2-Mbit (64 K $\times 32$) Pipelined Sync SRAM

Features

■ Registered inputs and outputs for pipelined operation

- $64 \mathrm{~K} \times 32$ common I/O architecture

■ 3.3 V core power supply
■ $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ I/O operation
■ Fast clock-to-output times口 4.0 ns (for $133-\mathrm{MHz}$ device)

- Provide high-performance 3-1-1-1 access rate
$■$ User-selectable burst counter supporting Intel ${ }^{\circledR}$ Pentium ${ }^{\circledR}$ interleaved or linear burst sequences

■ Separate processor and controller address strobes
■ Synchronous self-timed write
■ Asynchronous output enable
■ Offered in JEDEC-standard lead-free 100-pin TQFP package
■ "ZZ" Sleep Mode Option

Functional Description

The CY7C1329H SRAM integrates $64 \mathrm{~K} \times 32$ SRAM cells with advanced synchronous peripheral circuitry and a two-bit counter for internal burst operation. All synchronous inputs are gated by registers controlled by a positive-edge-triggered Clock Input (CLK). The synchronous inputs include all addresses, all data inputs, address-pipelining Chip Enable (CE_{1}), depth-expansion Chip Enables $\left(\mathrm{CE}_{2}\right.$ and CE_{3}), Burst Control inputs ($\overline{\mathrm{ADSC}}$, $\overline{\text { ADSP, and }} \overline{\text { ADV }}$), Write Enables ($\overline{B W}_{[\mathrm{A}: \mathrm{D}]}$ and BWE), and Global Write (GW). Asynchronous inputs include the Output Enable $(\overline{\mathrm{OE}})$ and the ZZ pin.
Addresses and chip enables are registered at rising edge of clock when either Address Strobe Processor (ADSP) or Address Strobe Controller (ADSC) are active. Subsequent burst addresses can be internally generated as controlled by the Advance pin (ADV).
Address, data inputs, and write controls are registered on-chip to initiate a self-timed Write cycle. This part supports Byte Write operations (see Pin Definitions on page 4 and Truth Table on page 7 for further details). Write cycles can be one to four bytes wide as controlled by the Byte Write control inputs. GW when active LOW causes all bytes to be written.
The CY7C1329H operates from a +3.3 V core power supply while all outputs operate with either $\mathrm{a}+2.5 \mathrm{~V}$ or +3.3 V supply. All inputs and outputs are JEDEC-standard JESD8-5-compatible.

Logic Block Diagram

Contents

Selection Guide 3
Pin Configurations 3
Pin Definitions 4
Functional Overview 5
Single Read Accesses 5
Single Write Accesses Initiated by ADSP 5
Single Write Accesses Initiated by ADSC 5
Burst Sequences 5
Sleep Mode 5
Interleaved Burst Address Table 6
Linear Burst Address Table 6
ZZ Mode Electrical Characteristics 6
Truth Table 7
Truth Table for Read/Write 8
Maximum Ratings 9
Operating Range 9
Electrical Characteristics 9
Capacitance 10
Thermal Resistance 10
AC Test Loads and Waveforms 10
Switching Characteristics 11
Switching Waveforms 12
Ordering Information 16
Ordering Code Definitions 16
Package Diagram 17
Acronyms 18
Document Conventions 18
Units of Measure 18
Document History Page 19
Sales, Solutions, and Legal Information 20
Worldwide Sales and Design Support 20
Products 20
PSoC® Solutions 20
Cypress Developer Community 20
Technical Support 20

Selection Guide

Description	$\mathbf{1 3 3} \mathbf{~ M H z}$	Unit
Maximum Access Time	4.0	ns
Maximum Operating Current	225	mA
Maximum CMOS Standby Current	40	mA

Pin Configurations

Figure 1. $100-\mathrm{pin}$ TQFP $(14 \times 20 \times 1.4 \mathrm{~mm})$ pinout

Pin Definitions

Name	I/O	Description
$\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}$	InputSynchronous	Address Inputs used to select one of the 64 K address locations. Sampled at the rising edge of the CLK if ADSP or ADSC is active LOW, and $\mathrm{CE}_{1}, \mathrm{CE}_{2}$, and CE_{3} are sampled active. A1:A0 feed the 2-bit counter.
$\begin{aligned} & \overline{\mathrm{BW}}_{\mathrm{A}}, \overline{\mathrm{BW}}_{\mathrm{B}}, \\ & \mathrm{BW}_{\mathrm{C}},,_{\mathrm{BW}}^{\mathrm{D}} \end{aligned}$	InputSynchronous	Byte Write Select Inputs, active LOW. Qualified with BWE to conduct Byte Writes to the SRAM. Sampled on the rising edge of CLK.
GW	InputSynchronous	Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a global Write is conducted (All bytes are written, regardless of the values on $\overline{\mathrm{BW}}_{[\mathrm{A}: \mathrm{D}]}$ and $\left.\overline{\mathrm{BWE}}\right)$.
$\overline{\text { BWE }}$	InputSynchronous	Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted LOW to conduct a Byte Write.
CLK	InputClock	Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the burst counter when $\overline{\text { ADV }}$ is asserted LOW, during a burst operation.
$\overline{\mathrm{CE}}_{1}$	InputSynchronous	Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_{2} and $\overline{\mathrm{CE}}_{3}$ to select/deselect the device. $\overline{\mathrm{ADSP}}$ is ignored if $\overline{\mathrm{CE}}_{1}$ is $\mathrm{HIGH} . \overline{\mathrm{CE}}_{1}$ is sampled only when a new external address is loaded.
CE_{2}	InputSynchronous	Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\mathrm{CE}}_{1}$ and CE_{3} to select/deselect the device. CE_{2} is sampled only when a new external address is loaded.
$\overline{\mathrm{CE}}_{3}$	InputSynchronous	Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\mathrm{CE}}_{1}$ and CE_{2} to select/deselect the device. CE_{3} is sampled only when a new external address is loaded.
$\overline{\mathrm{OE}}$	InputAsynchronous	Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during the first clock of a Read cycle when emerging from a deselected state.
$\overline{\text { ADV }}$	InputSynchronous	Advance Input signal, sampled on the rising edge of CLK, active LOW. When asserted, it automatically increments the address in a burst cycle.
$\overline{\text { ADSP }}$	InputSynchronous	Address Strobe from Processor, sampled on the rising edge of CLK, active LOW. When asserted LOW, A is captured in the address registers. A1:A0 are also loaded into the burst counter. When ADSP and $\overline{\text { ADSC }}$ are both asserted, only $\overline{\mathrm{ADSP}}$ is recognized. $\overline{\mathrm{ASDP}}$ is ignored when $\overline{\mathrm{CE}}_{1}$ is deasserted HIGH.
$\overline{\text { ADSC }}$	InputSynchronous	Address Strobe from Controller, sampled on the rising edge of CLK, active LOW. When asserted LOW, A is captured in the address registers. A1:A0 are also loaded into the burst counter. When ADSP and $\overline{\text { ADSC }}$ are both asserted, only $\overline{\text { ADSP }}$ is recognized.
ZZ	InputAsynchronous	ZZ "sleep" Input, active HIGH. This input, when HIGH places the device in a non-time-critical "sleep" condition with data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ pin has an internal pull-down.
$\begin{aligned} & \mathrm{DQ}_{\mathrm{A}}, \mathrm{DQ}_{\mathrm{B}} \\ & \mathrm{DQ} \mathrm{Q}_{\mathrm{C}}, \mathrm{DQ}_{\mathrm{D}} \end{aligned}$	I/OSynchronous	Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by "A" during the previous clock rise of the Read cycle. The direction of the pins is controlled by OE . When $\overline{\mathrm{OE}}$ is asserted LOW, the pins behave as outputs. When HIGH, DQ are placed in a tri-state condition.
$\mathrm{V}_{\text {D }}$	Power Supply	Power supply inputs to the core of the device.
$\mathrm{V}_{\text {SS }}$	Ground	Ground for the core of the device.
$\mathrm{V}_{\mathrm{DDQ}}$	I/O Power Supply	Power supply for the I/O circuitry.
$\mathrm{V}_{\text {SSQ }}$	I/O Ground	Ground for the I/O circuitry.
MODE	InputStatic	Selects Burst Order. When tied to GND selects linear burst sequence. When tied to V_{DD} or left floating selects interleaved burst sequence. This is a strap pin and should remain static during device operation. Mode Pin has an internal pull-up.
NC	-	No Connects. Not internally connected to the die. $4 \mathrm{M}, 9 \mathrm{M}, 18 \mathrm{M}, 72 \mathrm{M}, 144 \mathrm{M}, 288 \mathrm{M}, 576 \mathrm{M}$ and 1 G are address expansion pins and are not internally connected to the die.

Functional Overview

All synchronous inputs pass through input registers controlled by the rising edge of the clock. All data outputs pass through output registers controlled by the rising edge of the clock.
The CY7C1329H supports secondary cache in systems utilizing either a linear or interleaved burst sequence. The interleaved burst order supports Pentium and $1486^{\text {™ }}$ processors. The linear burst sequence is suited for processors that utilize a linear burst sequence. The burst order is user selectable, and is determined by sampling the MODE input. Accesses can be initiated with either the Processor Address Strobe (ADSP) or the Controller Address Strobe ($\overline{\mathrm{ADSC}}$). Address advancement through the burst sequence is controlled by the $\overline{\mathrm{ADV}}$ input. A two-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access.
Byte Write operations are qualified with the Byte Write Enable (BWE) and Byte Write Select ($\overline{B W}_{[A: D]}$) inputs. A Global Write Enable ($\overline{\mathrm{GW}}$) overrides all Byte Write inputs and writes data to all four bytes. All Writes are simplified with on-chip synchronous self-timed Write circuitry.
Three synchronous Chip Selects $\left(\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}, \overline{\mathrm{CE}}_{3}\right)$ and an asynchronous Output Enable (OE) provide for easy bank selection and output tri-state control. $\overline{\operatorname{ADSP}}$ is ignored if $\overline{\mathrm{CE}}_{1}$ is HIGH.

Single Read Accesses

This access is initiated when the following conditions are satisfied at clock rise: (1) $\overline{\text { ADSP }}$ or $\overline{\text { ADSC }}$ is asserted LOW, (2) $\mathrm{CE}_{1}, \mathrm{CE}_{2}, \mathrm{CE}_{3}$ are all asserted active, and (3) the Write signals ($\overline{\mathrm{GW}}, \mathrm{BWE}$) are all deasserted HIGH. $\overline{\text { ADSP }}$ is ignored if CE1 is HIGH. The address presented to the address inputs (A) is stored into the address advancement logic and the address register while being presented to the memory array. The corresponding data is allowed to propagate to the input of the output registers. At the rising edge of the next clock the data is allowed to propagate through the output register and onto the data bus within t_{CO} if $\overline{\mathrm{OE}}$ is active LOW. The only exception occurs when the SRAM is emerging from a deselected state to a selected state, its outputs are always tri-stated during the first cycle of the access. After the first cycle of the access, the outputs are controlled by the OE signal. Consecutive single Read cycles are supported. Once the SRAM is deselected at clock rise by the chip select and either ADSP or ADSC signals, its output will tri-state immediately.

Single Write Accesses Initiated by ADSP

This access is initiated when both of the following conditions are satisfied at clock rise: (1) $\overline{\mathrm{ADSP}}$ is asserted LOW, and (2) $\overline{\mathrm{CE}}_{1}$, $\mathrm{CE}_{2}, \mathrm{CE}_{3}$ are all asserted active. The address presented to A is loaded into the address register and the address advancement logic while being delivered to the RAM array. The Write signals $\left(\overline{\mathrm{GW}}, \overline{\mathrm{BWE}}\right.$, and $\left.\mathrm{BW}_{[\mathrm{A}: \mathrm{D}]}\right)$ and $\overline{\mathrm{ADV}}$ inputs are ignored during this first cycle.
ADSP-triggered Write accesses require two clock cycles to complete. If $\overline{\mathrm{GW}}$ is asserted LOW on the second clock rise, the data presented to the DQ inputs is written into the corresponding address location in the memory array. If $\overline{\mathrm{GW}}$ is HIGH , then the

Write operation is controlled by $\overline{\mathrm{BWE}}$ and $\overline{\mathrm{BW}}_{[\mathrm{A}: \mathrm{D}]}$ signals. The CY7C1329H provides Byte Write capability that is described in the Write Cycle Descriptions table. Asserting the Byte Write Enable input (BWE) with the selected Byte Write ($\overline{B W}_{[A: D]}$) input, will selectively write to only the desired bytes. Bytes not selected during a Byte Write operation will remain unaltered. A synchronous self-timed Write mechanism has been provided to simplify the Write operations.
Because the CY7C1329H is a common I/O device, the Output Enable ($\overline{\mathrm{OE}}$) must be deasserted HIGH before presenting data to the DQ inputs. Doing so will tri-state the output drivers. As a safety precaution, DQs are automatically tri-stated whenever a Write cycle is detected, regardless of the state of OE.

Single Write Accesses Initiated by ADSC

$\overline{\text { ADSC }}$ Write accesses are initiated when the following conditions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is deasserted HIGH, (3) $\mathrm{CE}_{1}, \mathrm{CE}_{2}, \mathrm{CE}_{3}$ are all asserted active, and (4) the appropriate combination of the Write inputs (GW, BWE, and $\left.\overline{B W}_{[A: D]}\right)$ are asserted active to conduct a Write to the desired byte(s). ADSC-triggered Write accesses require a single clock cycle to complete. The address presented to A is loaded into the address register and the address advancement logic while being delivered to the memory array. The ADV input is ignored during this cycle. If a global Write is conducted, the data presented to DQ is written into the corresponding address location in the memory core. If a Byte Write is conducted, only the selected bytes are written. Bytes not selected during a Byte Write operation will remain unaltered. A synchronous self-timed Write mechanism has been provided to simplify the Write operations.
Because the CY7C1329H is a common I/O device, the Output Enable ($\overline{\mathrm{OE}})$ must be deasserted HIGH before presenting data to the DQ inputs. Doing so will tri-state the output drivers. As a safety precaution, DQs are automatically tri-stated whenever a Write cycle is detected, regardless of the state of $\overline{O E}$.

Burst Sequences

The CY7C1329H provides a two-bit wraparound counter, fed by A1:A0, that implements either an interleaved or linear burst sequence. The interleaved burst sequence is designed specifically to support Intel Pentium applications. The linear burst sequence is designed to support processors that follow a linear burst sequence. The burst sequence is user selectable through the MODE input.Asserting ADV LOW at clock rise will automatically increment the burst counter to the next address in the burst sequence. Both Read and Write burst operations are supported.

Sleep Mode

The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation "sleep" mode. Two clock cycles are required to enter into or exit from this "sleep" mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the "sleep" mode are not considered valid nor is the completion of the operation guaranteed. The device must be deselected prior to entering the "sleep" mode. $\mathrm{CE}_{1}, \mathrm{CE}_{2}$, $\overline{\mathrm{CE}}_{3}, \overline{\mathrm{ADSP}}$, and $\overline{\mathrm{ADSC}}$ must remain inactive for the duration of $t_{\text {ZZREC }}$ after the $Z Z$ input returns LOW.

Interleaved Burst Address Table
(MODE = Floating or V_{DD})

First Address $\mathbf{A 1}: \mathbf{A 0}$	Second Address A1:A0	Third Address A1:A0	Fourth Address $\mathbf{A 1 : A 0}$
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

Linear Burst Address Table
(MODE = GND)

First Address A1:A0	Second Address A1:A0	Third Address A1:A0	Fourth Address A1:A0
00	01	10	11
01	10	11	00
10	11	00	01
11	00	01	10

ZZ Mode Electrical Characteristics

Parameter	Description	Test Conditions	Min	Max	Unit
$I_{\text {DDZZ }}$	Sleep mode standby current	$Z Z \geq V_{D D}-0.2 \mathrm{~V}$	-	40	mA
$\mathrm{t}_{\mathrm{ZZS}}$	Device operation to ZZ	$\mathrm{ZZ} \geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$	-	$2 \mathrm{t}_{\mathrm{CYC}}$	ns
$\mathrm{t}_{\mathrm{ZZREC}}$	$Z Z Z$ recovery time	$\mathrm{ZZ} \leq 0.2 \mathrm{~V}$	$2 \mathrm{t}_{\mathrm{CYC}}$	-	ns
$\mathrm{t}_{\mathrm{ZZI}}$	ZZ Active to sleep current	This parameter is sampled	-	$2 \mathrm{t}_{\mathrm{CYC}}$	ns
$\mathrm{t}_{\text {RZZI }}$	ZZ Inactive to exit sleep current	This parameter is sampled	0	-	ns

Truth Table

The Truth Table for part CY7C1329H is as follows. ${ }^{[1,2,3,4,5,6]}$

Next Cycle	Add. Used	$\overline{C E}_{1}$	CE_{2}	$\overline{C E}_{3}$	ZZ	ADSP	$\overline{\text { ADSC }}$	$\overline{\text { ADV }}$	WRITE	$\overline{\mathrm{OE}}$	CLK	DQ
Deselect cycle, power-down	None	H	X	X	L	X	L	X	X	X	L-H	Tristate
Deselect cycle, power-down	None	L	L	X	L	L	X	X	X	X	L-H	Tristate
Deselect cycle, power-down	None	L	X	H	L	L	X	X	X	X	L-H	Tristate
Deselect cycle, power-down	None	L	L	X	L	H	L	X	X	X	L-H	Tristate
Deselect cycle, power-down	None	L	X	H	L	H	L	X	X	X	L-H	Tristate
Snooze mode, power-down	None	X	X	X	H	X	X	X	X	X	X	Tristate
Read Cycle, Begin Burst	External	L	H	L	L	L	X	X	X	L	L-H	Q
Read Cycle, Begin Burst	External	L	H	L	L	L	X	X	X	H	L-H	Tristate
Write Cycle, Begin Burst	External	L	H	L	L	H	L	X	L	X	L-H	D
Read Cycle, Begin Burst	External	L	H	L	L	H	L	X	H	L	L-H	Q
Read Cycle, Begin Burst	External	L	H	L	L	H	L	X	H	H	L-H	Tristate
Read Cycle, Continue Burst	Next	X	X	X	L	H	H	L	H	H	L-H	Tristate
Read Cycle, Continue Burst	Next	X	X	X	L	H	H	L	H	L	L-H	Q
Read Cycle, Continue Burst	Next	H	X	X	L	X	H	L	H	L	L-H	Q
Read Cycle, Continue Burst	Next	H	X	X	L	X	H	L	H	H	L-H	Tristate
Write cycle, continue burst	Next	X	X	X	L	H	H	L	L	X	L-H	D
Write cycle, continue burst	Next	H	X	X	L	X	H	L	L	X	L-H	D
Read cycle, suspend burst	Current	X	X	X	L	H	H	H	H	L	L-H	Q
Read cycle, suspend burst	Current	X	X	X	L	H	H	H	H	H	L-H	Tristate
Read cycle, suspend burst	Current	H	X	X	L	X	H	H	H	L	L-H	Q
Read cycle, suspend burst	Current	H	X	X	L	X	H	H	H	H	L-H	Tristate
Write cycle, suspend burst	Current	X	X	X	L	H	H	H	L	X	L-H	D
Write cycle, suspend burst	Current	H	X	X	L	X	H	H	L	X	L-H	D

Notes

1. $\mathrm{X}=$ "Don't Care." H = Logic HIGH, L = Logic LOW.
2. $\overline{\text { WRITE }}=\mathrm{L}$ when any one or more Byte Write Enable signals $\left(\overline{\mathrm{BW}}_{\mathrm{A}}, \overline{\mathrm{BW}}_{\mathrm{B}}, \overline{\mathrm{BW}}_{\mathrm{C}}, \overline{\mathrm{BW}}_{\mathrm{D}}\right)$ and $\overline{\mathrm{BWE}}=\mathrm{L}$ or $\overline{\mathrm{GW}}=\mathrm{L} . \overline{\mathrm{WRITE}}=\mathrm{H}$ when all Byte Write Enable signals $\left(\overline{\mathrm{BW}}_{\mathrm{A}}\right.$, $\left.\overline{B W}_{\mathrm{B}}, \overline{\mathrm{BW}}_{\mathrm{C}}, \overline{\mathrm{BW}}_{\mathrm{D}}\right), \mathrm{BWE}, \overline{\mathrm{GW}}=\mathrm{H}$.
3. The DQ pins are controlled by the current cycle and the $\overline{\mathrm{OE}}$ signal. $\overline{\mathrm{OE}}$ is asynchronous and is not sampled with the clock
4. $\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$, and $\overline{\mathrm{CE}}_{3}$ are available only in the TQFP package.
5. The SRAM always initiates a read cycle when $\overline{A D S P}$ is asserted, regardless of the state of $\overline{G W}, \overline{B W E}$, or $\overline{B W}_{\text {[A:D. }}$. Writes may occur only on subsequent clocks after the ADSP or with the assertion of $\overline{A D S C}$. As a result, $\overline{O E}$ must be driven HIGH prior to the start of the Write cycle to allow the outputs to Tri-State. OE is a don't care for the remainder of the Write cycle.
6. $\overline{\mathrm{OE}}$ is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a Read cycle all data bits are Tri-State when $\overline{\mathrm{OE}}$ is inactive or when the device is deselected, and all data bits behave as output when $\overline{O E}$ is active (LOW).

Truth Table for Read/Write

The Truth Table for read or write for part CY7C1329H is as follows. ${ }^{[7,8]}$

Function	GW	BWE	$\overline{B W}_{\text {D }}$	$\overline{B W}_{C}$	$\overline{B W}_{B}$	$\overline{B W}_{\text {A }}$
Read	H	H	X	X	X	X
Read	H	L	H	H	H	H
Write Byte A - DQ ${ }_{\text {A }}$	H	L	H	H	H	L
Write Byte $\mathrm{B}-\mathrm{DQ}_{\mathrm{B}}$	H	L	H	H	L	H
Write Bytes B, A	H	L	H	H	L	L
Write Byte C-DQ	H	L	H	L	H	H
Write Bytes C, A	H	L	H	L	H	L
Write Bytes C, B	H	L	H	L	L	H
Write Bytes C, B, A	H	L	H	L	L	L
Write Byte D - DQ ${ }_{\text {D }}$	H	L	L	H	H	H
Write Bytes D, A	H	L	L	H	H	L
Write Bytes D, B	H	L	L	H	L	H
Write Bytes D, B, A	H	L	L	H	L	L
Write Bytes D, C	H	L	L	L	H	H
Write Bytes D, C, A	H	L	L	L	H	L
Write Bytes D, C, B	H	L	L	L	L	H
Write All Bytes	H	L	L	L	L	L
Write All Bytes	L	X	X	X	X	X

Notes

7. $X=$ "Don't Care." $H=$ Logic $H I G H, L=$ Logic LOW.
 $\left.\overline{\mathrm{BW}}_{\mathrm{B}}, \overline{\mathrm{BW}}_{\mathrm{C}}, \overline{\mathrm{BW}}_{\mathrm{D}}\right), \overline{\mathrm{BWE}}^{\mathrm{B}}, \overline{\mathrm{GW}}=\mathrm{H}$.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{DD} Relative to GND -0.5 V to +4.6 V
Supply Voltage on $\mathrm{V}_{\mathrm{DDQ}}$ Relative to $G N D \ldots . .0 .5 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{DD}}$
DC Voltage Applied to Outputs
in Tri-State
-0.5 V to $\mathrm{V}_{\mathrm{DDQ}}+0.5 \mathrm{~V}$
DC Input Voltage -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Current into Outputs (LOW) .. 20 mA
Static Discharge Voltage
(per MIL-STD-883, Method 3015) $>2001 \mathrm{~V}$
Latch-up Current .. $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	\mathbf{V}_{DD}	$\mathbf{V}_{\mathrm{DDQ}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V}-5 \% /$ $+10 \%$	$2.5 \mathrm{~V}-5 \%$ to V_{DD}

Electrical Characteristics

Over the Operating Range

Parameter ${ }^{[9,10]}$	Description	Test Conditions		Min	Max	Unit
V_{DD}	Power Supply Voltage			3.135	3.6	V
$\mathrm{V}_{\text {DDQ }}$	I/O Supply Voltage	for $3.3 \mathrm{~V} \mathrm{I/O}$		3.135	V_{DD}	V
		for $2.5 \mathrm{~V} \mathrm{I/O}$		2.375	2.625	V
V_{OH}	Output HIGH Voltage	for $3.3 \mathrm{~V} \mathrm{I/O}, \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4	-	V
		for $2.5 \mathrm{~V} \mathrm{I/O}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.0	-	V
V_{OL}	Output LOW Voltage	for $3.3 \mathrm{~V} \mathrm{I/O}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		-	0.4	V
		for $2.5 \mathrm{~V} \mathrm{I} / \mathrm{O}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$		-	0.4	V
V_{IH}	Input HIGH Voltage ${ }^{[9]}$	for $3.3 \mathrm{~V} \mathrm{I/O}$		2.0	$\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	V
		for 2.5 V I/O		1.7	$\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[9]}$	for 3.3 V I/O		-0.3	0.8	V
		for $2.5 \mathrm{~V} \mathrm{I/O}$		-0.3	0.7	V
${ }^{\text {I }}$	Input Leakage Current except ZZ and MODE	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DDQ}}$		-5	5	$\mu \mathrm{A}$
	Input Current of MODE	Input $=\mathrm{V}_{\text {SS }}$		-30	-	$\mu \mathrm{A}$
		Input $=\mathrm{V}_{\mathrm{DD}}$		-	5	$\mu \mathrm{A}$
	Input Current of ZZ	Input $=\mathrm{V}_{\text {SS }}$		-5	-	$\mu \mathrm{A}$
		Input $=\mathrm{V}_{\mathrm{DD}}$		-	30	$\mu \mathrm{A}$
IOz	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DDQ}}$, Output Disabled		-5	5	$\mu \mathrm{A}$
I_{DD}	V_{DD} Operating Supply Current	$\begin{aligned} & V_{\text {DD }}=\mathrm{Max}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{CYC}} \end{aligned}$	7.5-ns cycle, 133 MHz	-	225	mA
$\mathrm{l}_{\text {SB1 }}$	Automatic CS Power-down Current - TTL Inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Max, Device Deselected, } \\ & \mathrm{V}_{I N} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{CYC}} \end{aligned}$	7.5-ns cycle, 133 MHz	-	90	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CS Power-down Current - CMOS Inputs	$\mathrm{V}_{\mathrm{DD}}=$ Max, Device Deselected, $\mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{DDQ}}-0.3 \mathrm{~V}$, $\mathrm{f}=0$	7.5-ns cycle, 133 MHz	-	40	mA

[^0]Electrical Characteristics (continued)
Over the Operating Range

Parameter ${ }^{[9,10]}$	Description	Test Conditions		Min	Max	Unit
$\mathrm{I}_{\text {SB3 }}$	Automatic CS Power-down Current - CMOS Inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Max}, \text { Device Deselected, } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{DDQ}}-0.3 \mathrm{~V}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{CY}} \end{aligned}$	7.5-ns cycle, 133 MHz	-	75	mA
$\mathrm{I}_{\text {SB4 }}$	Automatic CS Power-down Current - TTL Inputs	$\mathrm{V}_{\mathrm{DD}}=$ Max, Device Deselected, $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}, \mathrm{f}=0$	7.5-ns cycle, 133 MHz	-	45	mA

Capacitance

Parameter ${ }^{[11]}$	Description	Test Conditions	100-pin TQFP Max	Unit
C_{IN}	Input capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDQ}}=2.5 \mathrm{~V}$	5	pF
$\mathrm{C}_{\mathrm{CLK}}$	Clock input capacitance		5	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output capacitance		5	pF

Thermal Resistance

Parameter ${ }^{[11]}$	Description	Test Conditions	100-pin TQFP Package	Unit
$\Theta_{\text {JA }}$	Thermal resistance (junction to ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, per	30.32	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	EIA/JESD51	6.85	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
	Thermal resistance (junction to case)			

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms

$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$
(a)
2.5 V I/O Test Load

(a)

(b)

(c)

(c)

Note
11. Tested initially and after any design or process change that may affect these parameters.

Switching Characteristics

Over the Operating Range

Parameter [12, 13]	Description	133 MHz		Unit
		Min	Max	
tPOWER	V_{DD} (typical) to the First Access ${ }^{[14]}$	1	-	ms
Clock				
$\mathrm{t}_{\mathrm{CYC}}$	Clock Cycle Time	7.5	-	ns
t_{CH}	Clock HIGH	3.0	-	ns
t_{CL}	Clock LOW	3.0	-	ns
Output Times				
t_{CO}	Data Output Valid after CLK Rise	-	4.0	ns
$\mathrm{t}_{\mathrm{DOH}}$	Data Output Hold after CLK Rise	1.5	-	ns
$\mathrm{t}_{\text {cLZ }}$	Clock to Low $\mathrm{Z}^{[15,16,17]}$	0	-	ns
$\mathrm{t}_{\mathrm{CHZ}}$	Clock to High Z ${ }^{\text {[15, 16, 17] }}$	-	4.0	ns
$\mathrm{t}_{\text {OEV }}$	$\overline{\text { OE LOW to Output Valid }}$	-	4.5	ns
toelz	$\overline{\mathrm{OE}}$ LOW to Output Low Z ${ }^{[15,16,17]}$	0	-	ns
$\mathrm{t}_{\text {Oehz }}$	$\overline{\mathrm{OE}}$ HIGH to Output High Z ${ }^{[15,16,17]}$	-	4.0	ns
Set-up Times				
$\mathrm{t}_{\text {AS }}$	Address Set-up before CLK Rise	1.5	-	ns
$\mathrm{t}_{\text {ADS }}$	$\overline{\text { ADSC }}$, $\overline{\text { ADSP }}$ Set-up before CLK Rise	1.5	-	ns
$\mathrm{t}_{\text {ADVS }}$	$\overline{\text { ADV }}$ Set-up before CLK Rise	1.5	-	ns
twes	$\overline{\mathrm{GW}}, \overline{\mathrm{BWE}} \overline{\mathrm{BW}}_{[\mathrm{A}: \mathrm{D}]}$ Set-up before CLK Rise	1.5	-	ns
$\mathrm{t}_{\text {DS }}$	Data Input Set-up before CLK Rise	1.5	-	ns
$\mathrm{t}_{\text {CES }}$	Chip Enable Set-Up before CLK Rise	1.5	-	ns
Hold Times				
t_{AH}	Address Hold after CLK Rise	0.5	-	ns
$\mathrm{t}_{\text {ADH }}$	$\overline{\text { ADSP, }} \overline{\text { ADSC }}$ Hold after CLK Rise	0.5	-	ns
$\mathrm{t}_{\text {ADVH }}$	$\overline{\text { ADV }}$ Hold after CLK Rise	0.5	-	ns
$\mathrm{t}_{\text {WEH }}$	$\overline{\mathrm{GW}}, \overline{\mathrm{BWE}}, \overline{\mathrm{BW}}_{[\mathrm{A}: \mathrm{D}]}$ Hold after CLK Rise	0.5	-	ns
t_{DH}	Data Input Hold after CLK Rise	0.5	-	ns
$\mathrm{t}_{\text {CEH }}$	Chip Enable Hold after CLK Rise	0.5	-	ns

[^1]
Switching Waveforms

Figure 3. Read Cycle Timing ${ }^{[18]}$

Note
18. On this diagram, when $\overline{\mathrm{CE}}$ is LOW, $\overline{\mathrm{CE}}_{1}$ is LOW, CE_{2} is HIGH and $\overline{\mathrm{CE}}_{3}$ is LOW. When $\overline{\mathrm{CE}}$ is $\mathrm{HIGH}, \overline{\mathrm{CE}}_{1}$ is HIGH or CE_{2} is LOW or $\overline{\mathrm{CE}}_{3}$ is HIGH .

Switching Waveforms (continued)
Figure 4. Write Cycle Timing ${ }^{[19,20]}$

Notes
19. On this diagram, when $\overline{\mathrm{CE}}$ is LOW, $\overline{\mathrm{CE}}_{1}$ is $\mathrm{LOW}, \mathrm{CE}_{2}$ is HIGH and $\overline{\mathrm{CE}}_{3}$ is LOW . When $\overline{\mathrm{CE}}$ is HIGH, $\overline{\mathrm{CE}}_{1}$ is HIGH or CE is LOW or $\overline{\mathrm{CE}}_{3}$ is HIGH. 20. Full width Write can be initiated by either $\overline{\mathrm{GW}}$ LOW; or by $\overline{\mathrm{GW}}$ HIGH, $\overline{\mathrm{BWE}} \mathrm{LOW}$ and $\overline{\mathrm{BW}}_{[\mathrm{A}}$: D] LOW .

Switching Waveforms (continued)
Figure 5. Read/Write Cycle Timing ${ }^{[21, ~ 22, ~ 23] ~}$

[^2]Switching Waveforms (continued)
Figure 6. ZZ Mode Timing ${ }^{[24,25]}$

Notes
24. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device. 25. DQs are in High Z when exiting $Z Z$ sleep mode.

Ordering Information

Cypress offers other versions of this type of product in many different configurations and features. The following table contains only the list of parts that are currently available.
For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products or contact your local sales representative.
Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices.

Speed (MHz)	Ordering Code	Package Diagram	Package Type	Operating Range
133	CY7C1329H-133AXC	$51-85050$	$100-$ pin TQFP $(14 \times 20 \times 1.4 \mathrm{~mm})$ Pb-free	Commercial

Ordering Code Definitions

CY

Package Diagram

Figure 7. 100-pin TQFP ($14 \times 20 \times 1.4 \mathrm{~mm}$) A100RA Package Outline, 51-85050

Acronyms

Acronym	Description
$\overline{\mathrm{CE}}$	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
EIA	Electronic Industries Alliance
I/O	Input/Output
JEDEC	Joint Electron Devices Engineering Council
$\overline{\mathrm{OE}}$	Output Enable
SRAM	Static Random Access Memory
TQFP	Thin Quad Flat Pack
TTL	Transistor-Transistor Logic

Document Conventions

Units of Measure

Symbol	Unit of Measure
${ }^{\circ} \mathrm{C}$	degree Celsius
MHz	megahertz
$\mu \mathrm{A}$	microampere
mA	milliampere
mm	millimeter
ms	millisecond
mV	millivolt
nm	nanometer
ns	nanosecond
Ω	ohm
$\%$	percent
pF	picofarad
V	volt
W	watt

Document History Page

Document Title: CY7C1329H, 2-Mbit ($64 \mathrm{~K} \times 32$) Pipelined Sync SRAM Document Number: 38-05673				
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	347357	See ECN	PCI	New data sheet.
*A	424820	See ECN	RXU	Changed status from Preliminary to Final. Changed address of Cypress Semiconductor Corporation from "3901 North First Street" to " 198 Champion Court". Updated Pin Definitions (Changed Three-State to Tri-State). Updated Functional Overview (Changed Three-State to Tri-State). Updated Truth Table (Updated Note 6 (Changed Three-State to Tri-State)). Updated Maximum Ratings (Changed Three-State to Tri-State). Updated Electrical Characteristics (Updated Note 10 (Changed test condition from $\mathrm{V}_{\mathrm{IH}} \leq \mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\mathrm{IH}}<\mathrm{V}_{\mathrm{DD}}$), changed "Input Load Current except $Z Z$ and MODE" to "Input Leakage Current except ZZ and MODE"). Updated Ordering Information (Updated part numbers, replaced Package Name column with Package Diagram in the Ordering Information table). Replaced Package Diagram.
*B	433014	See ECN	NXR	Updated Features (Included $3.3 \mathrm{~V} / / \mathrm{O}$ option). Updated Functional Description (Included 3.3 V I/O option). Updated Electrical Characteristics (Included 3.3 V I/O option). Updated AC Test Loads and Waveforms (Updated Figure 2 (Included 3.3 V I/O option)). Updated Switching Characteristics (Updated Note 12 (Included 3.3 V I/O option)). Updated Ordering Information (Updated part numbers).
*C	2896585	03/20/2010	NJY	Updated Ordering Information (Removed obsolete part numbers) Updated Package Diagram.
*D	3052882	10/08/2010	NJY	Updated Ordering Information (Removed obsolete part numbers) and added Ordering Code Definitions.
*E	3293640	06/27/2011	NJY	Updated Package Diagram. Added Acronyms and Units of Measure. Updated in new template.
*F	3613761	05/10/2012	NJY	Updated Features (Removed 166 MHz frequency related information). Updated Functional Description (Removed the Note "For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com." and its reference). Updated Selection Guide (Removed 166 MHz frequency related information). Updated Pin Definitions (Removed BGA related information). Updated Operating Range (Removed Industrial Temperature Range). Updated Electrical Characteristics (Removed 166 MHz frequency related information). Updated Switching Characteristics (Removed 166 MHz frequency related information).
*G	4081869	07/30/2013	PRIT	Updated Truth Table. Updated in new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks \& Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting \& Power Control	cypress.com/go/powerpsoc
cypress.com/go/plc	
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC ${ }^{\circledR}$ Solutions
psoc.cypress.com/solutions
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Cypress Developer Community
Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

 application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

 the express written permission of Cypress.

 assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SRAM category:
Click to view products by Cypress manufacturer:

Other Similar products are found below :
CY6116A-35DMB CY7C1049GN-10VXI CY7C128A-45DMB GS8161Z36DD-200I GS88237CB-200I RMLV0408EGSB-4S2\#AA0 IDT70V5388S166BG IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6F2008V2E-LF70000 K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IDT71V67603S133BG IS62WV51216EBLL-45BLI

IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 70V639S10BCG IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KVE33-133AXI 8602501XA 5962-3829425MUA 5962-3829430MUA 5962-8855206YA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866208UA 5962-8872502XA 5962-9062007MXA 59629161705MXA 70V3579S6BFI GS882Z18CD-150I M38510/28902BVA 8413202RA 5962-9161708MYA 5962-8971203XA 59628971202ZA 5962-8872501LA 5962-8866208YA 5962-8866205YA 5962-8866205UA 5962-8866203YA 5962-8855202YA

[^0]: Notes
 9. Overshoot: $\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}<\mathrm{V}_{\mathrm{DD}}+1.5 \mathrm{~V}$ (Pulse width less than $\mathrm{t}_{\mathrm{CYC}} / 2$), undershoot: $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}>-2 \mathrm{~V}$ (Pulse width less than $\mathrm{t}_{\mathrm{CYC}} / 2$).
 10. $T_{\text {Power-up }}$: Assumes a linear ramp from 0 V to $\mathrm{V}_{\mathrm{DD}(\min)}$ within 200 ms . During this time $\mathrm{V}_{I H}<\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{DDQ}} \leq \mathrm{V}_{\mathrm{DD}}$.

[^1]: Notes
 12. Timing reference level is 1.5 V when $\mathrm{V}_{\mathrm{DDQ}}=3.3 \mathrm{~V}$ and is 1.25 V when $\mathrm{V}_{\mathrm{DDQ}}=2.5 \mathrm{~V}$.
 13. Test conditions shown in (a) ofFigure 2 on page 10 unless otherwise noted
 14. This part has a voltage regulator internally; $t_{P O W E R}$ is the time that the power needs to be supplied above $V_{D D(m i n i m u m)}$ initially before a Read or Write operation can be initiated
 15. $\mathrm{t}_{\mathrm{CHZ}}, \mathrm{t}_{\mathrm{CLZ}}, \mathrm{t}_{\mathrm{OELZ}}$, and $\mathrm{t}_{\mathrm{OEHZ}}$ are specified with AC test conditions shown in part (b) of Figure 2 on page 10 . Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage. 16. At any given voltage and temperature, $\mathrm{t}_{\mathrm{OEHZ}}$ is less than $\mathrm{t}_{\mathrm{OELZ}}$ and $\mathrm{t}_{\mathrm{CHZ}}$ is less than $\mathrm{t}_{\mathrm{CLZ}}$ to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve High Z prior to Low Z under the same system conditions.
 17. This parameter is sampled and not 100% tested.

[^2]: Notes
 21. On this diagram, when $\overline{C E}$ is LOW, $\overline{\mathrm{CE}}_{1}$ is LOW, CE_{2} is HIGH and $\overline{\mathrm{CE}}_{3}$ is LOW. When $\overline{\mathrm{CE}}$ is $\mathrm{HIGH}, \overline{\mathrm{CE}}_{1}$ is HIGH or CE 2 is LOW or $\overline{\mathrm{CE}}_{3}$ is HIGH 22. The data bus (Q) remains in High Z following a Write cycle unless an $\overline{A D S P}, \overline{A D S C}$, or $\overline{\mathrm{ADV}}$ cycle is performed.
 23. $\overline{\mathrm{GW}}$ is HIGH .

