

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

CY62167EV30 Industrial MoBL 16-Mbit (1M × 16/2M × 8) Static RAM

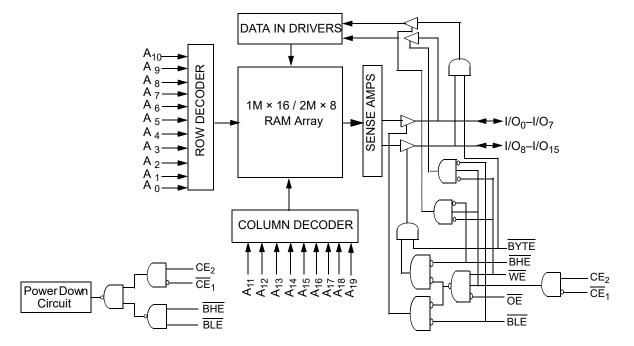
Features

- TSOP I package configurable as 1M × 16 or 2M × 8 SRAM
- Very high speed: 45 ns
- Temperature ranges □ Industrial: -40 °C to +85 °C
- Wide voltage range: 2.20 V to 3.60 V
- Ultra-low standby power
 Typical standby current: 1.5 μA
 Maximum standby current: 12 μA
- Ultra-low active power
 Typical active current: 7 mA at f = 1 MHz
- Easy memory expansion with CE₁, CE₂, and OE Features
- Automatic power-down when deselected
- CMOS for optimum speed and power
- Offered in Pb-free 48-ball VFBGA and 48-pin TSOP I packages

Functional Description

The CY62167EV30 is a high-performance CMOS static RAM organized as 1M words by 16 bits or 2M words by 8 bits. This device features an advanced circuit design that provides an ultra low active current. Ultra low active current is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power down feature that reduces power consumption by 99 percent when addresses are not toggling. Place the device in standby mode when deselected (CE₁ HIGH or CE₂ LOW or both BHE and BLE are HIGH). The input and output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: the device is deselected (CE₁ HIGH or CE₂ LOW), outputs are disabled (BHE, BLE HIGH), or a write operation is in progress (CE₁ LOW, CE₂ HIGH and WE LOW).

To write to the device, tak<u>e</u> Chip Enables (\overline{CE}_1 LOW and CE_2 <u>HIGH</u>) and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇) is written into the location specified on the address pins (A₀ through A₁₉). If Byte High Enable (BHE) is LOW, then data from the I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₉).


To read from the device, take <u>Chip</u> Enables (\overline{CE}_1 LOW and CE_2 HIGH) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appears on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. See Truth Table on page 13 for a complete description of read and write modes.

For a complete list of related documentation, click here.

San Jose, CA 95134-1709

Logic Block Diagram

Contents

Pin Configuration	4
Product Portfolio	
Maximum Ratings	5
Operating Range	
Electrical Characteristics	
Capacitance	6
Thermal Resistance	
AC Test Loads and Waveforms	6
Data Retention Characteristics	7
Data Retention Waveform	
Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering Information	14
Ordering Code Definitions	14
Package Diagrams	15
Acronyms	17
Document Conventions	17
Units of Measure	17
Document History Page	18
Sales, Solutions, and Legal Information	19
Worldwide Sales and Design Support	19
Products	19
PSoC® Solutions	19
Cypress Developer Community	19
Technical Support	19

Pin Configuration

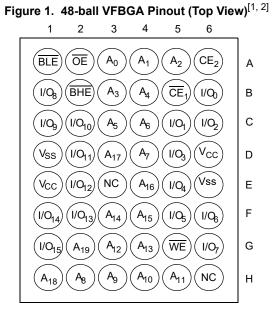
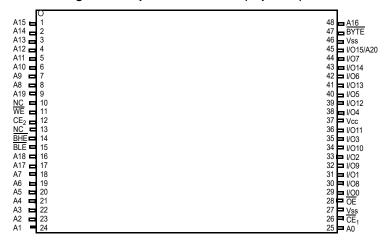



Figure 2. 48-pin TSOP I Pinout (Top View)^[2, 3]

Product Portfolio

Product Range		V _{CC} Range (V) Sp			Power Dissipation						
				Speed	Operating I _{CC} (mA)		4)	Standby I _{SB2}			
FIGUUCE	Ixalige			(ns)	f = 1	MHz	f = f	max	(μ	A)	
		Min	Typ ^[4]	Max		Typ ^[4]	Мах	Typ ^[4, 5]	Max ^[5]	Typ ^[4]	Мах
CY62167EV30LL	Industrial	2.2	3.0	3.6	45	7	9	29	35	1.5	12

Notes

1. Ball H6 for the VFBGA package can be used to upgrade to a 32M density.

2. NC pins are not connected on the die.

5. Refer to PIN#183401 for details of changes.

^{3.} The BYTE pin in the 48-pin TSOP I package has to be tied to V_{CC} to use the device as a 1M × 16 SRAM. The 48-pin TSOP I package can also be used as a 2M × 8 SRAM by tying the BYTE signal to V_{SS}. In the 2M × 8 configuration, Pin 45 is A20, while BHE, BLE and I/O₈ to I/O₁₄ pins are not used.

^{4.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature65 °C to + 150 °C
Ambient temperature with power applied–55 °C to + 125 °C
Supply voltage to ground potential $^{[6,\ 7]}$ –0.3 V to 3.9 V (V_{CC(max)} + 0.3 V)
DC voltage applied to outputs in High Z state $^{[6, 7]}$ 0.3 V to 3.9 V (V _{CC(max)} + 0.3 V)

Electrical Characteristics

Over the Operating Range

DC input voltage ^[6, 7] 0.3 V to 3.9 V (V _{CC(max)} + 0.3 V)
Output current into outputs (LOW) 20 mA
Static discharge voltage (MIL-STD-883, Method 3015) >2001 V
Latch-up current>140 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC} ^[8]
CY62167EV30LL	Industrial	–40 °C to +85 °C	2.2 V to 3.6 V

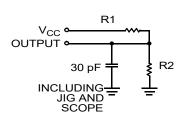
Demonstern	Description	Test Ose dit		45 ns (Industrial)			11
Parameter	Description	Test Condit	ions	Min	Typ ^[9]	Max	Unit
V _{OH}	Output HIGH voltage	2.2 <u>≤</u> V _{CC} <u>≤</u> 2.7	I _{OH} = -0.1 mA	2.0	-	-	V
		2.7 <u>≤</u> V _{CC} <u>≤</u> 3.6	I _{OH} = -1.0 mA	2.4	-	-	V
V _{OL}	Output LOW voltage	2.2 <u>≤</u> V _{CC} <u>≤</u> 2.7	I _{OL} = 0.1 mA	_	-	0.4	V
		2.7 <u>≤</u> V _{CC} <u>≤</u> 3.6	I _{OL} = 2.1 mA	-	-	0.4	V
V _{IH}	Input HIGH voltage	2.2 <u>≤</u> V _{CC} <u>≤</u> 2.7		1.8	-	V _{CC} + 0.3	V
		2.7 <u>≤</u> V _{CC} <u>≤</u> 3.6		2.2	-	V _{CC} + 0.3	V
V _{IL}	Input LOW voltage	2.2 <u>≤</u> V _{CC} <u>≤</u> 2.7		-0.3	-	0.6	V
		2.7 <u>≤</u> V _{CC} <u>≤</u> 3.6	For VFBGA package	-0.3	-	0.8	V
			For TSOP I package	-0.3	-	0.7 ^[10]	V
I _{IX}	Input leakage current	$GND \le V_I \le V_{CC}$		-1	-	+1	μA
I _{OZ}	Output leakage current	GND \leq V _O \leq V _{CC} , Output disabled		-1	-	+1	μA
I _{CC} ^[11]	V _{CC} operating supply current	$f = f_{max} = 1/t_{RC}$	$V_{CC} = V_{CC(max)}$	-	29	35	mA
		f = 1 MHz	I _{OUT} = 0 mA CMOS levels	-	7.0	9.0	mA
I _{SB1} ^[12]	Automatic power down current – CMOS inputs		/, /, y),	_	1.5	12	μA
I _{SB2} ^[12]	Automatic power down current – CMOS inputs	$\frac{CE_1 \ge V_{CC} - 0.2 \text{ V or}}{CE_2 \le 0.2 \text{ V or}}$	V _{CC} = V _{CC(max)} Temperature = 25 °C	-	1.5	3.0 ^[13]	μA
		$(\overline{BHE} \text{ and } \overline{BLE}) \ge V_{CC} - 0.2 \text{ V},$	V _{CC} = 3.0 V, Temperature = 40 °C	-	_	3.5 ^[13]	
		$ V_{\text{IN}} \ge V_{\text{CC}} - 0.2 \text{ V or} \\ V_{\text{IN}} \le 0.2 \text{ V, f} = 0 $	V _{CC} = V _{CC(max)} Temperature = 85 °C	-	-	12	

Notes

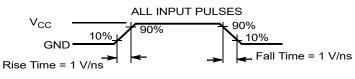
Notes
V_{IL(min)} = -2.0 V for pulse durations less than 20 ns.
V_{IH(max)} = V_{CC} + 0.75 V for pulse durations less than 20 ns.
Full Device AC operation assumes a 100 µs ramp time from 0 to V_{CC(min)} and 200 µs wait time after V_{CC} stabilization.
Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
Under DC conditions the device meets a V_{IL} of 0.8 V. However, in dynamic conditions Input LOW Voltage applied to the device must not be higher than 0.7 V. This is applicable to TSOP I package only.

11. Refer to PIN#183401 for details of changes.

12. Chip enables (\overline{CE}_1 and \overline{CE}_2), byte enables (\overline{BHE} and \overline{BLE}) and \overline{BYTE} must be tied to CMOS levels to meet the $I_{SB1}/I_{SB2}/I_{CCDR}$ spec. Other inputs can be left floating 13. This parameter is guaranteed by design.


Capacitance

Parameter ^[14]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 \text{ °C}, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF


Thermal Resistance

Parameter [14, 15]	Description	Test Conditions	48-ball VFBGA	48-pin TSOP I	Unit
Θ_{JA}		Still air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	31.50	57.99	°C/W
Θ _{JC}	Thermal resistance (junction to case)		15.75	13.42	°C/W

AC Test Loads and Waveforms

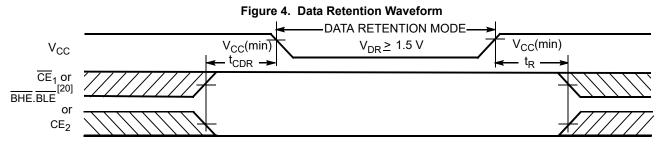
Figure 3. AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Parameters	2.2 V to 2.7 V	2.7 V to 3.6 V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Note

Tested initially and after any design or process changes that may affect these parameters.
 Refer to PIN#183401 for details of changes.



Data Retention Characteristics

Over the Operating Range

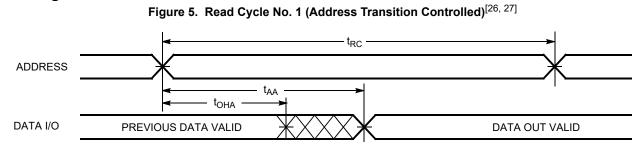
Parameter	Description	Conditions	Min	Typ ^[16]	Max	Unit
V _{DR}	V _{CC} for data retention		1.5	-	-	V
I _{CCDR} ^[17]	Data retention current	V _{CC} = 1.5 V to 3.0 V,	_	-	10	μA
		$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2 \text{ V}$				
		or (\overline{BHE} and \overline{BLE}) $\geq V_{CC} - 0.2 V$, $V_{IN} \geq V_{CC} - 0.2 V$ or $V_{IN} \leq 0.2 V$				
t _{CDR} ^[18]	Chip deselect to data retention time	-	0	_	_	-
t _R ^[19]	Operation recovery time	-	45	-	-	ns

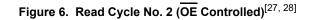
Data Retention Waveform

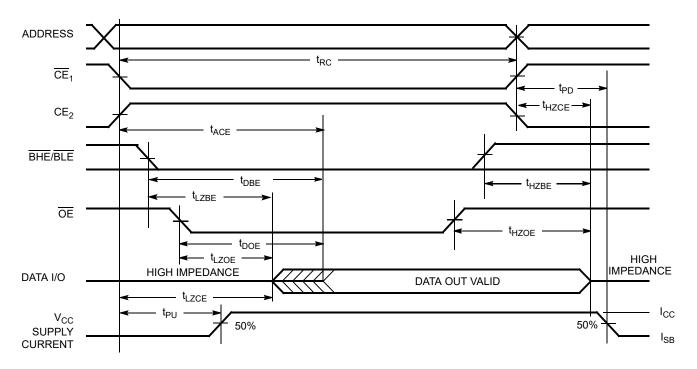
Notes

- 16. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25$ °C. 17. Chip enables (\overline{CE}_1 and CE_2), byte enables (\overline{BHE} and \overline{BLE}) and \overline{BYTE} must be tied to CMOS levels to meet the $I_{SB1} / I_{SB2} / I_{CCDR}$ spec. Other inputs can be left floating. 18. Tested initially and after any design or process changes that may affect these parameters.
- 19. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} \geq 100 µs or stable at V_{CC(min)} \geq 100 µs. 20. BHE BLE is the AND of both BHE and BLE. Deselect the chip by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics


Parameter ^[21, 22]	Description	45 ns (Ir Autom	ndustrial/ otive-A)	Unit
		Min	Max	
Read Cycle				
t _{RC}	Read cycle time	45	-	ns
t _{AA}	Address to data valid	-	45	ns
t _{OHA}	Data hold from address change	10	-	ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to data valid	-	45	ns
t _{DOE}	OE LOW to data valid	-	22	ns
t _{LZOE}	OE LOW to Low Z ^[22]	5	_	ns
t _{HZOE}	OE HIGH to High Z ^[22, 23]	-	18	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[22]	10	-	ns
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z ^[22, 23]	-	18	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to power-up	0	-	ns
t _{PD}	CE ₁ HIGH and CE ₂ LOW to power-down	-	45	ns
t _{DBE}	BLE / BHE LOW to data valid	-	45	ns
t _{LZBE}	BLE / BHE LOW to Low Z [22]	10	-	ns
t _{HZBE}	BLE / BHE HIGH to High Z ^[22, 23]	-	18	ns
Write Cycle ^[24, 25]				
t _{WC}	Write cycle time	45	_	ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	35	-	ns
t _{AW}	Address setup to write end	35	-	ns
t _{HA}	Address hold from write end	0	-	ns
t _{SA}	Address setup to write start	0	-	ns
t _{PWE}	WE pulse width	35	_	ns
t _{BW}	BLE / BHE LOW to write end	35	-	ns
t _{SD}	Data setup to write end	25	-	ns
t _{HD}	Data hold from write end	0	-	ns
t _{HZWE}	WE LOW to High Z ^[22, 23]	-	18	ns
t _{LZWE}	WE HIGH to Low Z ^[22]	10	-	ns


Notes


- 21. Test conditions for all parameters other than tristate parameters assume signal transition time of 1 V/ns, timing reference levels of $V_{CC(typ)}/2$, input pulse levels of 0 to $V_{CC(typ)}$, and output loading of the specified I_{OL}/I_{OH} as shown in Figure 3 on page 6.
- 22. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZDE} is less than t_{LZDE} , t_{HZOE} is less than t_{LZDE} , and t_{HZWE} is less than t_{LZWE} for any device.
- 23. t_{HZOE} , t_{HZCE} , t_{HZBE} , and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
- 24. The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.
- 25. The minimum pulse width for Write Cycle No. 3 (WE Controlled, OE LOW) should be equal to the sum of tsD and tHZWE.

Switching Waveforms

Notes

26. The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} , \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$.

27. WE is HIGH for read cycle. 28. Address valid before or similar to \overline{CE}_1 , \overline{BHE} , \overline{BLE} transition LOW and CE_2 transition HIGH.

Switching Waveforms (continued)

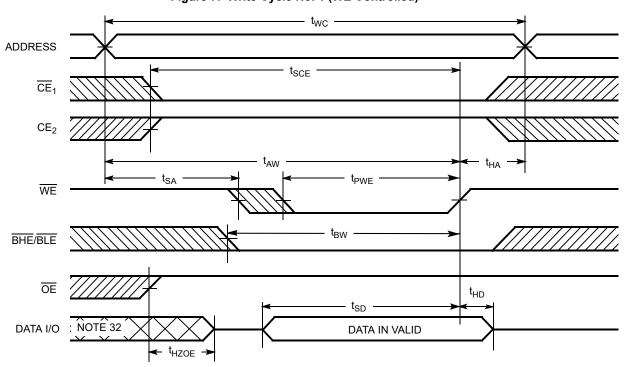
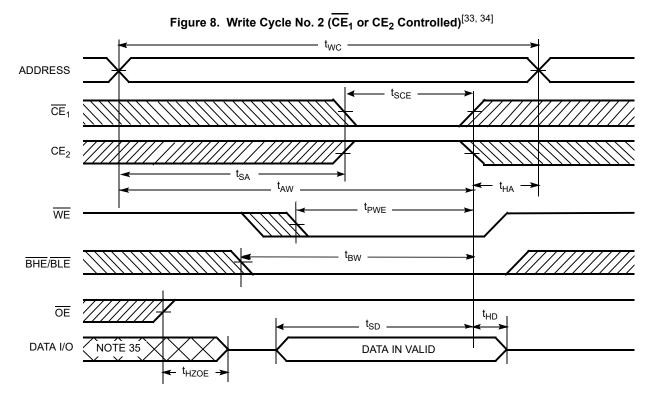


Figure 7. Write Cycle No. 1 (WE Controlled)^[29, 30, 31]

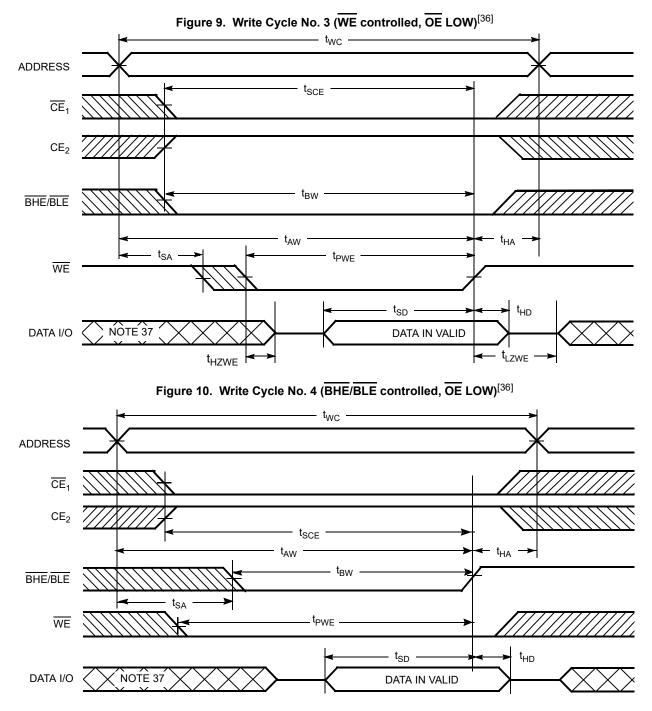
Notes


29. The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE}_1 = V_{IL}$, BHE or BLE or both = V_{IL} , and $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write. 30. Data I/O is high impedance if $\overline{OE} = V_{IH}$.

31. If \overline{CE}_1 goes HIGH and CE_2 goes LOW simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high impedance state.

32. During this period the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)


Notes

33. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.
 34. If CE₁ goes HIGH and CE₂ goes LOW simultaneously with WE = V_{IH}, the output remains in a high impedance state.

35. During this period the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

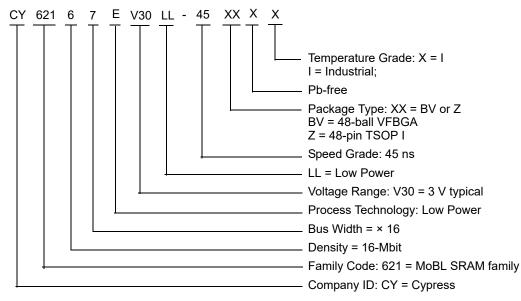
Notes_

36. If \overline{CE}_1 goes HIGH and CE_2 goes LOW simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high impedance state.

 $\ensuremath{\mathsf{37}}$. During this period the I/Os are in output state. Do not apply input signals.

Truth Table

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	X ^[38]	Х	Х	X ^[38]	X ^[38]	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[38]	L	Х	Х	X ^[38]	X ^[38]	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[38]	X ^[38]	Х	Х	Н	Н	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (I/O ₀ –I/O ₇); Data Out (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	High Z (I/O ₀ –I/O ₇); Data In (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})


Note 38. The 'X' (Don't care) state for the chip enables and Byte enables in the truth table refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62167EV30LL-45BVI	51-85150	48-ball VFBGA (6 × 8 × 1 mm), Package Code: BV48	Industrial
	CY62167EV30LL-45BVXI		48-ball VFBGA (6 × 8 × 1 mm) (Pb-free), Package Code: BZ48	
	CY62167EV30LL-45ZXI	51-85183	48-pin TSOP I (Pb-free)	

Ordering Code Definitions

Package Diagrams

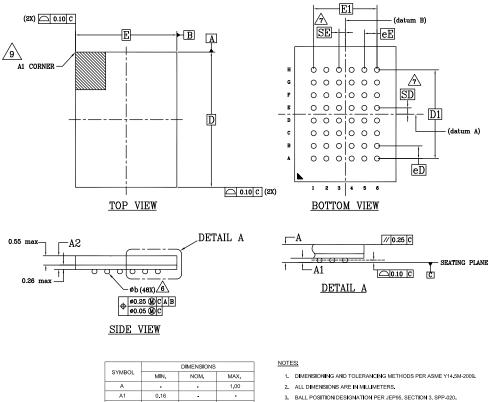
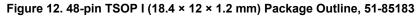


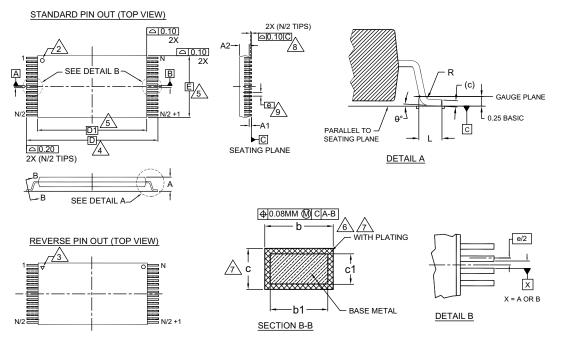
Figure 11. 48-ball VFBGA (6 × 8 × 1.0 mm) Package Outline, 51-85150

- 4. REPRESENTS THE SOLDER BALL GRID PITCH.
- 5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. n IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- A DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- 3 "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" OR "SE" = 0.

WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.

- "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
- A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.


51-85150 *I


MIN.	NOM.	MAX.	
•	-	1.00	
0.16	-	-	
-	-	0.81	
	8.00 BSC		
6.00 BSC			
5.25 BSC			
3.75 BSC			
8			
6			
48			
0.25	0.30	0.35	
0.75 BSC			
	0.75 BSC		
0.375 BSC			
	0.375 BSC		
	0.16	0.16 8.00 BSC 6.00 BSC 5.25 BSC 3.75 BSC 8 6 48 0.25 0.30 0.75 BSC 0.375 BSC 0.375 BSC	

Package Diagrams (continued)

SYMBOL	DIMENSIONS			
STWBOL	MIN.	NOM.	MAX.	
A	—	_	1.20	
A1	0.05	—	0.15	
A2	0.95	1.00	1.05	
b1	0.17	0.20	0.23	
b	0.17	0.22	0.27	
c1	0.10	_	0.16	
с	0.10	—	0.21	
D	20.00 BASIC			
D1	18.40 BASIC			
E	12.00 BASIC			
е	0.	50 BAS	IC	
L	0.50	0.60	0.70	
θ	0°	—	8	
R	0.08	_	0.20	
N		48		

NOTES:

- DIMENSIONS ARE IN MILLIMETERS (mm).
- 2. PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).
- A PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN): INK OR LASER MARK.
- A TO BE DETERMINED AT THE SEATING PLANE C. . THE SEATING PLANE IS DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.
- DIMENSIONS D1 AND E D0 NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.
- IMMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR

 PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF b DIMENSION AT MAX.

 MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON LOWER RADIUS OR

 THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD

 TO BE 0.07mm .
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- LEAD COPLANARITY SHALL BE WITHIN 0.10mm AS MEASURED FROM THE SEATING PLANE.
- DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.
- 10. JEDEC SPECIFICATION NO. REF: MO-142(D)DD.

51-85183 *F

Acronyms

Table 1. Acronyms Used in this Document

Acronym	Description
BHE	byte high enable
BLE	byte low enable
CE	chip enable
CMOS	complementary metal oxide semiconductor
I/O	input/output
OE	output enable
SRAM	static random access memory
TSOP	thin small outline package
VFBGA	very fine-pitch ball grid array
WE	write enable

Document Conventions

Units of Measure

Table 2. Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
μs	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

	Document Title: CY62167EV30 Industrial MoBL, 16-Mbit (1M × 16/2M × 8) Static RAM Document Number: 002-24706				
Rev.	ECN No.	Submission Date	Description of Change		
**	6267677	07/31/2018	New data sheet.		
*A	6294735	08/29/2018	Updated Product Portfolio: Added Note 5 and referred the same note in "Typ" and "Max" columns under "Operating I _{CC} ". Updated Electrical Characteristics: Added Note 11 and referred the same note in I _{CC} parameter. Updated Thermal Resistance: Added Note 15 and referred the same note in "Parameter" column.		
*В	6843831	04/01/2020	Updated Maximum Ratings: Updated Note references in "Supply voltage to ground potential", "DC voltage applied to outputs in High Z state", and "DC input voltage" (Replaced "9" with "6"). Updated Package Diagrams: spec 51-85150 – Changed revision from *H to *I. Updated to new template.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2018–2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or properly damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by Cypress manufacturer:

Other Similar products are found below :

CY6116A-35DMB CY7C1049GN-10VXI CY7C128A-45DMB GS8161Z36DD-200I GS88237CB-200I RMLV0408EGSB-4S2#AA0 IDT70V5388S166BG IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6F2008V2E-LF70000 K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IDT71V67603S133BG IS62WV51216EBLL-45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI IS66WVE4M16EALL-70BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KVE33-133AXI 8602501XA 5962-3829425MUA 5962-3829430MUA 5962-8855206YA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866208UA 5962-8872502XA 5962-9062007MXA 5962-9161705MXA GS882Z18CD-150I M38510/28902BVA 8413202RA 5962-9161708MYA 5962-8871203XA 5962-8971202ZA 5962-8872501LA 5962-8866208YA 5962-8866205YA 5962-8866205UA 5962-8866203YA 5962-8855202YA 5962-8751309VA 5962-8687519XA IS61WV102416DBLL-10BLI