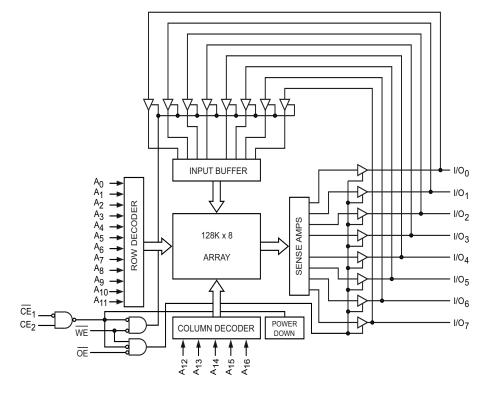


Features

- Very high speed: 45 ns
- Temperature ranges: □ Industrial: -40 °C to +85 °C
- Wide voltage range: 2.2 V to 3.6 V
- Pin compatible with CY62128DV30
- Ultra low standby power
 □ Typical standby current: 1 µA
 □ Maximum standby current: 4 µA
- Ultra low active power
 Typical active current: 1.3 mA at f = 1 MHz
- Easy memory expansion with CE₁, CE₂ and OE features
- Automatic power-down when deselected
- Complementary metal oxide semiconductor (CMOS) for optimum speed and power
- Offered in Pb-free 32-pin small outline integrated circuit (SOIC), 32-pin thin small outline package (TSOP) Type I, and 32-pin shrunk thin small outline package (STSOP) packages

Functional Description


The CY62128EV30 is a high performance CMOS static RAM module organized as 128K words by 8-bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption when addresses are not toggling. Placing the device in standby mode reduces power consumption by more than 99 percent when deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW). The eight input and output pins (I/O₀ through I/O₇) are placed in a high impedance state when the device is deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), the outputs are disabled (\overline{OE} HIGH), or a write operation is in progress (\overline{CE}_1 LOW and \overline{CE}_2 HIGH and WE LOW).

To write to the device, take chip enable (\overline{CE}_1 LOW and CE_2 HIGH) and write enable (WE) inputs LOW. Data on the eight I/O pins is then written into the location specified on the address pin (A₀ through A₁₆).

To read from the device, take chip enable (\overline{CE}_1 LOW and CE_2 HIGH) and output enable (\overline{OE}) LOW while forcing write enable (\overline{WE}) HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the I/O pins.

For a complete list of related resources, click here.

Logic Block Diagram

198 Champion Court

CY62128EV30 MoBL[®]

Contents

Pin Configuration	3
Product Portfolio	
Maximum Ratings	4
Operating Range	
Electrical Characteristics	4
Capacitance	
Thermal Resistance	
AC Test Loads and Waveforms	5
Data Retention Characteristics	6
Data Retention Waveform	6
Switching Characteristics	7
Switching Waveforms	
Truth Table	

Ordering Information	
Ordering Code Definitions1	2
Package Diagrams1	3
Acronyms1	6
Document Conventions1	6
Units of Measure1	6
Document History Page1	7
Sales, Solutions, and Legal Information2	0
Worldwide Sales and Design Support2	0
Products	0
PSoC® Solutions2	0
Cypress Developer Community2	0
Technical Support	

Pin Configuration

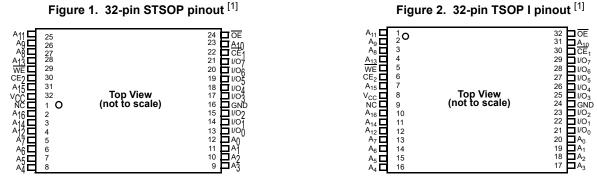


Figure 3. 32-pin SOIC pinout ^[1]

Top View

NC [A ₁₆ [A ₁₄ [A ₁₂ [A ₇ [3 4 5	32 31 30 29 28 27	V _{CC} A ₁₅ CE ₂ WE A ₁₃
A ₆	6	26	A ₈
A ₅ [A ₄ [7 8	25	□ A ₉ □ A ₁₁
A3	9	24	
A ₂	10	23	A ₁₀
A ₁	11	22	CE ₁
A ₀	12	21	I/O7
I/O0	13	20	I/O ₆
I/O ₁	14	19	I/O ₅
I/O ₂	15	18	I/O4
GND	16	17	I/O ₃

Product Portfolio

		Power Dissipation		-							
Product	Range	V _{CC} Range (V)		V) ! .		Speed Operating I _{CC} (mA)		Standby	امے ، (uA)		
					$f = 1 \text{ MHz}$ $f = f_{max}$		f = 1 MHz f = f _{max}		'SB2 (ሥ~)		
		Min	Тур [2]	Мах		Тур [2]	Max	Тур ^[2]	Max	Тур ^[2]	Мах
CY62128EV30LL	Industrial	2.2	3.0	3.6	45	1.3	2.0	11	16	1	4

Notes

1. NC pins are not connected on the die.

2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature65 °C to +150 °C
Ambient temperature with power applied55 °C to +125 °C
Supply voltage to ground potential $^{[3,\;4]}$ –0.3 V to $V_{CC(max)}$ + 0.3 V
DC voltage applied to outputs in high Z State $^{[3,\ 4]}$ 0.3 V to V_{CC(max)} + 0.3 V

DC input voltage ^[3, 4]	–0.3 V to V _{CC(max)} + 0.3 V
Output current into outputs (LOW)	
Static discharge voltage (MIL-STD-883, method 3015)	> 2001 V
Latch-up current	> 200 mA

Operating Range

Device	Range	Ambient Temperature	V_{CC} ^[5]
CY62128EV30LL	Industrial	–40 °C to +85 °C	2.2 V to 3.6 V

Electrical Characteristics

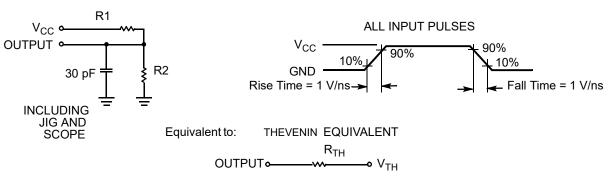
Over the Operating Range

Demonster	Description	Test O		45	11		
Parameter	Description	lest Co	onditions	Min	Тур ^[6]	Max	Unit
V _{OH}	Output HIGH voltage	I _{OH} = -0.1 mA		2.0	_	-	V
		I _{OH} = –1.0 mA, V	_{CC} <u>></u> 2.70 V	2.4	-	-	V
V _{OL}	Output LOW voltage	I _{OL} = 0.1 mA		-	-	0.4	V
		I _{OL} = 2.1 mA, V _C	<u>c ≥</u> 2.70 V	-	-	0.4	V
V _{IH}	Input HIGH voltage	V _{CC} = 2.2 V to 2.7	7 V	1.8	-	V _{CC} + 0.3 V	V
		V _{CC} = 2.7 V to 3.6	8 V	2.2	-	V _{CC} + 0.3 V	V
V _{IL}	Input LOW voltage	V _{CC} = 2.2 V to 2.	7 V	-0.3	_	0.6	V
		V _{CC} = 2.7 V to 3.6	S V	-0.3	_	0.8	V
I _{IX}	Input leakage current	$GND \leq V_I \leq V_{CC}$		-1	-	+1	μA
I _{OZ}	Output leakage current	$GND \leq V_O \leq V_{CC}$,	output disabled	-1	_	+1	μA
I _{CC}	V _{CC} operating supply current	$f = f_{max} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$	_	11	16	mA
		f = 1 MHz	I _{OUT} = 0 mA CMOS levels	_	1.3	2.0	mA
I _{SB1} ^[7]	Automatic CE power-down current – CMOS inputs	$\overline{CE}_1 \ge V_{CC} - 0.2$	V, CE ₂ < 0.2 V	-	1	4	μA
		$V_{IN} \ge V_{CC} - 0.2 V$	∕, V _{IN} <u><</u> 0.2 V				
		f = f _{max} (address	and data only),				
		f = 0 (\overline{OE} and \overline{WE}), V _{CC} = 3.60 V					
I _{SB2} ^[7]	Automatic CE power-down current – CMOS inputs	$\overline{CE}_1 \ge V_{CC} - 0.2$	V, CE ₂ < 0.2 V	-	1	4	μA
		$V_{IN} \ge V_{CC} - 0.2 V_{CC}$	/ or V _{IN} < 0.2 V,				
		f = 0, V _{CC} = 3.60	V				

Notes

- Notes
 3. V_{IL(min)} = -2.0 V for pulse durations less than 20 ns.
 4. V_{IH(max)} = V_{CC} + 0.75 V for pulse durations less than 20 ns.
 5. Full device AC operation assumes a 100 µs ramp time from 0 to V_{CC(min)} and 200 µs wait time after V_{CC} stabilization.
 6. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
 7. Chip enables (CE₁ and CE₂) must be at CMOS level to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

Capacitance


Parameter ^[8]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 \text{ °C}, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

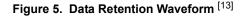
Thermal Resistance

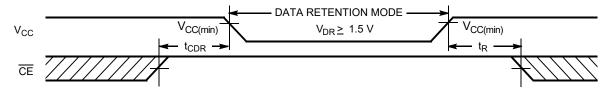
Parameter [8]	Description	Test Conditions	32-pin TSOP I	32-pin SOIC	32-pin STSOP	Unit
Θ_{JA}		Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	56.90	79.34	69.47	°C/W
Θ ^{JC}	Thermal resistance (junction to case)		14.81	18.49	13.39	°C/W

AC Test Loads and Waveforms

Figure 4. AC Test Loads and Waveforms

Parameters	2.50 V	3.0 V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V




Data Retention Characteristics

Over the Operating Range

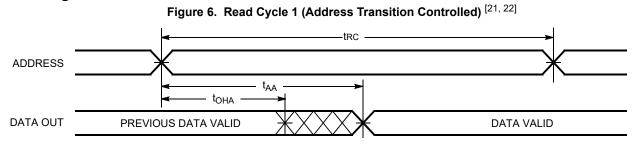
Parameter	Description	Conditions		Min	Typ ^[9]	Max	Unit
V _{DR}	V _{CC} for data retention			1.5	-	-	V
I _{CCDR} ^[10]	Data retention current	$\begin{array}{l} \underline{V_{CC}} = 1.5 \text{ V}, \\ CE_1 \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2 \text{ V}, \\ V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V} \end{array}$	Industrial	_	Ι	3	μA
t _{CDR} ^[11]	Chip deselect to data retention time			0	-	_	ns
t _R ^[12]	Operation recovery time			45	-	-	ns

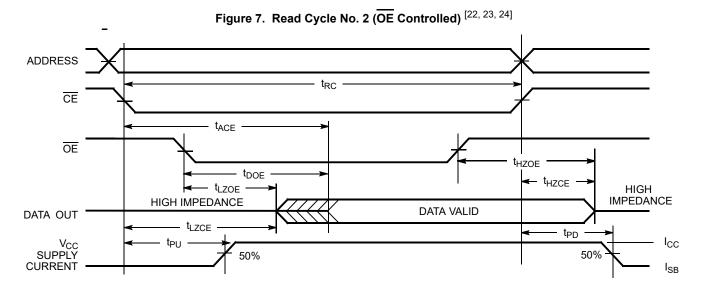
Data Retention Waveform

Notes

- 9. Typical values <u>are</u> included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25$ °C. 10. Chip enables (CE_1 and CE_2) must be at CMOS level to meet the $I_{SB1} / I_{SB2} / I_{CCDR}$ spec. Other inputs can be left floating. 11. Tested initially and after any design or process changes that may affect these parameters. 12. <u>Full</u> device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100 \ \mu s$ or <u>stable</u> at $V_{CC(min)} \ge 100 \ \mu s$. 13. CE is the logical combination of CE_1 and CE_2 . When CE_1 is LOW and CE_2 is HIGH, CE is LOW; when CE_1 is HIGH or CE_2 is LOW, CE is HIGH.

Switching Characteristics


Over the Operating Range


Parameter [14, 15]	Description	45 ns (Ir	45 ns (Industrial)		
Farameter	Description	Min	Max	– Unit	
Read Cycle		· · · · ·			
t _{RC}	Read cycle time	45	-	ns	
t _{AA}	Address to data valid	-	45	ns	
t _{OHA}	Data hold from address change	10	-	ns	
t _{ACE}	CE LOW to data valid	-	45	ns	
t _{DOE}	OE LOW to data valid	-	22	ns	
t _{LZOE}	OE LOW to low Z ^[16]	5	-	ns	
t _{HZOE}	OE HIGH to high Z ^[16, 17]	-	18	ns	
t _{LZCE}	CE LOW to low Z ^[16]	10	-	ns	
t _{HZCE}	CE HIGH to high Z ^[16, 17]	-	18	ns	
t _{PU}	CE LOW to power-up	0	-	ns	
t _{PD}	CE HIGH to power-down	-	45	ns	
Write Cycle [18, 19]	·			
t _{WC}	Write cycle time	45	-	ns	
t _{SCE}	CE LOW to write end	35	-	ns	
t _{AW}	Address setup to write end	35	-	ns	
t _{HA}	Address hold from write end	0	-	ns	
t _{SA}	Address setup to write start	0	-	ns	
t _{PWE}	WE pulse width	35	-	ns	
t _{SD}	Data setup to write end	25	-	ns	
t _{HD}	Data hold from write end	0	-	ns	
t _{HZWE}	WE LOW to high Z ^[16, 17]	_	18	ns	
t _{LZWE}	WE HIGH to low Z ^[16]	10	-	ns	

- Notes
 14. CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.
 15. Test Conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in the Figure 4 on page 5.
 16. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZWE} for any given device.
 17. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the output enter a high impedance state.
 18. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write.
 19. The minimum write pulse width for WRITE Cycle No.3 (WE Controlled, OE LOW) should be sum of t_{HZWE} and t_{SD}.

Switching Waveforms

Notes

- 20. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write.
 21. The device is continuously selected. OE, CE₁ = V_{IL}, CE₂ = V_{IH}.
- 22. $\overline{\text{WE}}$ is HIGH for read cycle.

23. \overline{CE} is the logical combination of $\overline{CE_1}$ and CE_2 . When $\overline{CE_1}$ is LOW and CE_2 is HIGH, \overline{CE} is LOW; when $\overline{CE_1}$ is HIGH or CE_2 is LOW, \overline{CE} is HIGH. 24. Address valid before or similar to $\overline{CE_1}$ transition LOW and CE_2 transition HIGH.

Switching Waveforms (continued)

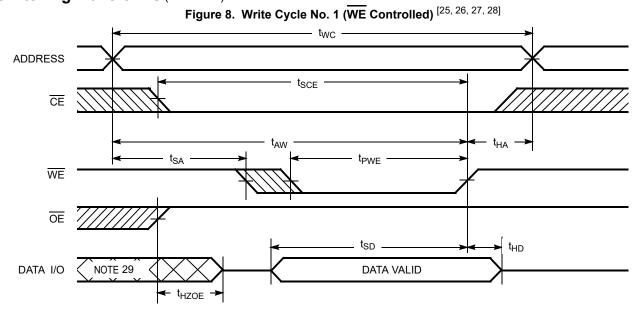
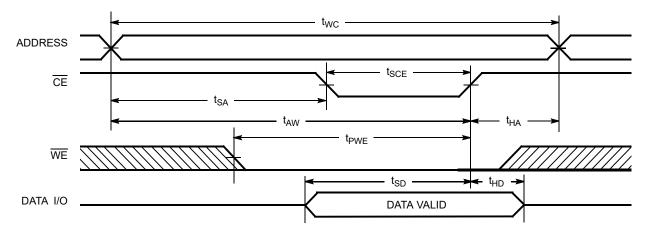
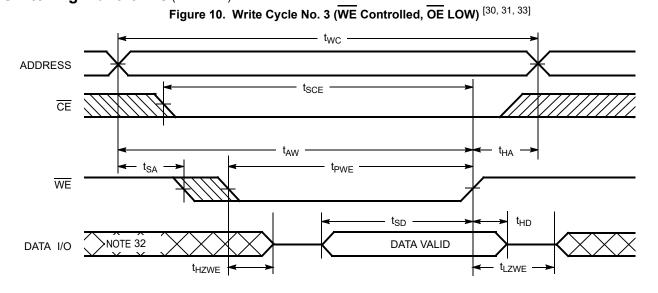



Figure 9. Write Cycle No. 2 ($\overline{\text{CE}}_1$ or CE_2 Controlled) ^[25, 26, 27, 28]



Notes

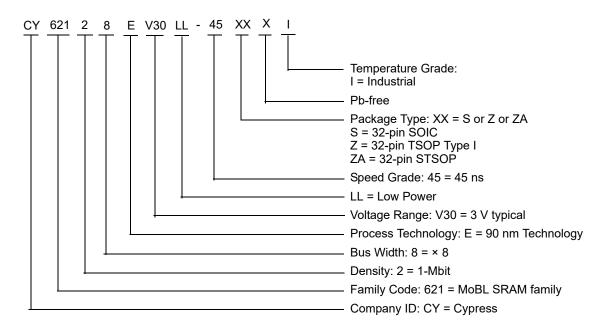
- **Notes** 25. The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE} = V_{IL}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write. 26. \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH. 27. Data I/O is high impedance if $\overline{OE} = V_{IH}$. 28. If \overline{CE}_1 goes HIGH or CE_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in high impedance state. 29. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Notes 30. CE is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH. 31. If \overline{CE}_1 goes HIGH or \overline{CE}_2 goes LOW simultaneously with WE HIGH, the output remains in high impedance state. 32. During this period, the I/Os are in output state. Do not apply input signals. 33. The minimum write pulse width for WRITE Cycle No.3 (WE Controlled, OE LOW) should be sum of t_{HZWE} and t_{SD} .

Truth Table

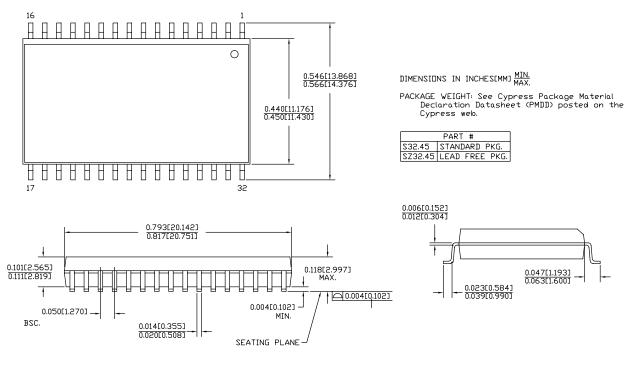
CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	X ^[34]	Х	Х	High Z	Deselect/power-down	Standby (I _{SB})
X ^[34]	L	Х	Х	High Z	Deselect/power-down	Standby (I _{SB})
L	Н	Н	L	Data out	Read	Active (I _{CC})
L	Н	L	Х	Data in	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, outputs disabled	Active (I _{CC})



Ordering Information

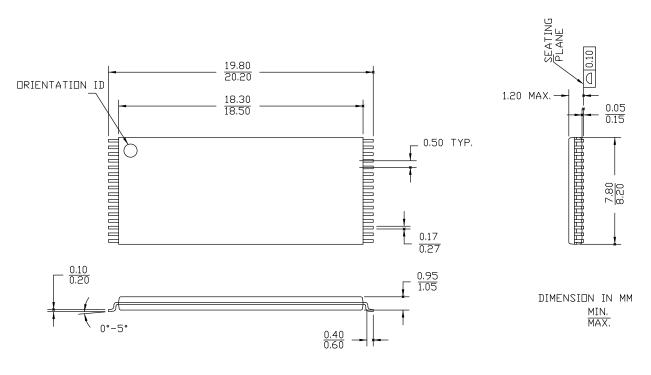
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62128EV30LL-45SXI	51-85081	32-pin 450-Mil SOIC (Pb-free)	Industrial
	CY62128EV30LL-45ZXI	51-85056	32-pin TSOP Type I (Pb-free)	
	CY62128EV30LL-45ZAXI	51-85094	32-pin STSOP (Pb-free)	

Contact your local Cypress sales representative for availability of these parts.


Ordering Code Definitions

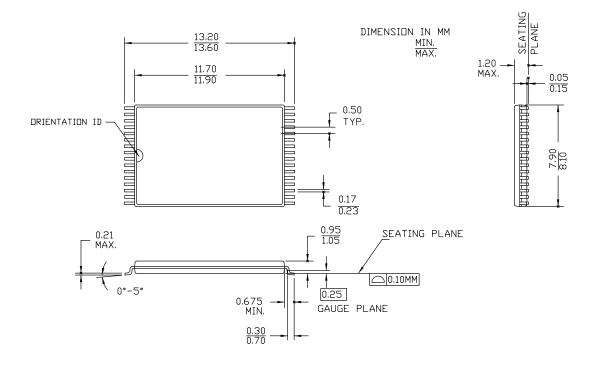
Package Diagrams

Figure 11. 32-pin Molded SOIC (450 Mils) Package Outline, 51-85081


51-85081 *E

Package Diagrams (continued)

Figure 12. 32-pin TSOP I (8 × 20 × 1.0 mm) Package Outline, 51-85056


51-85056 *G

Package Diagrams (continued)

Figure 13. 32-pin Small TSOP (8 × 13.4 × 1.2 mm) Package Outline, 51-85094

51-85094 *G

Acronyms

Acronym	Description
BHE	Byte High Enable
BLE	Byte Low Enable
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
I/O	Input/Output
OE	Output Enable
SOIC	Small Outline Integrated Circuit
SRAM	Static Random Access Memory
STSOP	Shrunk Thin Small Outline Package
TSOP	Thin Small Outline Package
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
μs	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	285473	PCI	11/03/2004	New data sheet.
*A	461631	NXR	05/12/2006	Changed status from Preliminary to Final. Removed 35 ns speed bin related information in all instances across the document. Removed "L" version (of CY62128EV30 part) related information in all instances across the document. Removed Reverse TSOP I Package related information in all instances across the document. Updated Electrical Characteristics: Changed typical value of I _{CC} parameter from 8 mA to 11 mA corresponding to Test Condition "f = f _{max} ". Changed maximum value of I _{CC} parameter from 12 mA to 16 mA corresponding to Test Condition "f = f _{max} ". Changed maximum value of I _{CC} parameter from 1.5 mA to 2.0 mA corresponding to Test Condition "f = 1 MHz". Changed typical value of I _{SB2} parameter from 0.5 μ A to 1 μ A. Changed typical value of I _{SB2} parameter from 0.5 μ A to 1 μ A. Changed typical value of I _{SB2} parameter from 50 pF to 30 pF. Updated Figure 4: Changed maximum value of I _{CCDR} parameter from 1 μ A to 3 μ A corresponding to Test Condition "L". Updated Data Retention Characteristics: Changed maximum value of I _{LZOE} parameter from 3 ns to 5 ns corresponding to 45 ns speed bin. Changed minimum value of t _{LZOE} parameter from 22 ns to 18 ns corresponding to 45 ns speed bin. Changed minimum value of t _{LZOE} parameter from 30 ns to 35 ns corresponding to 45 ns speed bin. Changed minimum value of t _{LZOE} parameter from 22 ns to 25 ns corresponding to 45 ns speed bin. Changed minimum value of t _{LZWE} parameter from 6 ns to 10 ns corresponding to 45 ns speed bin. Changed minimum value of t _{LZWE} parameter from 6 ns to 10 ns corresponding to 45 ns speed bin. Changed minimum value of t _{LZWE} parameter from 6 ns to 10 ns corresponding to 45 ns speed bin. Changed minimum value of t _{LZWE} parameter from 6 ns to 10 ns corresponding to 45 ns speed bin. Changed minimum value of t _{LZWE} parameter from 6 ns to 10 ns corresponding to 45 ns speed bin. Changed minimum value of t _{LZWE} parameter from 6 ns to 10 ns corresponding to 45 ns speed bin. Changed minimum
*B	464721	NXR	05/25/2006	Updated to new template. Updated Logic Block Diagram.
*C	1024520	VKN	05/07/2007	Added Automotive-A and Automotive-E Temperature Range related information in all instances across the document. Updated Electrical Characteristics: Added Note 7 and referred the same note in I _{SB2} parameter. Updated Data Retention Characteristics: Added Note 10 and referred the same note in I _{CCDR} parameter. Updated Ordering Information: Updated part numbers.

Document History Page (continued)

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*D	2257446	NXR	03/27/2008	Updated Maximum Ratings: Changed the Maximum rating of "Ambient Temperature with Power Applied from "55 °C to +125 °C" to "–55 °C to +125 °C". Updated to new template.
*E	2702841	VKN / PYRS	05/06/2009	Updated Switching Characteristics: Updated description of t _{PD} parameter. Updated Ordering Information: Updated part numbers.
*F	2781490	VKN	10/08/2009	Updated Ordering Information: Updated part numbers.
*G	2934428	VKN	06/03/2010	Updated Truth Table: Added Note 34 and referred the same note in "X" in " \overline{CE}_1 " and " CE_2 " columns. Updated Package Diagrams: spec 51-85081 – Changed revision from *B to *C. spec 51-85056 – Changed revision from *D to *E. spec 51-85094 – Changed revision from *D to *E. Updated to new template. Completing Sunset Review.
*H	3026548	AJU	09/12/2010	Updated Pin Configuration: Updated Figure 1. Updated Figure 2. Updated Figure 3. Updated Ordering Information: No change in part numbers. Added Ordering Code Definitions. Added Acronyms and Units of Measure. Minor edits.
*	3115909	RAME	01/06/2011	Separated Automotive and Industrial parts from this data sheet. Removed Automotive related information in all instances across the document.
*J	3292906	AJU	06/25/2011	Updated Functional Description: Removed the Note "For best practice recommendations, refer to the Cypress application note "System Design Guidelines" at http://www.cypress.com website." and its reference. Updated Package Diagrams: spec 51-85056 – Changed revision from *E to *F. spec 51-85094 – Changed revision from *E to *F. Updated to new template. Completing Sunset Review.
*К	4499499	MEMJ	09/11/2014	Updated Switching Characteristics: Added Note 19 and referred the same note in "Write Cycle". Updated Switching Waveforms: Added Note 33 and referred the same note in Figure 10. Updated Package Diagrams: spec 51-85081 – Changed revision from *C to *E. spec 51-85056 – Changed revision from *F to *G. spec 51-85094 – Changed revision from *F to *G. Updated to new template. Completing Sunset Review.

Document History Page (continued)

	ocument Title: CY62128EV30 MoBL [®] , 1-Mbit (128K × 8) Static RAM ocument Number: 38-05579				
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change	
*L	4581542	VINI	11/27/2014	Updated Functional Description: Added "For a complete list of related resources, click here." at the end. Updated Maximum Ratings: Referred Notes 3, 4 in "Supply voltage to ground potential".	
*M	4920942	VINI	09/15/2015	Updated to new template. Completing Sunset Review.	
*N	5445076	VINI	09/22/2016	Updated Thermal Resistance: Replaced "two-layer" with "four-layer" in "Test Conditions" column. Updated all values of Θ_{JA} and Θ_{JC} parameters. Updated to new template. Completing Sunset Review.	
*0	5975600	AESATMP9	11/24/2017	Updated Cypress Logo and Copyright.	
*P	6526489	VINI	03/29/2019	Updated to new template.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2004–2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software the Software the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware solely for use with Cypress hardware products of the Software solely for use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In dottion, the products described in these materials may contain design defects or errors known as erata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is n

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by Cypress manufacturer:

Other Similar products are found below :

CY6116A-35DMB CY7C1049GN-10VXI CY7C128A-45DMB GS8161Z36DD-200I GS88237CB-200I RMLV0408EGSB-4S2#AA0 IDT70V5388S166BG IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6F2008V2E-LF70000 K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IDT71V67603S133BG IS62WV51216EBLL-45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 70V639S10BCG IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KVE33-133AXI 8602501XA 5962-3829425MUA 5962-3829430MUA 5962-8855206YA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866208UA 5962-8872502XA 5962-9062007MXA 5962-9161705MXA 70V3579S6BFI GS882Z18CD-150I M38510/28902BVA 8413202RA 5962-9161708MYA 5962-8971203XA 5962-8971202ZA 5962-8872501LA 5962-8866208YA 5962-8866205YA 5962-8866205UA 5962-8866203YA 5962-8855202YA