Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

Features

■ Very high speed: 45 ns
\square Wide voltage range: 2.20 V to 3.60 V

- Temperature range:
- Industrial: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
a Automotive-A: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
■ Pin compatible with CY62148DV30
■ Ultra low standby power
口 Typical standby current: $2.5 \mu \mathrm{~A}$
\square Maximum standby current: $7 \mu \mathrm{~A}$ (Industrial)
- Ultra low active power
a Typical active current: 3.5 mA at $\mathrm{f}=1 \mathrm{MHz}$
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ features
- Automatic power down when deselected

■ Complementary metal oxide semiconductor (CMOS) for optimum speed and power

- Available in Pb-free 36-ball very fine-pitch ball grid array (VFBGA), 32-pin thin small outline package (TSOP) II, and 32-pin small outline integrated circuit (SOIC) ${ }^{[1]}$ packages

Functional Description

The CY62148EV30 is a high performance CMOS static RAM organized as 512 K words by 8 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery Life ${ }^{\text {TM }}\left(\mathrm{MoBL}^{\circledR}\right)$ in portable applications such as cellular telephones. The device also has an automatic power down feature that significantly reduces power consumption. Placing the device into standby mode reduces power consumption by more than 99 percent when deselected ($\overline{\mathrm{CE}} \mathrm{HIGH}$). The eight input and output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) are placed in a high impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation ($\overline{\mathrm{CE}}$ LOW and $\overline{\mathrm{WE}}$ LOW).
To write to the device, take Chip Enable ($\overline{\mathrm{CE}})$ and Write Enable $(\overline{\mathrm{WE}})$ inputs LOW. Data on the eight I/O pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is then written into the location specified on the address pins (A_{0} through A_{18}).
To read from the device, take Chip Enable ($\overline{\mathrm{CE}})$ and Output Enable ($\overline{\mathrm{OE}})$ LOW while forcing Write Enable (VE) HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the I/O pins.

For a complete list of related 1documentation, click here.

Logic Block Diagram

[^0]
Contents

Pin Configurations 3
Product Portfolio 3
Maximum Ratings 4
Operating Range 4
Electrical Characteristics 4
Capacitance 5
Thermal Resistance 5
AC Test Loads and Waveforms 5
Data Retention Characteristics 6
Data Retention Waveform 6
Switching Characteristics 7
Switching Waveforms 8
Truth Table 10
Ordering Information 11
Ordering Code Definitions 11
Package Diagrams 12
Acronyms 15
Document Conventions 15
Units of Measure 15
Document History Page 16
Sales, Solutions, and Legal Information 20
Worldwide Sales and Design Support 20
Products 20
PSoC® Solutions 20
Cypress Developer Community 20
Technical Support 20

Pin Configurations

VFBGA, SOIC and TSOP II pinouts are as follows. ${ }^{[2,3]}$

36-ball VFBGA pinout
 Top View

32-pin SOIC/TSOP II pinout
 Top View

$\mathrm{A}_{17}{ }_{1}$	32	V_{Cc}
$\mathrm{A}_{16} \mathrm{l}_{2}$	31	A_{15}
$\mathrm{A}_{14} \mathrm{l}^{2}$	30	A_{18}
$\mathrm{A}_{12} \mathrm{C}_{4}$	29	WE
$\mathrm{A}_{7} \mathrm{H}_{5}$	28	A_{13}
A_{6}	27	$\square^{A_{8}}$
A_{5}	26	A_{9}
A_{4}	25	$\underline{A_{11}}$
$\mathrm{A}_{3}-9$	24	OE
$\mathrm{A}_{2} \mathrm{O}_{10}$	23	A_{10}
$\mathrm{A}_{1} \mathrm{C}_{11}$	22	CE
$\mathrm{A}_{0} \mathrm{C}^{12}$	21	$1 / \mathrm{O}_{7}$
$1 / \mathrm{O}_{0} 13$	20	$1 / \mathrm{O}_{6}$
${ }^{1 / O_{1} 1^{14}}$	19	$\mathrm{I}^{1 / \mathrm{O}_{5}}$
${ }^{1 / \mathrm{O}_{2}-15}$	18	$\mathrm{I} / \mathrm{O}_{4}$
$\mathrm{V}_{\text {SS }}{ }^{16}$	17	I/O3

Product Portfolio

									wer Di	pati		
				Range		Speed (ns)		erati	$\mathrm{I}_{\mathrm{Cc}}(\mathrm{m}$		Stan	$I_{\text {SB2 }}$
							$\mathrm{f}=1$	MHz				
			Min	Typ ${ }^{[4]}$	Max		Typ ${ }^{[4]}$	Max	Typ ${ }^{[4]}$	Max	Typ ${ }^{[4]}$	Max
CY62148EV30LL	VFBGA	Industrial	2.2	3.0	3.6	45	3.5	6	15	20	2.5	7
	TSOP II	Industrial / Automotive-A										
	SOIC	Industrial	2.2	3.0	3.6	55	3.5	6	15	20	2.5	7

[^1]
Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.
Storage temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient temperature
with power applied \qquad $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply voltage to ground potential \qquad -0.3 V to $\mathrm{V}_{\mathrm{CC}(\max)}+0.3 \mathrm{~V}$
DC voltage applied to outputs
in High Z State ${ }^{[5,6]}$ \qquad -0.3 V to $\mathrm{V}_{\mathrm{CC}(\max)}+0.3 \mathrm{~V}$

DC input voltage ${ }^{[5,6]}$ \qquad -0.3 V to $\mathrm{V}_{\mathrm{CC}(\max)}+0.3 \mathrm{~V}$ Output current into outputs (LOW) 20 mA
Static discharge voltage (MIL-STD-883, Method 3015) > 2001 V Latch up current ... > 200 mA

Operating Range

Product	Range	Ambient Temperature	$\mathbf{V}_{\mathbf{c c}}{ }^{[7]}$
CY 62148 EV 30	Industrial/ $/$ Automotive-A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	2.2 V to 3.6 V

Electrical Characteristics

Over the Operating Range

Parameter	Description	Test Conditions		-45 (Industrial / Automotive-A)			-55 ${ }^{\text {8] }}$			Unit
				Min	Typ ${ }^{[9]}$	Max	Min	Typ ${ }^{\text {[9] }}$	Max	
V_{OH}	Output high voltage	$\mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$		2.0	-	-	2.0	-	-	V
		$\mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \geq 2.70 \mathrm{~V}$		2.4	-	-	2.4	-	-	V
V_{OL}	Output low voltage	$\mathrm{I}_{\mathrm{OL}}=0.1 \mathrm{~mA}$		-	-	0.4	-	-	0.2	V
		$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \geq 2.70 \mathrm{~V}$		-	-	0.4	-	-	0.4	V
V_{IH}	Input high voltage	$\mathrm{V}_{\mathrm{CC}}=2.2 \mathrm{~V}$ to 2.7 V		1.8	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	1.8	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		2.2	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	2.2	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input low voltage	$\mathrm{V}_{\mathrm{CC}}=2.2 \mathrm{~V}$ to 2.7 V	For VFBGA and TSOP II packages	-0.3	-	0.6	-	-	-	V
			For SOIC package	-	-	-	-0.3	-	$0.4{ }^{[10]}$	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	For VFBGA and TSOP II packages	-0.3	-	0.8	-	-	-	V
			For SOIC package	-	-	-	-0.3	-	$0.6{ }^{[10]}$	
I_{I}	Input leakage current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{C}}$		-1	-	+1	-1	-	+1	$\mu \mathrm{A}$
loz	Output leakage current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output disabled		-1	-	+1	-1	-	+1	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	V_{CC} operating supply current	$f=f_{\text {max }}=1 / t_{\text {RC }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}(\text { max }}, \\ & \text { lout }=0 \mathrm{~mA}, \\ & \text { CMOS levels } \end{aligned}$	-	15	20	-	15	20	mA
		$\mathrm{f}=1 \mathrm{MHz}$		-	3.5	6	-	3.5	6	
$\mathrm{ISB1}^{\text {[11] }}$	Automatic CE power down current CMOS inputs	$\begin{aligned} & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \\ & \mathrm{f}=\mathrm{f}_{\text {max }} \text { (Address and Data Only), } \\ & \mathrm{f}=0 \text { (OE and } \overline{\mathrm{WE}}), \mathrm{V}_{\mathrm{CC}}=3.60 \mathrm{~V} \end{aligned}$		-	2.5	7	-	2.5	7	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{SB} 2}{ }^{[11]}$	Automatic CE power down current CMOS inputs	$\begin{aligned} & \overline{C E} \geq V_{C C}-0.2 \mathrm{~V}, \\ & V_{\text {IN }} \geq V_{C C}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \\ & \mathrm{f}=0, \mathrm{~V}_{\mathrm{CC}}=3.60 \mathrm{~V} \end{aligned}$		-	2.5	7	-	2.5	7	$\mu \mathrm{A}$

Notes

5. $\mathrm{V}_{\mathrm{IL}(\min)}=-2.0 \mathrm{~V}$ for pulse durations less than 20 ns .
6. $\mathrm{V}_{\mathrm{IH}(\max)}=\mathrm{V}_{\mathrm{CC}}+0.75 \mathrm{~V}$ for pulse durations less than 20 ns .
7. Full device AC operation assumes a minimum of 100μ s ramp time from 0 to $V_{C C(m i n)}$ and $200 \mu s$ wait time after $V_{C C}$ stabilization.
8. SOIC package is available only in 55 ns speed bin.
9. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{cc}(\mathrm{typ})}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
10. Under DC conditions the device meets a V_{IL} of 0.8 V (for V_{cc} range of 2.7 V to 3.6 V) and 0.6 V (for $\mathrm{V}_{c c}$ range of 2.2 V to (ty 2.7 V). However, in dynamic conditions Input LOW voltage applied to the device must not be higher than 0.6 V and 0.4 V for the above ranges. This is applicable to SOIC package only.
11. Chip Enable (CE) must be HIGH at CMOS level to meet the $I_{\mathrm{SB} 1} / I_{\mathrm{SB} 2} / I_{\mathrm{CCDR}}$ spec. Other inputs can be left floating.

Capacitance

Parameter ${ }^{[12]}$	Description	Test Conditions	Max	Unit
C_{IN}	Input capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}(\mathrm{typ})}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output capacitance		10	pF

Thermal Resistance

Parameter ${ }^{[12]}$	Description	Test Conditions	36-ball VFBGA Package	32-pin TSOP II Package	32-pin SOIC Package	Unit
$\Theta_{\text {JA }}$	Thermal resistance (junction to ambient)	Still air, soldered on a 3×4.5 inch, four-layer printed circuit board	44.79	59.10	51.57	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Thermal resistance (junction to case)	23.17	12.19	25.01	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

AC Test Loads and Waveforms

Figure 1. AC Test Loads and Waveforms

Parameter	$\mathbf{2 . 5 0}$ V	3.0 V	Unit
R_{1}	16667	1103	Ω
R_{2}	15385	1554	Ω
R_{TH}	8000	645	Ω
$\mathrm{~V}_{\mathrm{TH}}$	1.20	1.75	V

Note
12. Tested initially and after any design or process changes that may affect these parameters.

Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions		Min	Typ ${ }^{\text {[13] }}$	Max	Unit
V_{DR}	$\mathrm{V}_{\text {CC }}$ for data retention			1.5	-	-	V
$\mathrm{I}_{\text {CCDR }}{ }^{[14]}$	Data retention current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, \\ & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	Industrial/ Automotive-A	-	3	8.8	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[15]}$	Chip deselect to data retention time			0	-	-	ns
$\mathrm{t}_{\mathrm{R}}{ }^{\text {[16] }}$	Operation recovery time	CY62148EV30LL-45		45	-	-	ns
				55	-	-	ns

Data Retention Waveform

Figure 2. Data Retention Waveform

[^2]
Switching Characteristics

Over the Operating Range

Parameter [17, 18]	Description	-45 (Industrial / Automotive-A)		$-55{ }^{[19]}$		Unit
		Min	Max	Min	Max	
Read Cycle						
$\mathrm{t}_{\text {RC }}$	Read cycle time	45	-	55	-	ns
t_{AA}	Address to data valid	-	45	-	55	ns
$\mathrm{t}_{\text {OHA }}$	Data hold from address change	10	-	10	-	ns
$t_{\text {ACE }}$	$\overline{\text { CE }}$ LOW to data valid	-	45	-	55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW }}$ to data valid	-	22	-	25	ns
tzzoe	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[20]}$	5	-	5	-	ns
$\mathrm{t}_{\text {HzOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}{ }^{\text {[20, 21] }}$	-	18	-	20	ns
tlzCe	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[20]}$	10	-	10	-	ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[20,21]}$	-	18	-	20	ns
tpu	$\overline{\text { CE }}$ LOW to power-up	0	-	0	-	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to power-down	-	45	-	55	ns
Write Cycle ${ }^{[22,23]}$						
${ }^{\text {t }}$ wc	Write cycle time	45	-	55	-	ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to write end	35	-	40	-	ns
$\mathrm{t}_{\text {AW }}$	Address setup to write end	35	-	40	-	ns
t_{HA}	Address hold from write end	0	-	0	-	ns
$\mathrm{t}_{\text {SA }}$	Address setup to write start	0	-	0	-	ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE pulse width }}$	35	-	40	-	ns
$\mathrm{t}_{\text {SD }}$	Data setup to write end	25	-	25	-	ns
t_{HD}	Data hold from write end	0	-	0	-	ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\mathrm{WE}}$ LOW to High Z ${ }^{\text {[20, 21] }}$	-	18	-	20	ns
tLzWE	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[20]}$	10	-	10	-	ns

[^3]Switching Waveforms
Figure 3. Read Cycle No. 1 (Address Transition Controlled) ${ }^{[24, ~ 25]}$

Figure 4. Read Cycle No. 2 ($\overline{\mathrm{OE}}$ Controlled) ${ }^{[25,26]}$

Figure 5. Write Cycle No. 1 (WE Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[27,28]}$

[^4]Switching Waveforms (continued)
Figure 6. Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[30,31]}$

Figure 7. Write Cycle No. 3 (产E Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[31,32]}$

Notes

30. Data I / O is high impedance if $\overline{O E}=V_{I U}$.
31. If CE goes HIGH simultaneously with WE HIGH, the output remains in high impedance state.
32. The minimum write cycle pulse width should be equal to the sum of tSD and tHZWE.
33. During this period, the I/Os are in output state. Do not apply input signals.

Truth Table

$\overline{\mathbf{C E}}{ }^{[34]}$	WE	OE	Inputs/Outputs	Mode	Power
H	X	X	High Z	Deselect/Power down	Standby ($\mathrm{I}_{\text {SB }}$)
L	H	L	Data out	Read	Active (I_{CC})
L	H	H	High Z	Output disabled	Active (I_{CC})
L	L	X	Data in	Write	Active (I_{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62148EV30LL-45BVI	$51-85149$	$36-$ ball VFBGA	Industrial
	CY62148EV30LL-45BVXI	$51-85149$	$36-$ ball VFBGA (Pb-free)	
	CY62148EV30LL-45BVXIT	$51-85149$	$36-$ ball VFBGA (Pb-free)	
	CY62148EV30LL-45ZSXI	$51-85095$	$32-$ pin TSOP II (Pb-free)	Industrial
5	CY62148EV30LL-55SXI	$51-85081$	32-pin SOIC (Pb-free)	

Contact your local Cypress sales representative for availability of these parts.

Ordering Code Definitions

CY

Package Diagrams

Figure 8. 36-ball VFBGA ($8.0 \times 6.0 \times 1.0 \mathrm{~mm}$) Package Outline, $51-85149$

SYMBOL	DIMENSIONS		
	MIN.	NOM.	MAX.
A	-	-	1.00
A1	0.16	-	-
D	8.00 BSC		
E	6.00 BSC		
D1	5.25 BSC		
E1	3.75 BSC		
MD	8		
ME	36		
N	0.30		
\varnothing b	0.25	0.75 BSC	
eD	0.75 BSC		
eE	0.375 BSC		
SD	$0.375 ~ B S C ~$		
SE			

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
5. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
6. "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" OR "SE" = 0 .
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" = eD/2 AND "SE" = eE/2.
7. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS.

Package Diagrams (continued)
Figure 9. 32-pin TSOP II (20.95 $\times 11.76 \times 1.0 \mathrm{~mm})$ Package Outline, 51-85095

51-85095 *D

Package Diagrams (continued)
Figure 10. 32-pin SOIC (450 Mils) Package Outline, 51-85081

Acronyms

Acronym	Description
$\overline{\mathrm{BHE}}$	Byte High Enable
$\overline{\mathrm{BLE}}$	Byte Low Enable
CMOS	Complementary Metal Oxide Semiconductor
$\overline{\overline{\mathrm{CE}}}$	Chip Enable
I / O	Input/Output
$\overline{\mathrm{OE}}$	Output Enable
SRAM	Static Random Access Memory
TSOP	Thin Small Outline Package
VFBGA	Very Fine-Pitch Ball Grid Array
$\overline{\mathrm{WE}}$	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
${ }^{\circ} \mathrm{C}$	degree Celsius
$\mu \mathrm{A}$	microampere
mA	milliampere
ns	nanosecond
pF	picofarad
V	volt
W	watt

Document History Page
Document Title: CY62148EV30 MoBL, 4-Mbit (512K $\times 8$) Static RAM
Document Number: 38-05576

Region	ECN	Submission Date	Description of Change
**	223225	05/05/2004	New data sheet.
*A	247373	07/28/2004	Changed status from Advance Information to Preliminary. Updated Operating Range: Updated Note 7 (Changed V_{CC} stabilization time from $100 \mu \mathrm{~s}$ to $200 \mu \mathrm{~s}$). Updated Data Retention Characteristics: Changed maximum value of $I_{C C D R}$ parameter from $2.0 \mu \mathrm{~A}$ to $2.5 \mu \mathrm{~A}$. Changed minimum value of t_{R} parameter from $100 \mu \mathrm{~s}$ to $\mathrm{t}_{\mathrm{RC}} \mathrm{ns}$. Updated Switching Characteristics: Changed minimum value of $\mathrm{t}_{\mathrm{OHA}}$ parameter from 6 ns to 10 ns corresponding to both 35 ns and 45 ns speed bins. Changed maximum value of $\mathrm{t}_{\text {DOE }}$ parameter from 15 ns to 18 ns corresponding to 35 ns speed bin. Changed maximum value of $t_{\text {HZOE }}, \mathrm{t}_{\text {HZWE }}$ parameters from 12 ns to 15 ns corresponding to 35 ns speed bin and 15 ns to 18 ns corresponding to 45 ns speed bin. Changed minimum value of $\mathrm{t}_{\text {SCE }}$ parameter from 25 ns to 30 ns corresponding to 35 ns speed bin and 40 ns to 35 ns corresponding to 45 ns speed bin. Changed maximum value of $\mathrm{t}_{\text {HZCE }}$ parameter from 12 ns to 18 ns corresponding to 35 ns speed bin and 15 ns to 22 ns corresponding to 45 ns speed bin. Changed minimum value of tsD parameter from 15 ns to 18 ns corresponding to 35 ns speed bin and 20 ns to 22 ns corresponding to 45 ns speed bin. Updated Ordering Information: Updated part numbers.
*B	414807	12/16/2005	Changed status from Preliminary to Final. Changed the address of Cypress Semiconductor Corporation on page 1 from "3901 North First Street" to "198 Champion Court". Updated Features: Removed 35 ns speed bin related information. Updated Pin Configurations: Changed ball C3 from DNU to NC. Removed the Note "DNU pins have to be left floating or tied to $V_{S S}$ to ensure proper application." and its reference. Added 32-pin SOIC pinout. Updated Electrical Characteristics: Removed "L" version of CY62148EV30. Changed typical value of I_{CC} parameter from 12 mA to 15 mA corresponding to Test Condition " $\mathrm{f}=\mathrm{f}_{\text {max }}$ ". Changed typical value of I_{CC} parameter from 1.5 mA to 2 mA corresponding to Test Condition " $\mathrm{f}=1 \mathrm{MHz}$ ". Changed maximum value of I_{CC} parameter from 2 mA to 2.5 mA corresponding to Test Condition " $\mathrm{f}=1 \mathrm{MHz}$ ". Changed typical value of $\mathrm{I}_{\mathrm{SB} 1}$ and $\mathrm{I}_{\mathrm{SB} 2}$ parameters from $0.7 \mu \mathrm{~A}$ to $1 \mu \mathrm{~A}$. Changed maximum value of $\mathrm{I}_{\mathrm{SB} 1}$ and $\mathrm{I}_{\mathrm{SB} 2}$ parameters from $2.5 \mu \mathrm{~A}$ to $7 \mu \mathrm{~A}$. Updated AC Test Loads and Waveforms: Changed the AC test load capacitance value from 50 pF to 30 pF . Updated Data Retention Characteristics: Changed maximum value of $\mathrm{I}_{\mathrm{CCDR}}$ parameter from $2.5 \mu \mathrm{~A}$ to $7 \mu \mathrm{~A}$. Added typical value of ICCDR parameter. Updated Switching Characteristics: Changed minimum value of $t_{\text {LZOE }}$ parameter from 3 ns to 5 ns . Changed minimum value of $t_{\text {LZCE }}$ and $t_{\text {LZWE }}$ parameters from 6 ns to 10 ns . Changed maximum value of $t_{\text {HZCE }}$ parameter from 22 ns to 18 ns . Changed minimum value of $t_{\text {PWE }}$ parameter from 30 ns to 35 ns . Changed minimum value of t_{SD} parameter from 22 ns to 25 ns .

Document History Page (continued)
Document Title: CY62148EV30 MoBL, 4-Mbit (512K $\times 8$) Static RAM Document Number: 38-05576

Region	ECN	Submission Date	Description of Change
*B (cont.)	414807	12/16/2005	Updated Ordering Information: Updated part numbers. Removed "Package Name" column. Added "Package Diagram" column. Updated Package Diagrams: spec 51-85149 - Changed revision from *B to *C. Added spec 51-85081 *B. Updated to new template.
*C	464503	05/25/2006	Added Automotive Temperature Range related information in all instances across the document. Updated Ordering Information: Updated part numbers.
*D	833080	03/09/2007	Updated Electrical Characteristics: Added details of V_{IL} parameter corresponding to Test Condition "SOIC package". Added Note 10 and referred the same note in the maximum value of $\mathrm{V}_{\text {IL }}$ parameter corresponding to SOIC package.
*E	890962	03/30/2007	Removed Automotive Temperature Range related information in all instances across the document. Updated Features: Added Note 1 and referred the same note in 32-pin SOIC package. Updated Electrical Characteristics: Added Note 11 and referred the same note in $\mathrm{I}_{\mathrm{SB} 2}$ parameter. Updated Switching Characteristics: Added values for all parameters corresponding to 55 ns Industrial Temperature Range. Updated Ordering Information: Updated part numbers.
*F	987940	04/18/2007	Updated Electrical Characteristics: Changed maximum value of V_{OL} parameter from 0.4 V to 0.2 V corresponding to Industrial Temperature Range at $\mathrm{I}_{\mathrm{OL}}=0.1 \mathrm{~mA}$. Changed maximum value of V_{IL} parameter from 0.6 V to 0.4 V corresponding to Industrial Temperature Range, SOIC package at $\mathrm{V}_{\mathrm{CC}}=2.2 \mathrm{~V}$ to 2.7 V . Updated Note 10. Updated Note 11 (made the note applicable for both $\mathrm{I}_{\mathrm{SB} 2}$ and $\mathrm{I}_{\mathrm{CCDR}}$ parameters).
*G	2548575	08/05/2008	Added Automotive-A Temperature Range related information in all instances across the document. Updated Ordering Information: Updated part numbers. Updated to new template.
*H	2769239	09/25/2009	Updated Ordering Information: Updated part numbers.
*1	2944332	06/04/2010	Updated Truth Table: Added Note 34 and referred the same note in "CE" column. Updated Package Diagrams: spec 51-85149 - Changed revision from *C to *D. spec 51-85095 - Changed revision from ** to *A. spec 51-85081 - Changed revision from *B to *C.
*J	3007403	08/13/2010	Updated Ordering Information: No change in part numbers. Added Ordering Code Definitions. Updated to new template. Completing Sunset Review.

Document History Page (continued)
Document Title: CY62148EV30 MoBL, 4-Mbit (512K $\times 8$) Static RAM Document Number: 38-05576

Region	ECN	Submission Date	Description of Change
*K	3110202	12/14/2010	Updated Logic Block Diagram. Updated Ordering Information: No change in part numbers. Updated Ordering Code Definitions.
*L	3302901	07/06/2011	Updated Functional Description: Removed "For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines." at the end. Updated Ordering Information: No change in part numbers. Updated Ordering Code Definitions. Updated Package Diagrams: spec 51-85095 - Changed revision from *A to *B. Updated to new template. Completing Sunset Review.
*M	3363097	09/07/2011	Updated Data Retention Characteristics: Removed reference of Note 12 in $\mathrm{I}_{\text {CCDR }}$ parameter. Added Note 14 and referred the same note in $\mathrm{I}_{\text {CCDR }}$ parameter. Updated Package Diagrams: spec 51-85149 - Changed revision from *D to *E. spec 51-85081 - Changed revision from *C to *D.
*N	3546715	03/09/2012	Updated Electrical Characteristics: Updated Note 10 (Removed the line "Refer to AN13470 for details".).
*O	3733339	09/04/2012	Minor text edits. Completing Sunset Review.
*P	4102967	08/23/2013	Updated Switching Characteristics: Added Note 17 and referred the same note in "Parameter" column. Updated Package Diagrams: spec 51-85081 - Changed revision from *D to *E. Updated to new template. Completing Sunset Review.
*Q	4307881	04/09/2014	Updated Switching Characteristics: Updated description of $t_{P D}$ parameter (Replaced "言E HIGH to power-up" with " $\overline{C E}$ HIGH to power-down").
*R	4576526	11/21/2014	Updated Functional Description: Added "For a complete list of related 1documentation, click here." at the end. Updated Switching Characteristics: Added Note 23 and referred the same note in "Write Cycle". Updated Switching Waveforms: Added Note 32 and referred the same note in Figure 7.
*S	4802206	06/18/2015	Updated Package Diagrams: spec 51-85149 - Changed revision from *E to *F. spec 51-85095 - Changed revision from *B to *D. Updated to new template.
*T	5234869	04/22/2016	Updated Ordering Information: Updated part numbers. Updated Ordering Code Definitions (Added Tape and Reel option). Updated Package Diagrams: spec 51-85149 - Changed revision from *F to *G. Updated to new template.

Document History Page (continued)
Document Title: CY62148EV30 MoBL, 4-Mbit (512K $\times 8$) Static RAM Document Number: 38-05576

Region	ECN	Submission Date	
${ }^{*}$ U	5480386	$10 / 18 / 2016$	Updated Thermal Resistance: Replaced "two-layer" with "four-layer" in "Test Conditions" column. Updated values of $\Theta_{\text {JA }}$ parameter and $\Theta_{\text {Jc }}$ parameter corresponding to all packages. Updated to new template. Completing Sunset Review.
${ }^{*}$ V	6045156	$01 / 25 / 2018$	Updated Ordering Information: Updated part numbers. Updated to new template.
${ }^{*} \mathrm{~W}$	6531864	6906316	$04 / 03 / 2019$
Updated to new template.			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm ${ }^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers
Automotive
Clocks \& Buffers
Interface
Internet of Things
Memory
Microcontrollers
PSoC

Power Management ICs
Touch Sensing
USB Controllers
Wireless Connectivity
cypress.com/arm cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/iot
cypress.com/memory cypress.com/mcu cypress.com/psoc cypress.com/pmic cypress.com/touch cypress.com/usb
cypress.com/wireless

PSoC ${ }^{\circledR}$ Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

[^5]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SRAM category:
Click to view products by Cypress manufacturer:

Other Similar products are found below :
CY6116A-35DMB CY7C1049GN-10VXI CY7C128A-45DMB GS8161Z36DD-200I GS88237CB-200I RMLV0408EGSB-4S2\#AA0 IDT70V5388S166BG IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6F2008V2E-LF70000 K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IDT71V67603S133BG IS62WV51216EBLL-45BLI

IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 70V639S10BCG IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KVE33-133AXI 8602501XA 5962-3829425MUA 5962-3829430MUA 5962-8855206YA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866208UA 5962-8872502XA 5962-9062007MXA 59629161705MXA 70V3579S6BFI GS882Z18CD-150I M38510/28902BVA 8413202RA 5962-9161708MYA 5962-8971203XA 59628971202ZA 5962-8872501LA 5962-8866208YA 5962-8866205YA 5962-8866205UA 5962-8866203YA 5962-8855202YA

[^0]: Note

 1. SOIC package is available only in 55 ns speed bin.
[^1]: Notes
 2. SOIC package is available only in 55 ns speed bin.
 3. NC pins are not connected on the die.
 4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}(\mathrm{typ})}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^2]: Notes
 13. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{CC}}$ (typ), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 14. Chip Enable ($\overline{\mathrm{CE}})$ must be HIGH at CMOS level to meet the $\mathrm{I}_{\mathrm{SB} 1} / I_{\mathrm{SB} 2} / I_{\mathrm{CCDR}}$ spec. Other inputs can be left floating.
 15. Tested initially and after any design or process changes that may affect these parameters.
 16. Full device $A C$ operation requires linear $V_{C C}$ ramp from $V_{D R}$ to $V_{C C(\min)} \geq 100 \mu \mathrm{~s}$ or stable at $V_{C C(m i n)} \geq 100 \mu \mathrm{~s}$.

[^3]: Notes
 17. In an earlier revision of this device, under a specific application condition, READ and WRITE operations were limited to switching of the chip enable signal as described in the Application Note AN66311. However, the issue has been fixed and in production now, and hence, this Application Note is no longer applicable. It is available for download on our website as it contains information on the date code of the parts, beyond which the fix has been in production.
 18. Test Conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less ($1 \mathrm{~V} / \mathrm{ns}$), timing reference levels of $\mathrm{V}_{\mathrm{CC}}(\mathrm{typ}) / 2$, input pulse levels of 0 to $\mathrm{V}_{\mathrm{CC}(\mathrm{typ})}$, and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ as shown in the Figure 1 on page 5.
 19. SOIC package is available only in 55 ns speed bin.
 20. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}, t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
 21. $t_{\text {HZOE }}, t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ transitions are measured when the output enter a high impedance state.
 22. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{WE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.
 23. The minimum write cycle pulse width for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}} \mathrm{LOW}$) should be equal to the sum of tsD and tHzWE.

[^4]: Notes
 24. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
 25. WE is HIGH for read cycles.
 26. Address valid before or similar to $\overline{\mathrm{CE}}$ transition LOW.
 27. Data I / O is high impedance if $\overline{O E}=V_{I H}$.
 28. If $\overline{\text { CE }}$ goes HIGH simultaneously with WE HIGH, the output remains in high impedance state.
 29. During this period, the I/Os are in output state. Do not apply input signals.

[^5]: © Cypress Semiconductor Corporation, 2004-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress

 Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

 TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

 Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

