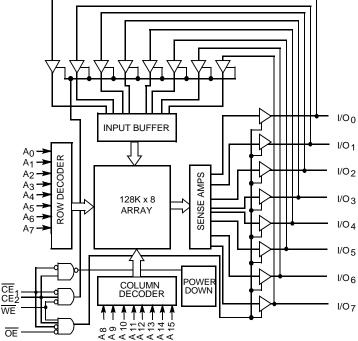


CY621282BN MoBL[®] Automotive 1-Mbit (128 K × 8) Static RAM

Features

- Temperature Ranges □ Automotive-E: -40 °C to 125 °C
- 4.5 V to 5.5 V operation
- Complementary metal oxide semiconductor (CMOS) for optimum speed/power
- Low active power 137.5 mW (max.) (25 mA)
- Low standby power
 137.5 μW (max.) (25 μA)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} options
- Available in Pb-free 32-pin (450 mil-wide) small outline integrated circuit (SOIC) package

Functional Description


The CY621282BN is a high-performance CMOS static RAM organized as 128K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (\overline{CE}_1), an active HIGH Chip Enable (\overline{CE}_2), and active LOW Output Enable (\overline{OE}). This device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.

<u>Writing</u> to the device is accomplished by taking Chip Enable One (\overline{CE}_1) and Write Enable (WE) inputs LOW and Chip Enable Two (CE_2) input HIGH. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₆).

Reading from the device is accomplished by taking Chip Enable One (\overline{CE}_1) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) and Chip Enable Two (\overline{CE}_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O_0 through I/O_7) are placed in a high-impedance state when the device is <u>des</u>elected (\overline{CE}_1 HIGH or CE_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE}_1 LOW, CE_2 HIGH, and \overline{WE} LOW).

Logic Block Diagram

198 Champion Court

•

Contents

Product Portfolio	3
Pin Configuration	3
Pin Definitions	3
Maximum Ratings	
Operating Range	4
Electrical Characteristics	
Capacitance	5
Thermal Resistance	
AC Test Loads and Waveforms	
Data Retention Waveform	
Data Retention Characteristics	
Switching Characteristics	
Switching Waveforms	

Truth Table	10
Ordering Information	10
Ordering Code Definitions	10
Package Diagrams	11
Acronyms	12
Document Conventions	12
Units of Measure	12
Document History Page	13
Sales, Solutions, and Legal Information	14
Worldwide Sales and Design Support	14
Products	14
PSoC Solutions	14

Product Portfolio

Product V _{CC} Range (V) Speed (ns)		Voo Bange (V)			Power Dissipation				
		Operating, I _{CC} (mA)		Standby, I _{SB2} (µA)					
		Min	Тур [1]	Max		Тур [1]	Max	Тур [1]	Мах
CY621282BN	Automotive-E	4.5	5.0	5.5	70	6	25	2.5	25

Pin Configuration

	1 O 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	32] 31] 29] 28] 27] 26] 27] 26] 27] 26] 27] 27] 28] 27] 28] 27] 28] 27] 28] 27] 28] 27] 28] 28] 27] 28] 28] 28] 27] 28] 28] 28] 28] 27] 28] 28] 28] 29] 28] 28] 28] 28] 29] 28] 28] 28] 29] 28] 28] 29] 29] 28] 29] 28] 29] 29] 29] 20] 20] 20] 20] 20] 20] 20] 20	V _{CC} A15 <u>CE2</u> WE A13 A8 A9 A11 <u>CE2</u> UZ A13 A8 A9 A11 <u>CE2</u> UZ A13 A8 A9 A11 <u>CE2</u> UZ A13 A8 A9 A11 <u>CE2</u> UZ A15 <u>CE2</u> VE2 A15 A15 A15 A15 A15 A15 A15 A15 A15 A15
--	---	--	--

Pin Definitions

I/O Type	Description
Input	A ₀ -A ₁₆ . Address inputs
Input/output	I/O ₀ -I/O ₇ . Data lines. Used as input or output lines depending on operation.
Input/control	WE. Write Enable, Active LOW. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted.
Input/control	CE ₁ . Chip Enable 1, Active LOW.
Input/control	CE ₂ . Chip Enable 2, Active HIGH.
Input/control	OE . Output Enable, Active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins.
Ground	GND. Ground for the device.
Power supply	V _{CC} . Power supply for the device.

Note 1. Typical values are included for reference only and are not tested or guaranteed. Typical values are measured at V_{CC} = 5.0 V, T_A = 25 °C.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature65 °C to +150 °C
Ambient temperature with power applied55 °C to +125 °C
Supply voltage on V_{CC} to relative $GND^{[2]}$ –0.5 V to +7.0 V
DC voltage applied to outputs in High Z state $^{[2]}$ 0.5 V to V_{CC} + 0.5 V

DC input voltage ^[2, 3]	–0.5 V to V _{CC} + 0.5 V
Current into outputs (LOW)	
Static discharge voltage (per MIL-STD-883, Method 3015)	> 2001 V
Latch-up current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Automotive-E	–40 °C to +125 °C	$5 \text{ V} \pm 10\%$

Electrical Characteristics

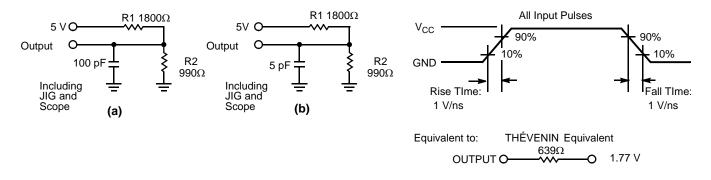
Over the Operating Range

Parameter	Description Test Condit	Tost Conditions		-70		Unit
Farameter		Test conditions	Min	Тур ^[4]	Max	Om
V _{OH}	Output HIGH voltage	$V_{CC} = 4.5 \text{ V}, I_{OH} = -1.0 \text{ mA}$	2.4	-	-	V
		$V_{CC} = 5.5 \text{ V}, I_{OH} = -0.1 \text{ mA}$	3.95	-	-	
		$V_{CC} = 5 \text{ V}, \text{ I}_{OH} = -0.1 \text{ mA}$	3.6	-	-	
		$V_{CC} = 4.5 \text{ V}, I_{OH} = -0.1 \text{ mA}$	3.25	-	-	
V _{OL}	Output LOW voltage	V _{CC} = 4.5 V, I _{OL} = 2.1 mA	-	-	0.4	V
V _{IH}	Input HIGH voltage		2.2	-	V _{CC} + 0.3	V
V _{IL}	Input LOW voltage ^[2]		-0.3	-	0.8	V
I _{IX}	Input leakage current	$GND \le V_{IN} \le V_{CC}$	-10	-	+10	μA
I _{OZ}	Output leakage current	$GND \le V_{IN} \le V_{CC}$, Output Disabled	-10	-	+10	μΑ
I _{CC}	V _{CC} operating supply current	$f = f_{MAX} = 1/t_{RC}$ V _{CC} = 5.5 V,	-	6	25	mA
		f = 1 MHz I _{OUT} = 0 mA		2	12	
I _{SB1}	Automatic CE power-down current —TTL inputs	$ \begin{array}{c} V_{CC} = 5.5 \text{ V}, \overline{CE}_1 \geq V_{IH} \text{ or } CE_2 \leq V_{IL}, \\ V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, \text{ f} = f_{MAX} \end{array} $	-	0.1	2	mA
I _{SB2}	Automatic CE power-down current —CMOS inputs	$\begin{array}{l} V_{CC} = 5.5 \ \text{V}, \ \overline{CE}_1 \geq V_{CC} - 0.3 \ \text{V}, \\ \text{or} \ CE_2 \leq 0.3 \ \text{V}, \ \text{V}_{IN} \geq V_{CC} - 0.3 \ \text{V}, \text{or} \\ V_{IN} \leq 0.3 \ \text{V}, \ \text{f} = 0 \end{array}$	-	2.5	25	μA

Notes

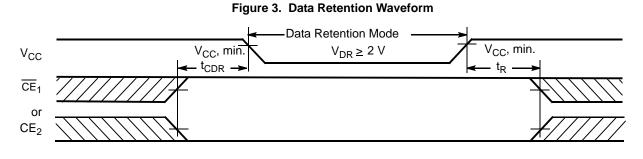
V_{IL} (min.) = -2.0 V for pulse durations of less than 20 ns.
 No input may exceed V_{CC} + 0.5 V.
 Typical values are included for reference only and are not tested or guaranteed. Typical values are measured at V_{CC} = 5.0 V, T_A = 25 °C.

Capacitance


Parameter ^[5]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz, V _{CC} = 5.0 V	9	pF
C _{OUT}	Output capacitance		9	pF

Thermal Resistance

Parameter ^[5]	Description	Test Conditions	32-pin SOIC	Unit
Θ_{JA}		Test conditions follow standard test methods and procedures for measuring thermal impedance, per EIA /	66.17	°C/W
- 30	Thermal resistance (junction to case)	JESD51.	30.87	°C/W


AC Test Loads and Waveforms

Data Retention Waveform

Data Retention Characteristics

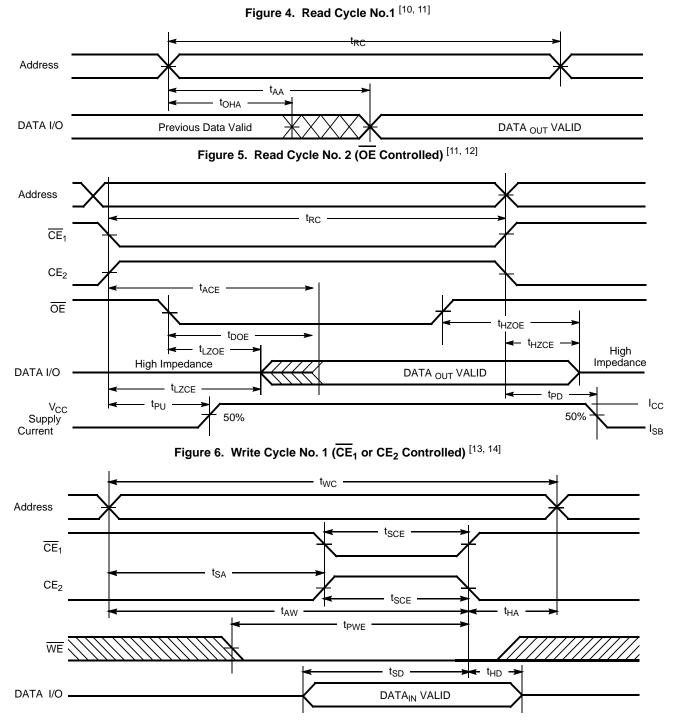
Over the Operating Range

Parameter Description		Condition	Min	Тур	Max	Unit	
V _{DR}	V _{CC} for data retention				-	-	V
I _{CCDR} Data retention curre		$\begin{array}{l} \frac{V_{CC}}{CE} = V_{DR} = 2.0 \text{ V}, \\ \overline{CE}_1 \geq V_{CC} - 0.3 \text{ V}, \text{ or} \\ CE_2 \leq 0.3 \text{ V}, \\ V_{IN} \geq V_{CC} - 0.3 \text{ V or}, \\ V_{IN} \leq 0.3 \text{ V} \end{array} \right.$ Automotive-E		-	1.5	25	μA
t _{CDR}	Chip deselect to data retention time			0	-	-	ns
t _R	Operation recovery time			70	-	-	ns

Switching Characteristics

Over the Operating Range

Parameter [6]	Description	CY6212	CY621282BN-70	
Parameter	Description	Min	Max	Unit
Read Cycle				
t _{RC}	Read cycle time	70	-	ns
t _{AA}	Address to data valid	-	70	ns
t _{OHA}	Data hold from address change	5	-	ns
t _{ACE}	CE ₁ LOW to data valid, CE ₂ HIGH to data valid	-	70	ns
t _{DOE}	OE LOW to data valid	-	35	ns
t _{LZOE}	OE LOW to Low Z ^[7]	0	-	ns
t _{HZOE}	OE HIGH to High Z ^[7, 8]	-	25	ns
t _{LZCE}	CE ₁ LOW to Low Z, CE ₂ HIGH to Low Z ^[7]	5	-	ns
t _{HZCE}	CE ₁ HIGH to High Z, CE ₂ LOW to High Z ^[7, 8]	-	25	ns
t _{PU}	CE ₁ LOW to Power-up, CE ₂ HIGH to power-up	0	-	ns
t _{PD}	CE ₁ HIGH to Power-down, CE ₂ LOW to power-down	-	70	ns
Write Cycle ^[9]				
t _{WC}	Write cycle time	70	-	ns
t _{SCE}	CE ₁ LOW to Write End, CE ₂ HIGH to write end	60	-	ns
t _{AW}	Address set-up to write end	60	-	ns
t _{HA}	Address hold from write end	0	-	ns
t _{SA}	Address set-up to write start	0	-	ns
t _{PWE}	WE pulse width	50	-	ns
t _{SD}	Data set-up to write end	30	-	ns
t _{HD}	Data Hold from write end	0	-	ns
t _{LZWE}	WE HIGH to Low Z ^[7]	5	-	ns
t _{HZWE}	WE LOW to High Z ^[7, 8]	-	25	ns


Notes

- Notes
 6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH} and 100-pF load capacitance.
 7. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} for any given device.
 8. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of <u>5 p</u>F as in (b) of Figure 2 on page 5. <u>Transition is measured ±500 mV</u> from steady-state voltage.
 9. The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, and WE LOW. CE₁ and WE must be LOW and CE₂ HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminate write

- terminates the write.

Switching Waveforms

Notes

- 10. <u>Dev</u>ice is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.
- 11. WE is HIGH for read cycle.
- 12. Address valid prior to or coincident with \overline{CE}_1 transition LOW and CE_2 transition HIGH. 13. Data I/O is high impedance if $\overline{OE} = V_{IH}$. 14. If \overline{CE}_1 goes HIGH or CE_2 goes LOW simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

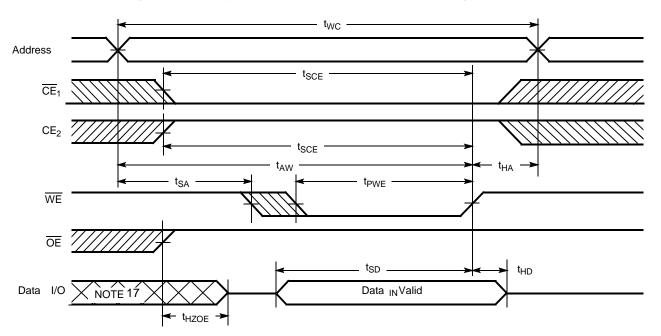
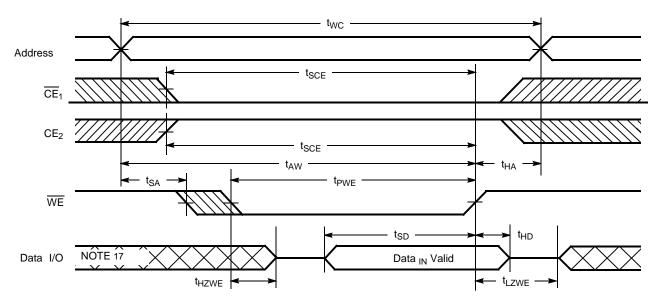
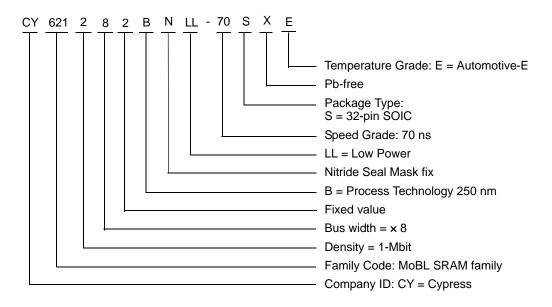



Figure 7. Write Cycle No. 2 (WE Controlled, OE HIGH during Write) ^[15, 16]

Notes

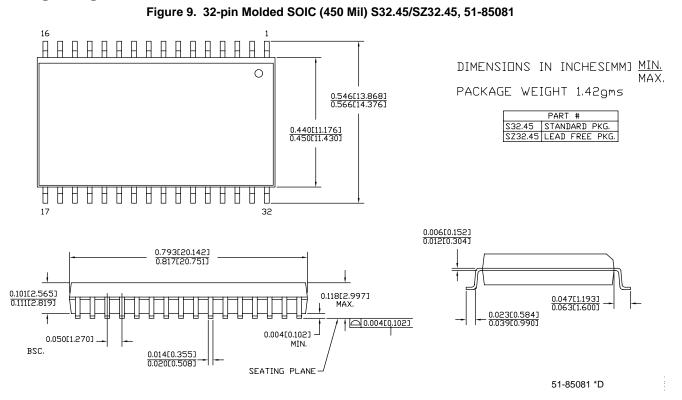
15. Data I/O is high impedance if $\overline{OE} = V_{IH}$. 16. If \overline{CE}_1 goes HIGH or CE_2 goes LOW simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state. 17. During this period the I/Os are in the output state and input signals should not be applied.

Truth Table


CE ₁	CE ₂	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	Х	Х	Х	High Z	Power-down	Standby (I _{SB})
Х	L	Х	Х	High Z	Power-down	Standby (I _{SB})
L	н	L	Н	Data out	Read	Active (I _{CC})
L	н	Х	L	Data in	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
70	CY621282BNLL-70SXE	51-85081	32-pin 450-Mil SOIC (Pb-free)	Automotive-E


Please contact your local Cypress sales representative for availability of these parts.

Ordering Code Definitions

Package Diagrams

Acronyms

Acronym Description	
CE	chip enable
CMOS complementary metal oxide semiconductor	
I/O	input/output
OE	output enable
SOIC	small outline integrated circuit
SRAM	static random access memory
TTL	transistor-transistor logic
WE	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	Mega Hertz
μA	microamperes
μS	microseconds
mA	milliamperes
mV	millivolts
mW	milliwatts
ns	nanoseconds
Ω	ohms
%	percent
pF	picofarad
V	Volts
W	Watts

Document History Page

	Document Title: CY621282BN MoBL [®] Automotive, 1-Mbit (128 K × 8) Static RAM Document Number: 001-65526					
REV.	ECN NO. Issue Date Orig. of Change Description of Change		Description of Change			
**	3115909	01/06/2011	RAME	New Data Sheet		
*A	3288690	06/21/2011	RAME	Removed the Note "For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com." and its reference in Functional Description. Updated in new template.		
*В	3538379	03/05/2012	TAVA	Updated Electrical Characteristics table Updated Switching Waveforms Updated Package Diagrams		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2011-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 001-65526 Rev. *B

Revised March 5, 2012

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by Cypress manufacturer:

Other Similar products are found below :

CY6116A-35DMB CY7C1049GN-10VXI CY7C128A-45DMB GS8161Z36DD-200I GS88237CB-200I RMLV0408EGSB-4S2#AA0 IDT70V5388S166BG IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6F2008V2E-LF70000 K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IDT71V67603S133BG IS62WV51216EBLL-45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 70V639S10BCG IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KVE33-133AXI 8602501XA 5962-3829425MUA 5962-3829430MUA 5962-8855206YA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866208UA 5962-8872502XA 5962-9062007MXA 5962-9161705MXA 70V3579S6BFI GS882Z18CD-150I M38510/28902BVA 8413202RA 5962-9161708MYA 5962-8971203XA 5962-8971202ZA 5962-8872501LA 5962-8866208YA 5962-8866205YA 5962-8866205UA 5962-8866203YA 5962-8855202YA