP

Table 1. Pin Definition - 8-Pin TSSOP

Pin Number	Pin Name I/O Type		Description
1, 8	VDD	Power	3.3 V or 2.5 V power supply. All supply current flows through pin 1
2	VSS	Power	Ground
3, 4	XOUT, XIN	XTAL Output and Input	
5	OE	CMOS Input Output enable. When HIGH, the output is enabled. When output is high impedance	
6,7	CLK#, CLK	LVPECL Output	Differential clock output

Frequency Table

Inputs	Output Frequency (MHz)	
Crystal Frequency (MHz)	PLL Multiplier Value	Output Frequency (Wifiz)
25	12.5	312.5

Absolute Maximum Conditions

Parameter	Description	Conditions	Min	Max	Unit
V_{DD}	Supply Voltage		-0.5	4.4	V
V _{IN} [1]	Input Voltage, DC	Relative to V _{SS}	-0.5	V _{DD} + 0.5	V
T _S	Temperature, Storage	Non operating	-65	150	°C
TJ	Temperature, Junction		-	135	°C
ESD _{HBM}	ESD Protection, Human Body Model	JEDEC STD 22-A114-B	2000	_	V
UL-94	Flammability Rating	At 1/8 in.	٧	/_0	
$\Theta_{JA}^{[2]}$	Thermal Resistance, Junction to Ambient	0 m/s airflow	1	00	°C/W
		1 m/s airflow	,	91	
		2.5 m/s airflow		87	

Operating Conditions

Parameter	Description	Min	Max	Unit
V_{DD}	3.3 V Supply Voltage	3.135	3.465	V
	2.5 V Supply Voltage	2.375	2.625	V
T _A	Ambient Temperature, Commercial	0	70	°C
	Ambient Temperature, Industrial	-40	85	°C
T _{PU}	Power-up time for all $V_{\mbox{\scriptsize DD}}$ to reach minimum specified voltage (ensure power ramps is monotonic)	0.05	500	ms

Notes
 The voltage on any input or I/O pin cannot exceed the power pin during power-up.
 Simulated using Apache Sentinel TI software. The board is derived from the JEDEC multilayer standard. It measures 76 x 114 x 1.6 mm and has 4-layers of copper (2/1/1/2 oz.). The internal layers are 100% copper planes, while the top and bottom layers have 50% metalization. No vias are included in the model.

DC Electrical Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
I _{DD}	Operating Supply Current with Output Unterminated	V_{DD} = 3.465 V, OE = V_{DD} , output unterminated	-	-	125	mA
		V_{DD} = 2.625 V, OE = V_{DD} , output unterminated	-	-	120	mA
I _{DDT}	Operating Supply Current with	V_{DD} = 3.465 V, OE = V_{DD} , output terminated	_	_	150	mA
	Output Terminated	V_{DD} = 2.625 V, OE = V_{DD} , output terminated	_	_	145	mA
V _{OH}	LVPECL Output High Voltage	V_{DD} = 3.3 V or 2.5 V, R_{TERM} = 50Ω to V_{DD} – 2.0 V	V _{DD} –1.15	-	V _{DD} -0.75	V
V _{OL}	LVPECL Output Low Voltage	V_{DD} = 3.3 V or 2.5 V, R_{TERM} = 50Ω to V_{DD} – 2.0 V	V _{DD} –2.0	-	V _{DD} –1.625	V
V _{OD1}	LVPECL Peak-to-Peak Output Voltage Swing	V_{DD} = 3.3 V or 2.5 V, R_{TERM} = 50Ω to V_{DD} – 2.0 V	600	-	1000	mV
V_{OD2}	LVPECL Output Voltage Swing (V _{OH} - V _{OL})	$V_{DD} = 2.5 \text{ V}, R_{TERM} = 50\Omega \text{ to } V_{DD} - 1.5 \text{ V}$	500	-	1000	mV
V _{OCM}	LVPECL Output Common Mode Voltage (V _{OH} + V _{OL})/2	$V_{DD} = 2.5 \text{ V}, R_{TERM} = 50\Omega \text{ to } V_{DD} - 1.5 \text{ V}$	1.2	_	_	V
l _{OZ}	LVPECL Output Leakage Current	Output off, OE = V _{SS}	-35	-	35	μА
V_{IH}	Input High Voltage, OE Pin		0.7*V _{DD}	_	V _{DD} +0.3	V
V_{IL}	Input Low Voltage, OE Pin		-0.3	_	0.3*V _{DD}	V
I _{IH}	Input High Current, OE Pin	OE = V _{DD}	_	-	115	μA
I _{IL}	Input Low Current, OE Pin	OE = V _{SS}	- 50	ı	_	μA
C _{IN} [5]	Input Capacitance, OE Pin		-	15	_	pF
C _{INX} ^[5]	Pin Capacitance, XIN & XOUT		_	4.5	_	pF

AC Electrical Characteristics^[5]

Parameter	Description	Conditions	Min	Тур	Max	Unit
F _{OUT}	Output Frequency		_	312.5	_	MHz
T _R , T _F ^[3]	Output Rise or Fall Time	20% to 80% of full output swing	_	0.5	1.0	ns
T _{Jitter(ϕ)} ^[6]	RMS Phase Jitter (Random)	312.5 MHz, (1.875 to 20 MHz)	_	0.3	_	ps
T _{DC} [7]	Output Duty Cycle	Measured at zero crossing point	45	_	55	%
T _{OHZ}	Output Disable Time	Time from falling edge on OE to stopped outputs (Asynchronous)	-	_	100	ns
T _{OE}	Output Enable Time	Time from rising edge on OE to outputs at a valid frequency (Asynchronous)	-	_	100	ns
T _{LOCK}	Startup Time	Time for CLK to reach valid frequency measured from the time V _{DD} = V _{DD} (min.)	-	-	5	ms

Recommended Crystal Specifications^[4]

Parameter	Description	Min	Max	Unit
Mode	Mode of Oscillation	Fundai	mental	
F	Frequency	25	25	MHz
ESR	Equivalent Series Resistance	_	50	Ω
C _S	Shunt Capacitance	_	7	pF

Parameter Measurements

Figure 2. 3.3 V Output Load AC Test Circuit

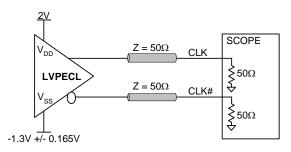


Figure 3. 2.5 V Output Load AC Test Circuit

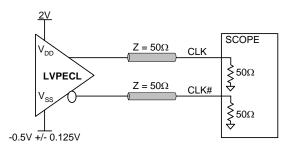


Figure 4. Output DC Parameters

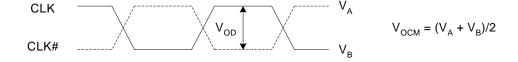
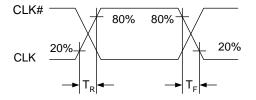



Figure 5. Output Rise and Fall Time

Notes

- Refer to Figure 5 on page 4.
 Characterized using an 18 pF parallel resonant crystal.
 Not 100% tested, guaranteed by design and characterization.
 Refer to Figure 6 on page 5.
 Refer to Figure 7 on page 5.

Figure 6. RMS Phase Jitter

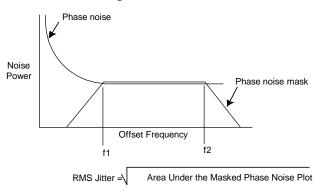


Figure 7. Output Duty Cycle

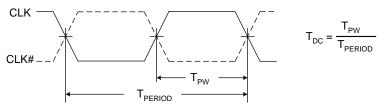
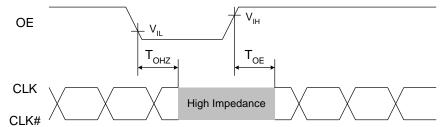
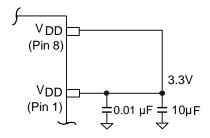



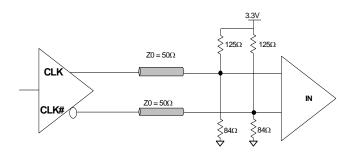
Figure 8. Output Enable Timing



Application Information

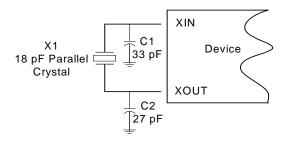
Power Supply Filtering Techniques

As in any high speed analog circuitry, noise at the power supply pins can degrade performance. To achieve optimum jitter performance, use good power supply isolation practices. Figure 9 illustrates a typical filtering scheme. Because all of the current flows through pin 1, the resistance and inductance between this pin and the supply is minimized. A 0.01 or 0.1 µF ceramic chip capacitor is also located close to this pin to provide a short and low impedance AC path to ground. A 1 to 10 µF ceramic or tantalum capacitor is located in the general vicinity of this device and may be shared with other devices.


Figure 9. Power Supply Filtering

Termination for LVPECL Output

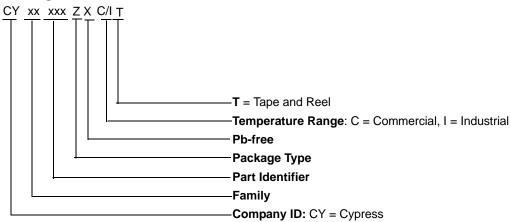
The CY2XP31 implements its LVPECL driver with a current steering design. For proper operation, it requires a 50 ohm dc termination on each of the two output signals. For 3.3 V operation, this data sheet specifies output levels for termination to V_{DD} –2.0 V. This same termination voltage can also be used for V_{DD} = 2.5 V operation, or it can be terminated to V_{DD} -1.5 V. Note that it is also possible to terminate with 50 ohms to ground (V_{SS}), but the high and low signal levels differ from the data sheet values. Termination resistors are best located close to the destination device. To avoid reflections, trace characteristic impedance (Z_0) should match the termination impedance. Figure 10 shows a standard termination scheme.


Figure 10. LVPECL Output Termination

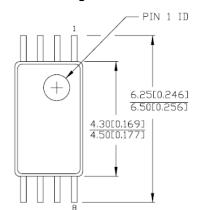
Crystal Input Interface

The CY2XP31 is characterized with 18 pF parallel resonant crystals. The capacitor values shown in Figure 11 are determined using a 25 MHz 18 pF parallel resonant crystal and are chosen to minimize the ppm error. Note that the optimal values for C1 and C2 depend on the parasitic trace capacitance and are therefore layout dependent.

Figure 11. Crystal Input Interface

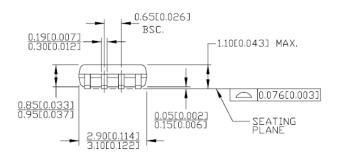


Ordering Information


Part Number	Package Type	Product Flow
CY2XP31ZXC	8-Pin TSSOP	Commercial, 0°C to 70°C
CY2XP31ZXCT	8-Pin TSSOP – Tape and Reel	Commercial, 0°C to 70°C
CY2XP31ZXI	8-Pin TSSOP	Industrial, -40°C to 85°C
CY2XP31ZXIT	8-Pin TSSOP – Tape and Reel	Industrial, -40°C to 85°C

Ordering Code Definitions

Package Drawing and Dimensions


Figure 12. 8-Pin Thin Shrunk Small Outline Package (4.40 MM Body) Z8

DIMENSIONS IN MM[INCHES] MIN. MAX.

REFERENCE JEDEC MD-153

PART #						
Z08.173	STANDARD PKG.					
ZZ08.173	LEAD FREE PKG.					

Document #: 001-06385 Rev. *H

Acronyms

Table 2. Acronyms Used

Acronym	Description	
CLKOUT	T Clock output	
CMOS	Complementary metal oxide semiconductor	
DPM	Die pick map	
EPROM	Erasable programmable read only memory	
LVDS	Low-voltage differential signaling	
LVPECL	Low voltage positive emitter coupled logic	
NTSC	National television system committee	
OE Output enable		
PAL	Phase alternate line	
PD	Power-down	
PLL Phase locked loop		
PPM	Parts per million	
TTL	Transistor transistor logic	

Document Conventions

Table 3. Units of Measure

Symbol	Unit of Measure		
°C	degrees Celsius		
kHz	kilohertz		
kΩ	kilohms		
MHz	megahertz		
$M\Omega$	megaohms		
μΑ	microamperes		
μs	microseconds		
μV	microvolts		
μVrms	microvolts root-mean-square		
mA	milliamperes		
mm	millimeters		
ms	milliseconds		
mV	millivolts		
nA	nanoamperes		
ns	nanoseconds		
nV	nanovolts		
Ω	ohms		

Document History Page

	Title: CY2XI Number: 00		z LVPECL Cloc	ck Generator
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	422680	RGL	See ECN	New data sheet
*A	506198	RGL	See ECN	Supplied values in TBDs, Change status from Advance Information to Preliminary
B	1337067	JWK / KVM /ARI	See ECN	Changed VCC to VDD*, VEE to VSS, Gave pins 1 and 8 the same name (VDD), Added MSL and CIN specifications, Removed pull up from pin 5, Changed V _{IL} , V _{IH} , I _{IH} , I _{DD} , I _{DDA} , V _{OH} , V _{OL} , t _R and t _F specifications, Added commercial temperature, Changed supply filtering recommendation Removed alternate termination figure, Cleaned up several drawings Fixed cross references and edited data sheet for template compliance, Titlerange
*C	2669117	KVM/ AESA	03/05/2009	Changed crystal frequency to 25 MHz only; removed other frequencies; output frequencies adjusted accordingly, Changed phase jitter value, Removed MSL spec Changed IIL and IIH values, Changed rise / fall time value from 350 ps to 500 ps Changed max junction temp from 125°C to 135°C, Added thermal resistant Clarified that IDD is with outputs loaded, Changed Data Sheet Status to Final.
*D	2700242	KVM/PYRS	04/30/2009	Typos: changed VCC to VDD OE pin capacitance changed from 7pF to 15pF Changed IDD footnote Reformatted AC & DC tables Added specs CINX and IOZ Added OE timing, and startup timing Added OE waveforms Added IDD for 2.5 V Changed footnote about external power dissipation
*E	2718433	WWZ/HMT	06/12/2009	No change. Submit to ECN for product launch.
*F	2767308	KVM	09/22/2009	Add I_{DD} spec for unterminated outputs Change parameter name for I_{DD} (terminated outputs) from I_{DD} to I_{DDT} Remove I_{DD} footnote about externally dissipated current Add footnote reference to C_{IN} and C_{INX} :not 100% tested Add max limit for T_R , T_F : 1.0 ns Change T_{LOCK} max from 10 ms to 5 ms
*G	2896121	KVM	03/19/2010	Updated Package Diagram (Figure 12)
*H	3219081	BASH	04/07/2011	Template and style updates as per current Cypress standards. Added ordering code definitions, acronyms, and units of measure. Updated package diagram to *C.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive
Clocks & Buffers
Interface
Lighting & Power Control

Memory
Optical & Image Sensing
PSoC
Touch Sensing
USB Controllers
Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc

cypress.com/go/plc cypress.com/go/memory cypress.com/go/image cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2006-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 001-06385 Rev. *H

Revised April 7, 2011

Page 10 of 10

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Cypress manufacturer:

Other Similar products are found below:

5P49V5901B744NLGI 5P49V5929B502NLGI 5P49V5935B520LTGI CV183-2TPAG 8T49N004A-039NLGI 9FGV0631CKLF
9FGV0641AKLFT 9LRS3197AKLF 9VRS4450AKLF NB3N51132DTR2G 932SQ426AKLF 950810CGLF 9DBV0531AKILF
9DBV0741AKILF 9FGV0641AKLF 9UMS9633BKLF 9VRS4420DKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004
NB3H5150-01MNTXG 6INT61041NDG 8406801VA PL602-20-K52TC PL613-51QC 9FGV0641AKILF ZL30314GKG2 ZL30250LDG1
ZL30142GGG2 9UMS9633BKILFT 9FGV0631CKLFT 9FGV0631CKILF PI6LC48P0101LIE DS1099U-ST+ MAX24305EXG+
PI6LC48H02-01LIE 82P33814ANLG 932SQ426AGLFT 840021AGLF MAX3674ECM+ 5V49EE901-064PGGI ZL30244LFG7
DS1089LU-23C+ PI6LC48C21LE ZL30106QDG1 ZL30245LFG7 PI6LC48L0201LIE 8T49N283C-998NLGI DS1050Z-025+T&R
9FGV0641AKILFT