Features

■ High speed
$\square \mathrm{t}_{\mathrm{AA}}=10 \mathrm{~ns}$

- Low active and standby currents
\square Active current: $\mathrm{I}_{\mathrm{CC}}=38 \mathrm{~mA}$ typical
\square Standby current: $I_{\text {SB2 }}=6 \mathrm{~mA}$ typical
■ Operating voltage range: 1.65 V to $2.2 \mathrm{~V}, 2.2 \mathrm{~V}$ to 3.6 V , and 4.5 V to 5.5 V
- 1.0 V data retention

■ TTL-compatible inputs and outputs
■ Pb-free 36-pin SOJ and 44-pin TSOP II packages

Functional Description

CY7C1049GN is a high-performance CMOS fast static RAM device organized as 512 K words by 8 -bits.
Data writes are performed by asserting the Chip Enable ($\overline{\mathrm{CE}}$) and Write Enable (WE) inputs LOW, while providing the data on I/ O_{0} through $\mathrm{I} / \mathrm{O}_{7}$ and address on A_{0} through A_{18} pins.
Data reads are performed by asserting the Chip Enable ($\overline{\mathrm{CE}}$) and Output Enable $(\overline{\mathrm{OE}})$ inputs LOW and providing the required address on the address lines. Read data is accessible on the I/O lines $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{7}\right)$.
All I/Os (I/O O_{0} through I/ O_{7}) are placed in a high-impedance state during the following events:
$■$ The device is deselected ($\overline{\text { CE HIGH) }}$

- The control signal $\overline{\mathrm{OE}}$ is de-asserted

The logic block diagram is on page 2 .

Product Portfolio

Product	Range	$\mathbf{V}_{\text {cc }}$ Range (V)	$\begin{gathered} \begin{array}{c} \text { Speed } \\ \text { (ns) } \end{array} \\ 10 / 15 \end{gathered}$	Power Dissipation			
				Operating $\mathrm{I}_{\mathrm{Cc}},(\mathrm{mA})$		Standby, ISB2 (mA)	
				$\mathrm{f}=\mathrm{f}_{\text {max }}$			
				Typ ${ }^{[1]}$	Max	Typ ${ }^{[1]}$	Max
CY7C1049GN18	Industrial	$1.65 \mathrm{~V}-2.2 \mathrm{~V}$	15	-	40	6	8
CY7C1049GN30		2.2 V-3.6 V	10	38	45		
CY7C1049GN		$4.5 \mathrm{~V}-5.5 \mathrm{~V}$	10	38	45		

[^0]CY7C1049GN

Logic Block Diagram - CY7C1049GN

Contents

Pin Configurations 4
Maximum Ratings 5
Operating Range 5
DC Electrical Characteristics 5
Capacitance 6
Thermal Resistance 6
AC Test Loads and Waveforms 6
Data Retention Characteristics 7
Data Retention Waveform 7
AC Switching Characteristics 8
Switching Waveforms 9
Truth Table 12
Ordering Information 13
Ordering Code Definitions 13
Package Diagrams 14
Acronyms 15
Document Conventions 15
Units of Measure 15
Document History Page 16
Sales, Solutions, and Legal Information 17
Worldwide Sales and Design Support 17
Products 17
PSoC® Solutions 17
Cypress Developer Community 17
Technical Support 17

Pin Configurations

Figure 1. 36-pin SOJ pinout ${ }^{[2]}$

$A_{0} \xlongequal{\Theta_{1}}$		36
$\mathrm{A}_{1}=2$		35
$\mathrm{A}_{2}=3$		34
$\mathrm{A}_{3}=4$		33
$\mathrm{A}_{4}=5$		32
$\overline{\mathrm{CE}}=6$		31
$\mathrm{I} / \mathrm{O}_{0}=7$		30
$1 / \mathrm{O}_{1}=8$		29
Vcc- 9		28
GND $=10$	SOJ	27
$\mathrm{I} / \mathrm{O}_{2}=11$		26
$\mathrm{l} / \mathrm{O}_{3}=12$		25
$\overline{\text { WE }}=13$		24
$\mathrm{A}_{5}=14$		23
$\mathrm{A}_{6}=15$		22
$\mathrm{A}_{7}=16$		21
A8 $=17$		20
A9 $=18$		19

Figure 2. 44-pin TSOP II pinout, Single Chip Enable ${ }^{[2]}$

Note
2. NC pins are not connected internally to the die.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient temperature with power applied	$-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$
Supply voltage on V_{CC} relative to GND ${ }^{[3]}$. 5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC voltage applied to outputs in HI-Z State ${ }^{\text {33] }}$	5 V to $\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$

DC input voltage ${ }^{[3]} \ldots .-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into outputs (in LOW state) 20 mA
Static discharge voltage
(MIL-STD-883, Method 3015) > 2001 V
Latch-up current .. $>140 \mathrm{~mA}$

Operating Range

Grade	Ambient Temperature	V $\mathbf{C C}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.65 V to 2.2 V,
		2.2 V to 3.6 V,
		4.5 V to 5.5 V

DC Electrical Characteristics

Over the operating range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Parameter	Description		Test Conditions		$10 \mathrm{~ns} / 15 \mathrm{~ns}$			Unit		
			Min	Typ ${ }^{[4]}$	Max					
V_{OH}	Output HIGH voltage	1.65 V to 2.2 V			$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$		1.4	-	-	V
		2.2 V to 2.7 V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2	-	-			
		2.7 V to 3.0 V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.2	-	-			
		3.0 V to 3.6 V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4	-	-			
		4.5 V to 5.5 V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4	-	-			
		4.5 V to 5.5 V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{CC}}-0.5^{[5]}$	-	-			
V_{OL}	Output LOW voltage	1.65 V to 2.2 V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=0.1 \mathrm{~mA}$		-	-	0.2	V		
		2.2 V to 2.7 V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$		-	-	0.4			
		2.7 V to 3.6 V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		-	-	0.4			
		4.5 V to 5.5 V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		-	-	0.4			
V_{IH}	Input HIGH voltage	1.65 V to 2.2 V	-		1.4	-	$V_{C C}+0.2{ }^{[3]}$	V		
		2.2 V to 2.7 V	-		2	-	$V_{C C}+0.3^{[3]}$			
		2.7 V to 3.6 V	-		2	-	$V_{C C}+0.3^{[3]}$			
		4.5 V to 5.5 V	-		2	-	$V_{C C}+0.5{ }^{[3]}$			
$\mathrm{V}_{\text {IL }}$	Input LOW voltage	1.65 V to 2.2 V	-		$-0.2{ }^{[3]}$	-	0.4	V		
		2.2 V to 2.7 V	-		$-0.3{ }^{[3]}$	-	0.6			
		2.7 V to 3.6 V	-		$-0.3{ }^{[3]}$	-	0.8			
		4.5 V to 5.5 V	-		$-0.5{ }^{[3]}$	-	0.8			
IIX	Input leakage current		GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$		-1	-	+1	$\mu \mathrm{A}$		
I_{Oz}	Output leakage current		$\mathrm{GND} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$, Output disabled		-1	-	+1	$\mu \mathrm{A}$		
${ }^{\text {ICC }}$	Operating supply current		$\mathrm{Max}_{\mathrm{CC}}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$, CMOS levels	$\mathrm{f}=100 \mathrm{MHz}$	-	38	45	mA		
			$\mathrm{f}=66.7 \mathrm{MHz}$	-	-	40				
$\mathrm{I}_{\text {SB1 }}$	Automatic CE power-down current - TTL inputs			$\begin{aligned} & \operatorname{Max}_{V_{C C}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$		-	-	15	mA	
$\mathrm{I}_{\text {SB2 }}$	Automatic CE power-down current - CMOS inputs		$\begin{aligned} & \operatorname{Max}_{V_{C C}}, \overline{C E} \geq V_{C C}-0.2 \mathrm{~V}, \\ & V_{I N} \geq V_{C C}-0.2 \mathrm{~V} \text { or } V_{I N} \leq 0.2 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$		-	6	8	mA		

Notes

3. $\mathrm{V}_{\mathrm{IL}(\text { min })}=-2.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}(\max)}=\mathrm{V}_{\mathrm{CC}}+2 \mathrm{~V}$ for pulse durations of less than 20 ns .
4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$ (for V_{CC} range of $1.65 \mathrm{~V}-2.2 \mathrm{~V}$), $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ (for V_{CC} range of $2.2 \mathrm{~V}-3.6 \mathrm{~V}$), and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (for V_{CC} range of $4.5 \mathrm{~V}-5.5 \mathrm{~V}$), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
5. This parameter is guaranteed by design and not tested.

Capacitance

Parameter ${ }^{[6]}$	Description	Test Conditions	36-pin SOJ	44-pin TSOP II	Unit
C_{IN}	Input capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	10	pF
$\mathrm{C}_{\text {OUT }}$	I/O capacitance	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}(\mathrm{typ})}$	10	10	pF

Thermal Resistance

Parameter ${ }^{[6]}$	Description	Test Conditions	36-pin SOJ	44-pin TSOP II	Unit
$\Theta_{\text {JA }}$	Thermal resistance (junction to ambient)	Still air, soldered on a 3 $\times 4.5$ inch, four-layer printed circuit board	59.52	68.85	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			31.48	15.97	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Theta_{\text {JC }}$	Thermal resistance (junction to case)				

AC Test Loads and Waveforms

Figure 3. AC Test Loads and Waveforms ${ }^{[7]}$

(a)

* Capacitive load consists of all components of the test environment

High-Z Characteristics:
 scope
(b)

Parameters	$\mathbf{1 . 8} \mathbf{V}$	$\mathbf{3 . 0} \mathbf{V}$	$\mathbf{5 . 0} \mathbf{V}$	Unit
R 1	1667	317	317	Ω
R2	1538	351	351	Ω
$\mathrm{~V}_{\text {TH }}$	0.9	1.5	1.5	V
$\mathrm{~V}_{\text {HIGH }}$	1.8	3	3	V

[^1]
Data Retention Characteristics

Over the operating range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Parameter	Description	Conditions	Min	Max	Unit
V_{DR}	V_{CC} for data retention		1	-	V
$\mathrm{I}_{\mathrm{CCDR}}$	Data retention current	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}^{[8]}$, $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, o r \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$	-	8	mA
$\mathrm{t}_{\mathrm{CDR}}{ }^{[9]}$	Chip deselect to data retention time		0	-	ns
$\mathrm{t}_{\mathrm{R}}{ }^{[8,9]}$	Operation recovery time	$\mathrm{V}_{\mathrm{CC}} \geq 2.2 \mathrm{~V}$	10	-	ns
		$\mathrm{V}_{\mathrm{CC}}<2.2 \mathrm{~V}$	15	-	ns

Data Retention Waveform

Figure 4. Data Retention Waveform ${ }^{[8]}$

[^2]
AC Switching Characteristics

Over the operating range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Parameter ${ }^{[10]}$	Description	10 ns		15 ns		Unit
		Min	Max	Min	Max	
Read Cycle						
t_{RC}	Read cycle time	10	-	15	-	ns
$t_{\text {AA }}$	Address to data	-	10	-	15	ns
$\mathrm{t}_{\text {OHA }}$	Data hold from address change	3	-	3	-	ns
$t_{\text {ACE }}$	$\overline{C E}$ LOW to data	-	10	-	15	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{O E}$ LOW to data	-	4.5	-	8	ns
tlizoe		0	-	0	-	ns
$\mathrm{t}_{\text {HZOE }}$		-	5	-	8	ns
t LZCE	$\overline{\mathrm{CE}}$ LOW to low impedance ${ }^{\text {[11] }}$	3	-	3	-	ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High-Z ${ }^{\text {[11] }}$	-	5	-	8	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to power-up ${ }^{[12,13]}$	0	-	0	-	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to power-down ${ }^{[12,13]}$	-	10	-	15	ns
Write Cycle ${ }^{[13,14]}$						
t_{wc}	Write cycle time	10	-	15	-	ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to write end	7	-	12	-	ns
$\mathrm{t}_{\text {AW }}$	Address setup to write end	7	-	12	-	ns
t_{HA}	Address hold from write end	0	-	0	-	ns
t_{SA}	Address setup to write start	0	-	0	-	ns
$\mathrm{t}_{\text {PWE }}$	WE pulse width	7	-	12	-	ns
$\mathrm{t}_{\text {SD }}$	Data setup to write end	5	-	8	-	ns
t_{HD}	Data hold from write end	0	-	0	-	ns
t LZWE	$\overline{\text { WE }}$ HIGH to low impedance ${ }^{[11]}$	3	-	3	-	ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High-Z ${ }^{\text {[11] }}$	-	5	-	8	ns

[^3]
Switching Waveforms

Figure 5. Read Cycle No. 1 (Address Transition Controlled) ${ }^{[15,16]}$

Figure 6. Read Cycle No. 2 ($\overline{\mathrm{OE}}$ Controlled) ${ }^{[15,16]}$

Notes
15. WE is HIGH for the read cycle.
16. Address valid prior to or coincident with $\overline{\mathrm{CE}} \mathrm{LOW}$ transition.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 1 ($\overline{C E}$ Controlled) ${ }^{[17,18]}$

Figure 8. Write Cycle No. 2 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[17,18,19]}$

[^4]Switching Waveforms (continued)
Figure 9. Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[20,21,22]}$

[^5]\qquad

Truth Table

$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{WE}}$	${\mathrm{I} / \mathbf{O}_{\mathbf{0}}-\mathrm{I} / \mathbf{O}_{\mathbf{7}}}^{\|c\|}$ Mode	Power	
H	$\mathrm{X}^{[24]}$	$\mathrm{X}^{[24]}$	$\mathrm{HI}-\mathrm{Z}$	Power down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
L	L	H	Data out	Read all bits	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	X	L	Data in	Write all bits	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	H	H	$\mathrm{HI}-Z$	Selected, outputs disabled	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$

Ordering Information

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (all Pb-free)	Operating Range
10	2.2 V-3.6 V	CY7C1049GN30-10ZSXI	51-85087	44-pin TSOP II	Industrial
		CY7C1049GN30-10ZSXIT	51-85087	44-pin TSOP II, Tape and Reel	
		CY7C1049GN30-10VXI	51-85090	36-pin Molded SOJ	
		CY7C1049GN30-10VXIT	51-85090	36-pin Molded SOJ, Tape and Reel	
	4.5 V-5.5 V	CY7C1049GN-10VXI	51-85090	36-pin Molded SOJ	
		CY7C1049GN-10VXIT	51-85090	36-pin Molded SOJ, Tape and Reel	

Ordering Code Definitions

Package Diagrams

Figure 10. 44-pin TSOP Z44-II Package Outline, 51-85087

Figure 11. 36-pin SOJ V36.4 (Molded) Package Outline, 51-85090

DIMENSIDNS IN INCHES $\frac{\text { MIN }}{\text { MAX }}$

51-85090 *G

Acronyms

Acronym	Description
$\overline{\mathrm{BHE}}$	byte high enable
$\overline{\mathrm{BLE}}$	byte low enable
$\overline{\mathrm{CE}}$	chip enable
CMOS	complementary metal oxide semiconductor
I/O	input/output
$\overline{\mathrm{OE}}$	output enable
SRAM	static random access memory
TSOP	thin small outline package
TTL	transistor-transistor logic
VFBGA	very fine-pitch ball grid array
$\overline{\mathrm{WE}}$	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
${ }^{\circ} \mathrm{C}$	Degrees Celsius
MHz	megahertz
$\mu \mathrm{A}$	microamperes
$\mu \mathrm{s}$	microseconds
mA	milliamperes
mm	millimeter
ns	nanoseconds
Ω	ohms
$\%$	percent
pF	picofarads
V	volts
W	watts

Document History Page

Document Title: CY7C1049GN, 4-Mbit (512K words $\times 8$-bit) Static RAM
Document Number: 002-10613

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	5074703	NILE	01/06/2016	New data sheet.
*A	5082587	NILE	01/12/2016	Updated Logic Block Diagram - CY7C1049GN. Updated Ordering Information: Updated part numbers.
*B	5437570	NILE	09/15/2016	Updated DC Electrical Characteristics: Removed details of V_{OH} parameter corresponding to " 2.7 V to 3.6 V " and Test Condition " $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$ ". Added details of V_{OH} parameter corresponding to " 2.7 V to 3.0 V " and Test Condition " $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$ ". Added details of V_{OH} parameter corresponding to " 3.0 V to 3.6 V " and Test Condition " $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$ ". Changed minimum value of V_{IH} parameter corresponding to " 4.5 V to 5.5 V " from 2.2 V to 2 V . Updated Note 3 (Replaced " 2 ns " with " 20 ns "). Updated Ordering Information: Updated part numbers. Updated to new template.
*C	5966829	NILE	11/14/2017	Updated Switching Waveforms: Updated Figure 6. Updated Figure 7. Updated Figure 8. Updated Figure 9. Updated to new template. Completing Sunset Review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
ARM $^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks \& Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

[^6]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SRAM category:
Click to view products by Cypress manufacturer:

Other Similar products are found below :
CY6116A-35DMB CY7C1049GN-10VXI CY7C128A-45DMB GS8161Z36DD-200I GS88237CB-200I RMLV0408EGSB-4S2\#AA0 IDT70V5388S166BG IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6F2008V2E-LF70000 K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IDT71V67603S133BG IS62WV51216EBLL-45BLI

IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 70V639S10BCG IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KVE33-133AXI 8602501XA 5962-3829425MUA 5962-3829430MUA 5962-8855206YA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866208UA 5962-8872502XA 5962-9062007MXA 59629161705MXA 70V3579S6BFI GS882Z18CD-150I M38510/28902BVA 8413202RA 5962-9161708MYA 5962-8971203XA 59628971202ZA 5962-8872501LA 5962-8866208YA 5962-8866205YA 5962-8866205UA 5962-8866203YA 5962-8855202YA

[^0]: Note

 1. Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at $\mathrm{V}_{C C}=1.8 \mathrm{~V}$ (for a $\mathrm{V}_{C C}$ range of $1.65 \mathrm{~V}-2.2 \mathrm{~V}$), $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ (for a V_{CC} range of $2.2 \mathrm{~V}-3.6 \mathrm{~V}$), and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (for a V_{CC} range of $4.5 \mathrm{~V}-5.5 \mathrm{~V}$), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
[^1]: Notes
 6. Tested initially and after any design or process changes that may affect these parameters.
 7. Full-device $A C$ operation assumes a $100-\mu \mathrm{s}$ ramp time from 0 to $\mathrm{V}_{\mathrm{CC}(\min)}$ and a $100-\mu \mathrm{s}$ wait time after V_{CC} stabilization.

[^2]: Notes
 8. Full-device operation requires linear $V_{C C}$ ramp from $V_{D R}$ to $V_{C C(\min)} \geq 100 \mu$ s or stable at $V_{C C}(\min) \geq 100 \mu s$.
 9. These parameters are guaranteed by design.

[^3]: Notes
 10. Test conditions assume a signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for $\mathrm{V}_{\mathrm{CC}} \geq 3 \mathrm{~V}$) and $\mathrm{V}_{\mathrm{CC}} / 2$ (for $\mathrm{V}_{\mathrm{CC}}<3 \mathrm{~V}$), and input pulse levels of 0 to 3 V (for $\mathrm{V}_{C C} \geq 3 \mathrm{~V}$) and 0 to $\mathrm{V}_{C C}$ (for $\mathrm{V}_{C C}<3 \mathrm{~V}$). Test conditions for the read cycle use output loading, as shown in part (a) of Figure 3 on page 6 , unless specified otherwise.
 11. $\mathrm{t}_{\text {HZOE }}, \mathrm{t}_{H Z C E}, \mathrm{t}_{\text {HZWE }}, \mathrm{t}_{\text {LZOE }}, \mathrm{t}_{\text {LZCE }}$, and $\mathrm{t}_{\mathrm{LZWE}}$ are specified with a load capacitance of 5 pF , as shown in part (b) of Figure 3 on page 6 . Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage.
 12. These parameters are guaranteed by design and are not tested.
 13. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
 14. The minimum write cycle pulse width in Write Cycle No. 2 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}} \mathrm{LOW}$) should be equal to sum of t_{DS} and $\mathrm{t}_{\text {HZWE }}$.

[^4]: Notes
 17. The internal write time of the memory is defined by the overlap of $\overline{W E}=V_{I L}, \overline{C E}=V_{I L}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write. 18. Data I / O is in $\mathrm{HI}-\mathrm{Z}$ state if $\overline{\mathrm{CE}}=\mathrm{V}_{\mathbb{I H}}$, or $\overline{\mathrm{OE}}=\mathrm{V}_{I H}$.
 19. The minimum write cycle pulse width should be equal to sum of $t_{S D}$ and $t_{H Z W E}$.

[^5]: Notes
 20. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
 21. Data I / O is in $\mathrm{HI}-\mathrm{Z}$ state if $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$, or $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
 22. Data I / O is high impedance if $\overline{O E}=V_{I H}$.
 23. During this period the I/Os are in output state. Do not apply input signals.

[^6]: © Cypress Semiconductor Corporation, 2016-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.
 TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

 Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

