

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

www.infineon.com

PRELIMINARY

PSoC 4: PSoC 4700S Family Datasheet

Programmable System-on-Chip (PSoC)

General Description

PSoC® 4 is a scalable and reconfigurable platform architecture for a family of programmable embedded system controllers with an Arm® Cortex™-M0+ CPU. It combines programmable and reconfigurable analog and digital blocks with flexible automatic routing. The PSoC 4700S product family, based on this platform, is the industry's first microcontroller with inductive sensing and capacitive sensing technology in a single chip. The inductive sensing (MagSense™) technology enables sensing of metal objects and industry's leading capacitive sensing (CapSense®) technology enables sensing of non-metallic objects.

Features

32-bit MCU Subsystem

- 48-MHz Arm Cortex-M0+ CPU
- Up to 32 KB of flash with Read Accelerator
- Up to 4 KB of SRAM

Inductive Sensing

- Cypress MagSense provides superior noise immunity
- Reliably detects metal deflection under 190 nm
- MagSense software component automatically calibrates to compensate for the manufacturing variations
- Up to 16 sensors

Capacitive Sensing

- Cypress CapSense Sigma-Delta (CSD) provides best-in-class signal-to-noise ratio (SNR) (>5:1) and water tolerance
- Cypress-supplied software component makes capacitive sensing design easy
- Automatic hardware tuning (SmartSense[™])

Programmable Analog

- One single-slope 10-bit ADC function
- Two current DACs (IDACs)
- Two low-power comparators that operate in Deep Sleep low-power mode

Programmable Digital

Two SmartIO ports allowing Boolean operations to be performed on port inputs and outputs

Low-Power 1.71-V to 5.5-V Operation

■ Deep Sleep mode with operational analog and 2.5 µA digital system current

198 Champion Court

Serial Communication

■ Two independent run-time reconfigurable Serial Communication Blocks (SCBs) with re-configurable I²C, SPI, or UART functionality

LCD Drive Capability

■ LCD segment drive capability on GPIOs

Timing and Pulse-Width Modulation

- Five 16-bit timer/counter/pulse-width modulator (TCPWM) blocks
- Center-aligned, Edge, and Pseudo-random modes
- Comparator-based triggering of Kill signals for motor drive and other high-reliability digital logic applications

Up to 36 Programmable GPIO Pins

- 48-pin TQFP, 24-pin QFN, and 25-ball WLCSP packages
- Any GPIO pin can be capacitive sensing, analog, or digital; up to 16 pins can be used for inductive sensing.
- Drive modes, strengths, and slew rates are programmable

PSoC Creator Design Environment

- Integrated Development Environment (IDE) provides schematic design entry and build (with analog and digital automatic routing)
- Applications Programming Interface (API) component for all fixed-function and programmable peripherals

Industry-Standard Tool Compatibility

■ After schematic entry, development can be done with Arm-based industry-standard development tools

Cypress Semiconductor Corporation Document Number: 002-20489 Rev. *D

Revised December 17, 2020

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 4
 - In addition, PSoC Creator includes a device selection tool.
- Application Notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
 - □ AN79953: Getting Started With PSoC 4
 - □ AN219207: Inductive Sensing Design Guide
 - □ AN88619: PSoC 4 Hardware Design Considerations
 - □ AN86439: Using PSoC 4 GPIO Pins
 - □ AN57821: Mixed Signal Circuit Board Layout
 - □ AN64846 Getting Started with CapSense®

■ Technical Reference Manual (TRM):

- □ Architecture TRM details each PSoC 4 functional block.
- □ Registers TRM describes each of the PSoC 4 registers.

■ Development Kits:

- □ CY8CKIT-148 PSoC® 4700S Inductive Sensing Evaluation Kit is a low-cost hardware platform that enables design and debug of the PSoC 4700S MCU. This kit demonstrates buttons and a proximity sensor using Cypress' brand new inductive-sensing technology, MagSense. In addition, an FPC connector is provided to evaluate various interfaces, such as a rotary encoder.
- PSoC Creator provides example projects for different product features and usage.
- Training Videos: Visit www.cypress.com/training for a wide variety of video training resources on PSoC Creator

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

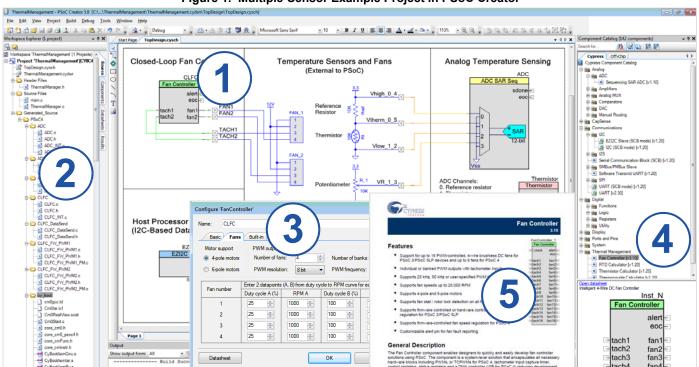


Figure 1. Multiple-Sensor Example Project in PSoC Creator

PRELIMINARY

Contents

Block Diagram	4
Functional Overview	5
CPU and Memory Subsystem	
System Resources	
Analog Blocks	
Programmable Digital Blocks	
Fixed Function Digital	6
GPIO	7
Special Function Peripherals	7
Pinouts	8
Alternate Pin Functions	9
Power	11
Mode 1: 1.8 V to 5.5 V External Supply	11
Mode 2: 1.8 V ±5% External Supply	11
Development Support	
Documentation	12
Online	12
Tools	12
Electrical Specifications	12

Absolute Maximum Ratings	13
Device Level Specifications	
Analog Peripherals	
Digital Peripherals	
Memory	
System Resources	
Ordering Information	
Packaging	29
Package Diagrams	
Acronyms	
Document Conventions	34
Units of Measure	34
Document History Page	35
Sales, Solutions, and Legal Information	36
Worldwide Sales and Design Support	36
Products	36
PSoC® Solutions	36
Cypress Developer Community	36
Technical Support	

Block Diagram

CPU Subsystem **PSoC 4700S Architecture** Cortex FLASH SRAM ROM M0+ 32-bit 32 KB 4 KB 8 KB $\widehat{\mathbf{I}}$ 48 MHz FAST MUL NVIC, IRQMUX AHB- Lite Read Accelerator SRAM Controller ROM Controller ſį System Resources System Interconnect (Single Layer AHB) Lite Power Peripherals Sleep Control
POR REF
PWRSYS PCLK Peripheral Interconnect (MMIO) Clock Clock Control
WDT
ILO IMO 2x SCB-12C/SPI/UART 2x LP Comparator 5x TCPWM OSS GPIO (5x parts) MagSense/ CapSense Reset Control XRES WCO CO Test
TestMode Entry Digital DFT Analog DFT High Speed I/O Matrix & 2x Programmable I/O **Power Modes** 36x GPIOs, LCD Active/ Sleep

Figure 2. Block Diagram

DeepSleep

I/O Subsystem

Functional Overview

CPU and Memory Subsystem

CPU

The Cortex-M0+ CPU in the PSoC 4700S is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and the CPU executes a subset of the Thumb-2 instruction set. It includes a nested vectored interrupt controller (NVIC) block with eight interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor from Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in Deep Sleep mode.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a two-wire form of JTAG. The debug configuration used for PSoC 4700S has four breakpoint (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4700S device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The low-power flash block is designed to deliver two wait-state (WS) access time at 48 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. A small section of the Flash memory is used to implement a supervisory Flash for storage or configuration data.

SRAM

4KB of SRAM are provided with zero wait-state access at 48 MHz.

SROM

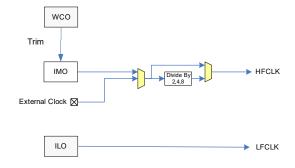
A supervisory ROM that contains boot and configuration routines is provided.

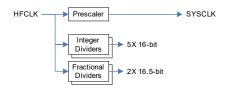
System Resources

Power System

The power system is described in detail in the section Power on page 11. It provides assurance that voltage levels are as required for each respective mode and either delays mode entry (for example, on power-on reset (POR)) until voltage levels are as required for proper functionality, or generates resets (for example, on brown-out detection). The PSoC 4700S operates with a single external supply over the range of either 1.8 V $\pm 5\%$ (externally regulated) or 1.8 to 5.5 V (internally regulated) and has three different power modes, transitions between which are managed by the power system. The PSoC 4700S provides Active, Sleep, and Deep Sleep low-power modes.

All subsystems are operational in Active mode. The CPU subsystem (CPU, flash, and SRAM) is clock-gated off in Sleep mode, while all peripherals and interrupts are active with instantaneous wake-up on a wake-up event. In Deep Sleep mode, the high-speed clock and associated circuitry is switched off; wake-up from this mode takes 35 µs.


Clock System


The PSoC 4700S clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that there are no metastable conditions.

The clock system for the PSoC 4700S consists of the internal main oscillator (IMO), internal low-frequency oscillator (ILO), a 32 kHz Watch Crystal Oscillator (WCO) and provision for an external clock. Clock dividers are provided to generate clocks for peripherals on a fine-grained basis. Fractional dividers are also provided to enable granular frequency selections in clocking for use with blocks such as UART.

The HFCLK signal can be divided down to generate synchronous clocks for the analog and digital peripherals. There are eight clock dividers for the PSoC 4700S, two of those are fractional dividers. The 16-bit capability allows flexible generation of fine-grained frequency values, The system clock (SYSCLK) which is used to clock the CPU, is derived from the HFCLK through a prescaler. All low-frequency operational blocks like watchdog timer (WDT) is clocked by the LFCLK.

Figure 3. PSoC 4700S MCU Clocking Architecture

IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4700S. It is trimmed during testing to achieve the specified accuracy. The IMO default frequency is 24 MHz and it can be adjusted from 24 to 48 MHz in steps of 4 MHz. The IMO tolerance with Cypress-provided calibration settings is ±2%. The IMO has a mode where it can be trimmed using the WCO to achieve a higher precision.

ILO Clock Source

The ILO is a very low power, nominally 40-kHz oscillator, which is primarily used to generate clocks for the watchdog timer (WDT) and peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

Watch Crystal Oscillator (WCO)

The PSoC 4700S clock subsystem also implements a low-frequency (32-kHz watch crystal) oscillator that can be used for precision timing applications.

Watchdog Timer (WDT)

A watchdog timer is implemented in the clock block running from the LFCLK; this allows watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is recorded in a Reset Cause register, which is firmware readable.

Reset

The PSoC 4700S can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset by asserting it active low. The XRES pin has an internal pull-up resistor that is always enabled.

Voltage Reference

The PSoC 4700S reference system generates all internally required references. A 1.2-V voltage reference is provided for the comparator. The IDACs are based on a ±5% reference.

Analog Blocks

Low-power Comparators (LPC)

The PSoC 4700S has a pair of low-power comparators, which can also operate in Deep Sleep modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode where the system wake-up circuit is activated by a comparator switch event. The LPC outputs can be routed to pins.

Current DACs

The PSoC 4700S has two IDACs, which can drive any of the pins on the chip. These IDACs have programmable current ranges. The current DACs are also used for implementation of the MagSense and CapSense. So these DACs are not available if the design implements MagSense or CapSense.

Analog Multiplexed Buses

The PSoC 4700S has two concentric independent buses that go around the periphery of the chip. These buses (called amux buses) are connected to firmware-programmable analog switches that allow the chip's internal resources (IDACs, comparator, ADC, LPC, CapSense, MagSense) to connect to any pin on the I/O Ports.

Programmable Digital Blocks

The programmable I/O (Smart I/O) block is a fabric of switches and LUTs that allows Boolean functions to be performed in signals being routed to the pins of a GPIO port. The Smart I/O can perform logical operations on input pins to the chip and on signals going out as outputs.

Fixed Function Digital

Timer/Counter/PWM (TCPWM) Block

The five TCPWM blocks consist of a 16-bit counter with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register that is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as dead-band programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be shut off immediately with no time for software intervention.

Serial Communication Block (SCB)

The PSoC 4700S has two serial communication blocks, which can be programmed to have SPI, I²C, or UART functionality.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multi-master arbitration). This block is capable of operating at speeds of up to 400 kbps (Fast Mode) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EZI2C that creates a mailbox address range in the memory of the PSoC 4700S and effectively reduces I²C communication to reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time.

The I²C peripheral is compatible with the I²C Standard-mode and Fast-mode devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

The PSoC 4700S is not completely compliant with the I²C spec in the following respect:

■ GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

GPIO

The PSoC 4700S has up to 36 GPIOs. The GPIO block implements the following:

- Eight drive modes:
 - ☐ Analog input mode (input and output buffers disabled)
 - □ Input only
 - □ Weak pull-up with strong pull-down
 - ☐ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - □ Open drain with strong pull-up
 - ☐ Strong pull-up with strong pull-down
 - □ Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width (less for Port 4). During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4700S).

Special Function Peripherals

MagSense (Inductive Sensing)

The MagSense block in the PSoC 4700S device provides reliable contact-less metal-sensing for applications such as buttons (touch-over-metal), proximity detection and measurement, rotary and linear encoders, spring-based position detection, and other applications based on detecting position or distance of the metal object.

This block can sense small deflections and can work off a small coin-cell battery enabling battery-powered applications such as mobile devices and smart watches. Cypress provides the component that automatically calibrates the design and compensates for the manufacturing variations, thereby reducing time-to-market, while providing a reliable solution that Just WorksTM in harsh environments.

CapSense

CapSense is supported in the PSoC 4700S through a CapSense Sigma-Delta (CSD) block that can be connected to any pins through an analog multiplex bus via analog switches. CapSense function can thus be provided on any available pin or group of pins in a system under software control. A PSoC Creator component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another analog multiplex bus to provide water-tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. Proximity sensing can also be implemented.

The CapSense block provides a 10-bit Slope ADC function, which can be used in conjunction with the CapSense function.

The CapSense block has two IDACs, which can be used for general purposes if CapSense is not being used (both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

The CapSense block is an advanced, low-noise, programmable block with programmable voltage references and current source ranges for improved sensitivity and flexibility. It can also use an external reference voltage. It has a full-wave CSD mode that alternates sensing to VDDA and Ground to null out power-supply related noise.

LCD Segment Drive

The PSoC 4700S has an LCD controller, which can drive up to 8 commons and up to 28 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as Digital Correlation and PWM. Digital Correlation pertains to modulating the frequency and drive levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal to zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays. PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

Pinouts

The following table provides the pin list for PSoC 4700S for the 48-pin TQFP, 24-pin QFN, and 25-ball CSP packages. All port pins support GPIO. Pin 11 is a No-Connect in the 48-TQFP.

Table 1. PSoC 4700S Pin List

48	3-TQFP	2	24-QFN	25-WLCSP		
Pin	Name	Pin	Name	Pin	Name	
28	P0.0	13	P0.0	D1	P0.0	
29	P0.1	14	P0.1	C3	P0.1	
30	P0.2	_	_	-	_	
31	P0.3	_	_	-	_	
32	P0.4	15	P0.4	C2	P0.4	
33	P0.5	16	P0.5	C1	P0.5	
34	P0.6	17	P0.6	B1	P0.6	
35	P0.7	-	_	B2	P0.7	
36	XRES	18	XRES	B3	XRES	
37	VCCD	19	VCCD	A1	VCCD	
38	VSSD	20	VSSD	A2	VSS	
39	VDDD	21	VDD	A3	VDD	
40	VDDA	21	VDD	A3	VDD	
41	VSSA	22	VSSA	A2	VSS	
42	P1.0	_	_	-	_	
43	P1.1	_	_	-	_	
44	P1.2	23	P1.2	A4	P1.2	
45	P1.3	24	P1.3	B4	P1.3	
46	P1.4	_	_	-	_	
47	P1.5	_	_	-	_	
48	P1.6	_	_	-	_	
1	P1.7	1	P1.7	A5	P1.7	
2	P2.0	2	P2.0	B5	P2.0	
3	P2.1	3	P2.1	C5	P2.1	
4	P2.2	_	_	-	_	
5	P2.3	_	_	-	_	
6	P2.4	_	_	-	_	
7	P2.5	_	_	-	_	
8	P2.6	4	P2.6	D5	P2.6	
9	P2.7	5	P2.7	C4	P2.7	
10	VSSD	_	_	A2	VSS	
12	P3.0	6	P3.0	E5	P3.0	
13	P3.1	_	_	D4	P3.1	
14	P3.2	7	P3.2	E4	P3.2	
16	P3.3	8	P3.3	D3	P3.3	

Document Number: 002-20489 Rev. *D

Table 1. PSoC 4700S Pin List (continued)

4	18-TQFP		24-QFN	25-WLCSP		
Pin	Name	Pin	Pin Name		Name	
17	P3.4	_	_	_	-	
18	P3.5	_	_	_	_	
19	P3.6	_	_	_	_	
20	P3.7	_	_	_	_	
21	VDDD	_	_	_	-	
22	P4.0	9	P4.0	E3	P4.0	
23	P4.1	10	P4.1	D2	P4.1	
24	P4.2	11	P4.2	E2	P4.2	
25	P4.3	12	P4.3	E1	P4.3	

Descriptions of the Pin functions are as follows:

VDDD: Power supply for the digital section.

VDDA: Power supply for the analog section.

VSSD, VSSA: Ground pins for the digital and analog sections

respectively.

VCCD: Regulated digital supply (1.8 V ±5%)

VDD: Power supply to all sections of the chip **VSS:** Ground for all sections of the chip

Alternate Pin Functions

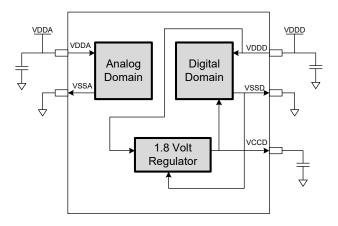
Each port pin can be assigned to one of multiple functions; it can, for instance, be an analog I/O, a digital peripheral function, an LCD pin, or a CapSense pin. The pin assignments are shown in the following table.

Table 2. Pin Assignments

Port/ Pin	Analog	Smart I/O	Alternate Function 1	Alternate Function 2	Alternate Function 3	Deep Sleep 1	Deep Sleep 2
P0.0	lpcomp.in_p[0]	_	_	_	tcpwm.tr_in[0]	_	scb[0].spi_select1:0
P0.1	lpcomp.in_n[0]	_	_	_	tcpwm.tr_in[1]	_	scb[0].spi_select2:0
P0.2	lpcomp.in_p[1]	_	_	_	_	_	scb[0].spi_select3:0
P0.3	lpcomp.in_n[1]	_	_	_	_	_	_
P0.4	wco.wco_in	_	_	scb[1].uart_rx:0	scb[2].uart_rx:0	scb[1].i2c_scl:0	scb[1].spi_mosi:1
P0.5	wco.wco_out	_	_	scb[1].uart_tx:0	scb[2].uart_tx:0	scb[1].i2c_sda:0	scb[1].spi_miso:1
P0.6	_	_	srss.ext_clk	scb[1].uart_cts:0	scb[2].uart_tx:1	_	scb[1].spi_clk:1
P0.7	_	_	_	scb[1].uart_rts:0	_		scb[1].spi_select0:1
P1.0	_	_	tcpwm.line[2]:1	scb[0].uart_rx:1	_	scb[0].i2c_scl:0	scb[0].spi_mosi:1
P1.1	_	-	tcpwm.line compl[2]:1	scb[0].uart_tx:1	-	scb[0].i2c_sda:0	scb[0].spi_miso:1
P1.2	_	_	tcpwm.line[3]:1	scb[0].uart_cts:1	tcpwm.tr_in[2]	scb[2].i2c_scl:0	scb[0].spi_clk:1
P1.3	_	-	tcpwm.line compl[3]:1	scb[0].uart_rts:1	tcpwm.tr_in[3]	scb[2].i2c_sda:0	scb[0].spi_select0:1
P1.4	1	-	-	-	-	_	scb[0].spi_select1:1
P1.5	-	-	-	_	-	-	scb[0].spi_select2:1
P1.6	_	-	-	_	-	-	scb[0].spi_select3:1

Document Number: 002-20489 Rev. *D Page 9 of 36

Table 2. Pin Assignments (continued)


Port/ Pin	Analog	Smart I/O	Alternate Function 1	Alternate Function 2	Alternate Function 3	Deep Sleep 1	Deep Sleep 2
P1.7	1	1	-	-	-	-	-
P2.0	-	SmartIO[0].io[0]	tcpwm.line[4]:0	csd.comp	tcpwm.tr_in[4]	scb[1].i2c_scl:1	scb[1].spi_mosi:2
P2.1	1	SmartIO[0].io[1]	tcpwm.line compl[4]:0	_	tcpwm.tr_in[5]	scb[1].i2c_sda:1	scb[1].spi_miso:2
P2.2	_	SmartIO[0].io[2]	_	_	_	_	scb[1].spi_clk:2
P2.3	_	SmartIO[0].io[3]	_	_	_	_	scb[1].spi_select0:2
P2.4	_	SmartIO[0].io[4]	tcpwm.line[0]:1	_	_	-	scb[1].spi_select1:1
P2.5	_	SmartIO[0].io[5]	tcpwm.line compl[0]:1	_	-	_	scb[1].spi_select2:1
P2.6	-	SmartIO[0].io[6]	tcpwm.line[1]:1	_	1	_	scb[1].spi_select3:1
P2.7	_	SmartIO[0].io[7]	tcpwm.line compl[1]:1	_	_	lpcomp.comp[0]:1	_
P3.0	ı	SmartIO[1].io[0]	tcpwm.line[0]:0	scb[1].uart_rx:1	I	scb[1].i2c_scl:2	scb[1].spi_mosi:0
P3.1	_	SmartIO[1].io[1]	tcpwm.line compl[0]:0	scb[1].uart_tx:1	-	scb[1].i2c_sda:2	scb[1].spi_miso:0
P3.2	_	SmartIO[1].io[2]	tcpwm.line[1]:0	scb[1].uart_cts:1	_	cpuss.swd_data	scb[1].spi_clk:0
P3.3	_	SmartIO[1].io[3]	tcpwm.line compl[1]:0	scb[1].uart_rts:1	-	cpuss.swd_clk	scb[1].spi_select0:0
P3.4	_	SmartIO[1].io[4]	tcpwm.line[2]:0	_	tcpwm.tr_in[6]	_	scb[1].spi_select1:0
P3.5	1	SmartIO[1].io[5]	tcpwm.line compl[2]:0	_	tcpwm.tr_in[7]	_	scb[1].spi_select2:0
P3.6	_	SmartIO[1].io[6]	tcpwm.line[3]:0	_	tcpwm.tr_in[8]	_	scb[1].spi_select3:0
P3.7	1	SmartIO[1].io[7]	tcpwm.line compl[3]:0	_	tcpwm.tr_in[9]	lpcomp.comp[1]:1	_
P4.0	csd.vref_ext	_	_	scb[0].uart_rx:0	tcpwm.tr_in[10]	scb[0].i2c_scl:1	scb[0].spi_mosi:0
P4.1	csd.cshieldpads			scb[0].uart_tx:0	tcpwm.tr_in[11]	scb[0].i2c_sda:1	scb[0].spi_miso:0
P4.2	csd.cmodpad	_	_	scb[0].uart_cts:0	_	lpcomp.comp[0]:0	scb[0].spi_clk:0
P4.3	csd.csh_tank	_	-	scb[0].uart_rts:0	_	lpcomp.comp[1]:0	scb[0].spi_select0:0

Power

The following power system diagram shows the set of power supply pins as implemented for the PSoC 4700S. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DD} input.

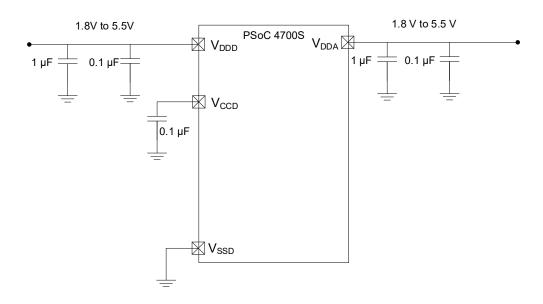
Figure 4. Power Supply Connections

There are two distinct modes of operation. In Mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated externally; internal regulator operational). In Mode 2, the supply range is 1.8 V \pm 5% (externally regulated; 1.71 V to 1.89 V, internal regulator bypassed).

Mode 1: 1.8 V to 5.5 V External Supply

In this mode, the PSoC 4700S is powered by an external power supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4700S supplies the internal logic and its output is connected to the V_{CCD} pin. The VCCD pin must be bypassed to ground via an external capacitor (0.1 μ F; X5R ceramic or better) and must not be connected to anything else.

Mode 2: 1.8 V ±5% External Supply


In this mode, the PSoC 4700S is powered by an external power supply that must be within the range of 1.71 to 1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins are shorted together and bypassed. The internal regulator can be disabled in the firmware.

Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1- μ F range, in parallel with a smaller capacitor (0.1 μ F, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme is shown in the following diagram.

Figure 5. External Supply Range from 1.8 V to 5.5 V with Internal Regulator Active

Power supply bypass connections example

Development Support

The PSoC 4700S family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4700S family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Inductive Sensing Design Guide:

A guide to designing reliable Inductive Solutions.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4700S family is part of a development tool ecosystem. Visit us at www.cypress.com/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Electrical Specifications

Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID1	V _{DDD_ABS}	Digital supply relative to V _{SS}	-0.5	_	6	V	_
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V _{SS}	-0.5	_	1.95		-
SID3	V _{GPIO_ABS}	GPIO voltage	-0.5	_	V _{DD} +0.5		_
SID4	I _{GPIO_ABS}	Maximum current per GPIO	-25	_	25	mA	_
SID5	I _{GPIO_injection}	GPIO injection current, Max for V _{IH} > V _{DDD} , and Min for V _{IL} < V _{SS}	-0.5	-	0.5		Current injected per pin
BID44	ESD_HBM	Electrostatic discharge human body model	2200	_	_	V	_
BID45	ESD_CDM	Electrostatic discharge charged device model	500	_	-		-
BID46	LU	Pin current for latch-up	-140	_	140	mA	_

Note

Document Number: 002-20489 Rev. *D Page 13 of 36

Usage above the absolute maximum conditions listed in Table 3 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended
periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature
Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.

Device Level Specifications

All specifications are valid for $-40~^{\circ}\text{C} \le T_A \le 85~^{\circ}\text{C}$ and $T_J \le 100~^{\circ}\text{C}$, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 4. DC Specifications

Typical values measured at V_{DD} = 3.3 V and 25 °C.

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID53	V _{DD}	Power supply input voltage	1.8	_	5.5	V	Internally regulated supply
SID255	V _{DD}	Power supply input voltage ($V_{CCD} = V_{DD} = V_{DDA}$)	1.71	_	1.89		Internally unregulated supply
SID54	V_{CCD}	Output voltage (for core logic)	-	1.8	_	1	_
SID55	C _{EFC}	External regulator voltage bypass	_	0.1	-	μF	X5R ceramic or better
SID56	C _{EXC}	Power supply bypass capacitor	_	1	-		X5R ceramic or better
Active Mode	, V _{DD} = 1.8 V to 5	.5 V. Typical values measured at VDD =	3.3 V an	d 25 °C.		•	
SID10	I _{DD5}	Execute from flash; CPU at 6 MHz	_	1.2	2.0	mA	_
SID16	I _{DD8}	Execute from flash; CPU at 24 MHz	_	2.4	4.0	1	_
SID19	I _{DD11}	Execute from flash; CPU at 48 MHz	_	4.6	5.9		_
Sleep Mode,	VDDD = 1.8 V to	5.5 V (Regulator on)				•	1
SID22	I _{DD17}	I ² C wakeup WDT, and Comparators on	-	1.1	1.6	mA	6 MHz
SID25	I _{DD20}	I ² C wakeup, WDT, and Comparators on	-	1.4	1.9		12 MHz
Sleep Mode,	V _{DDD} = 1.71 V to	1.89 V (Regulator bypassed)				•	
SID28	I _{DD23}	I ² C wakeup, WDT, and Comparators on	_	0.7	0.9	mA	6 MHz
SID28A	I _{DD23A}	I ² C wakeup, WDT, and Comparators on	_	0.9	1.1	mA	12 MHz
Deep Sleep I		V to 3.6 V (Regulator on)		1			1
SID31	I _{DD26}	I ² C wakeup and WDT on	_	2.5	60	μA	-
Deep Sleep I		V to 5.5 V (Regulator on)		1			
SID34	I _{DD29}	I ² C wakeup and WDT on	_	2.5	60	μA	-
Deep Sleep I	Mode, V _{DD} = V _{CC}	D = 1.71 V to 1.89 V (Regulator bypasse	d)	1			
SID37	I _{DD32}	I ² C wakeup and WDT on	_	2.5	60	μA	_
XRES Curre				1		1	
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA	_

Table 5. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	_	48	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49 ^[3]	T _{SLEEP}	Wakeup from Sleep mode	_	0	_	μs	_
SID50 ^[3]	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	_	35	-		_

Notes

- Guaranteed by characterization.
 V_{IH} must not exceed V_{DDD} + 0.2 V.

Document Number: 002-20489 Rev. *D

GPIO

Table 6. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID57	V _{IH} ^[4]	Input voltage high threshold	$0.7 \times V_{DDD}$	-	-	V	CMOS Input
SID58	V _{IL}	Input voltage low threshold	_	_	$\begin{array}{c} 0.3 \times \\ V_{DDD} \end{array}$		CMOS Input
SID241	V _{IH} ^[4]	LVTTL input, V _{DDD} < 2.7 V	$0.7 \times V_{DDD}$	-	-		_
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	_	-	$\begin{array}{c} 0.3 \times \\ V_{DDD} \end{array}$		_
SID243	V _{IH} ^[4]	LVTTL input, $V_{DDD} \ge 2.7 \text{ V}$	2.0	-	-		_
SID244	V _{IL}	LVTTL input, $V_{DDD} \ge 2.7 \text{ V}$	-	-	0.8		_
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	-	-		I _{OH} = 4 mA at 3 V V _{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	-	-		I _{OH} = 1 mA at 3 V V _{DDD}
SID61	V _{OL}	Output voltage low level	_	-	0.6		I_{OL} = 4 mA at 1.8 V V_{DDD}
SID62	V _{OL}	Output voltage low level	_	-	0.6		I_{OL} = 10 mA at 3 V V_{DDD}
SID62A	V _{OL}	Output voltage low level	_	-	0.4		I_{OL} = 3 mA at 3 V V_{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	_
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5		_
SID65	I _{IL}	Input leakage current (absolute value)	_	-	2	nA	25 °C, V _{DDD} = 3.0 V
SID66	C _{IN}	Input capacitance	_	-	7	pF	_
SID67 ^[5]	V _{HYSTTL}	Input hysteresis LVTTL	25	40	-	mV	$V_{DDD} \ge 2.7 \text{ V}$
SID68 ^[5]	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DDD}	-	-		V _{DD} < 4.5 V
SID68A ^[5]	V _{HYSCMOS5V5}	Input hysteresis CMOS	200	-	-		V _{DD} > 4.5 V
SID69 ^[5]	I _{DIODE}	Current through protection diode to V_{DD}/V_{SS}	_	_	100	μA	_
SID69A ^[5]	I _{TOT_GPIO}	Maximum total source or sink chip current	_	_	200	mA	_

V_{IH} must not exceed V_{DDD} + 0.2 V.
 Guaranteed by characterization.

Table 7. GPIO AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	_	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	_	12		3.3 V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	_	60	_	3.3 V V _{DDD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	_	60	_	3.3 V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO F _{OUT} ; 3.3 V ≤ V _{DDD} ≤ 5.5 V Fast strong mode	-	-	33	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO F _{OUT} ; 1.71 V≤ V _{DDD} ≤ 3.3 V Fast strong mode	-	_	16.7		90/10%, 25 pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO F _{OUT} ; 3.3 V ≤ V _{DDD} ≤ 5.5 V Slow strong mode	_	_	7		90/10%, 25 pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO F_{OUT} ; 1.71 $V \le V_{DDD} \le 3.3 V$ Slow strong mode.	_	-	3.5		90/10%, 25 pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V ≤ V _{DDD} ≤ 5.5 V	_	_	48		90/10% V _{IO}

XRES

Table 8. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	$0.7 \times V_{DDD}$	-	_	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	_	-	$0.3 \times V_{DDD}$		
SID79	R _{PULLUP}	Pull-up resistor	_	60	_	kΩ	_
SID80	C _{IN}	Input capacitance	-	-	7	pF	_
SID81 ^[6]	V _{HYSXRES}	Input voltage hysteresis	_	100	_	mV	Typical hysteresis is 200 mV for V _{DD} > 4.5 V
SID82	I _{DIODE}	Current through protection diode to V _{DD} /V _{SS}	_	-	100	μA	_

Table 9. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83 ^[6]	T _{RESETWIDTH}	Reset pulse width	1	ı	1	μs	_
BID194 ^[6]	T _{RESETWAKE}	Wake-up time from reset release	_	-	2.7	ms	_

Document Number: 002-20489 Rev. *D Page 16 of 36

Note6. Guaranteed by characterization.

Analog Peripherals

Table 10. Low Power Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID84	V _{OFFSET1}	Input offset voltage, Factory trim	_	_	±10	mV	_
SID85	V _{OFFSET2}	Input offset voltage, Custom trim	_	_	±4		_
SID86	V _{HYST}	Hysteresis when enabled	_	10	35		_
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	_	V _{DDD} – 0.1	V	Modes 1 and 2
SID247	V _{ICM2}	Input common mode voltage in low power mode	0	_	V_{DDD}		_
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	_	V _{DDD} – 1.15		V _{DDD} ≥ 2.2 V at –40 °C
SID88	C _{MRR}	Common mode rejection ratio	50	_	_	dB	V _{DDD} ≥ 2.7V
SID88A	C _{MRR}	Common mode rejection ratio	42	_	_		V _{DDD} ≤ 2.7V
SID89	I _{CMP1}	Block current, normal mode	_	_	400	μΑ	_
SID248	I _{CMP2}	Block current, low power mode	_	_	100		_
SID259	I _{CMP3}	Block current in ultra low-power mode	_	6	28		V _{DDD} ≥ 2.2 V at –40 °C
SID90	Z _{CMP}	DC Input impedance of comparator	35	_	_	ΜΩ	_

Table 11. Comparator AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID91	TRESP1	Response time, normal mode, 50 mV overdrive	_	38	110	ns	_
SID258	TRESP2	Response time, low power mode, 50 mV overdrive	_	70	200		_
SID92	TRESP3	Response time, ultra-low power mode, 200 mV overdrive	_	2.3	15	μs	V _{DDD} ≥ 2.2 V at –40 °C

Document Number: 002-20489 Rev. *D Page 17 of 36

CSD (Capacitive Sensing and IDAC block)

Table 12. CSD and IDAC Specifications

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SYS.PER#3	VDD_RIPPLE	Max allowed ripple on power supply, DC to 10 MHz	_	_	±50	mV	V _{DD} > 2 V (with ripple), 25 °C T _A , Sensitivity = 0.1 pF
SYS.PER#16	VDD_RIPPLE_1.8	Max allowed ripple on power supply, DC to 10 MHz	ı	_	±25	mV	V_{DD} > 1.75V (with ripple), 25 °C T _A , Parasitic Capacitance (C_P) < 20 pF, Sensitivity ≥ 0.4 pF
SID.CSD.BLK	ICSD	Maximum block current	_	_	4000	μA	Maximum block current for both IDACs in dynamic (switching) mode including comparators, buffer, and reference generator.
SID.CSD#15	V_{REF}	Voltage reference for CSD and Comparator	0.6	1.2	V _{DDA} - 0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID.CSD#15A	VREF_EXT	External Voltage reference for CSD and Comparator	0.6	_	V _{DDA} - 0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID.CSD#16	IDAC1IDD	IDAC1 (7-bits) block current	ı	_	1750	μA	_
SID.CSD#17	IDAC2IDD	IDAC2 (7-bits) block current	ı	_	1750	μA	_
SID308	VCSD	Voltage range of operation	1.71	-	5.5	V	1.8 V ±5% or 1.8 V to 5.5 V
SID308A	VCOMPIDAC	Voltage compliance range of IDAC	0.6	_	V _{DDA} -0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID309	IDAC1DNL	DNL	-1	_	1	LSB	_
SID310	IDAC1INL	INL	-2	_	2	LSB	INL is ±5.5 LSB for V _{DDA} < 2 V
SID311	IDAC2DNL	DNL	-1	_	1	LSB	_
SID312	IDAC2INL	INL	-2	_	2	LSB	INL is ±5.5 LSB for V _{DDA} < 2 V
SID313	SNR	Ratio of counts of finger to noise. Guaranteed by characterization	5	_	_	Ratio	Capacitance range of 5 to 35 pF, 0.1-pF sensitivity. All use cases. V _{DDA} > 2 V.
SID314	IDAC1CRT1	Output current of IDAC1 (7 bits) in low range	4.2	_	5.4	μA	LSB = 37.5-nA typ.
SID314A	IDAC1CRT2	Output current of IDAC1(7 bits) in medium range	34	_	41	μA	LSB = 300-nA typ.
SID314B	IDAC1CRT3	Output current of IDAC1(7 bits) in high range	275	_	330	μΑ	LSB = 2.4-µA typ.
SID314C	IDAC1CRT12	Output current of IDAC1 (7 bits) in low range, 2X mode	8	_	10.5	μA	LSB = 75-nA typ.
SID314D	IDAC1CRT22	Output current of IDAC1(7 bits) in medium range, 2X mode	69	_	82	μA	LSB = 600-nA typ.
SID314E	IDAC1CRT32	Output current of IDAC1(7 bits) in high range, 2X mode	540	-	660	μΑ	LSB = 4.8-µA typ.
SID315	IDAC2CRT1	Output current of IDAC2 (7 bits) in low range	4.2	_	5.4	μΑ	LSB = 37.5-nA typ.
SID315A	IDAC2CRT2	Output current of IDAC2 (7 bits) in medium range	34	_	41	μA	LSB = 300-nA typ.
SID315B	IDAC2CRT3	Output current of IDAC2 (7 bits) in high range	275	_	330	μA	LSB = 2.4-µA typ.
SID315C	IDAC2CRT12	Output current of IDAC2 (7 bits) in low range, 2X mode	8	-	10.5	μA	LSB = 75-nA typ.
SID315D	IDAC2CRT22	Output current of IDAC2(7 bits) in medium range, 2X mode	69	_	82	μA	LSB = 600-nA typ.

Document Number: 002-20489 Rev. *D

Table 12. CSD and IDAC Specifications (continued)

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID315E	IDAC2CRT32	Output current of IDAC2(7 bits) in high range, 2X mode	540	_	660	μA	LSB = 4.8-µA typ.
SID315F	IDAC3CRT13	Output current of IDAC in 8-bit mode in low range	8	_	10.5	μA	LSB = 37.5-nA typ.
SID315G	IDAC3CRT23	Output current of IDAC in 8-bit mode in medium range	69	_	82	μA	LSB = 300-nA typ.
SID315H	IDAC3CRT33	Output current of IDAC in 8-bit mode in high range	540	_	660	μA	LSB = 2.4-µA typ.
SID320	IDACOFFSET	All zeroes input	_	_	1	LSB	Polarity set by Source or Sink. Offset is 2 LSBs for 37.5 nA/LSB mode
SID321	IDACGAIN	Full-scale error less offset	_	_	±10	%	_
SID322	IDACMISMATCH1	Mismatch between IDAC1 and IDAC2 in Low mode	-	_	9.2	LSB	LSB = 37.5-nA typ.
SID322A	IDACMISMATCH2	Mismatch between IDAC1 and IDAC2 in Medium mode	-	_	5.6	LSB	LSB = 300-nA typ.
SID322B	IDACMISMATCH3	Mismatch between IDAC1 and IDAC2 in High mode	_	_	6.8	LSB	LSB = 2.4-µA typ.
SID323	IDACSET8	Settling time to 0.5 LSB for 8-bit IDAC	_	_	10	μs	Full-scale transition. No external load.
SID324	IDACSET7	Settling time to 0.5 LSB for 7-bit IDAC	_	_	10	μs	Full-scale transition. No external load.
SID325	CMOD	External modulator capacitor.	1	2.2	_	nF	5-V rating, X7R or NP0 cap.

Inductive Sensing (MagSense)

Table 13. MagSense Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID500	Nsense	Number of Sensors	_	-	16	_	-
SID501	Lsamp	Sample Rate	_	-	10	ksps	-
SID502	Lres	Resolution	_	-	16	bits	-
SID503	Lfreq	Sensor excitation frequency	45	-	3000	kHz	-
SID505	Lval	Inductance Range	1	-	10000	μΗ	-
SID506	Lprox	Proximity detection range	_	0.75 × coil diameter	-	_	-

Document Number: 002-20489 Rev. *D Page 19 of 36

CapSense

Table 14. 10-bit CapSense ADC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SIDA94	A_RES	Resolution	_	_	10	bits	Auto-zeroing is required every millisecond
SIDA95	A_CHNLS_S	Number of channels - single ended	_	_	16	_	Defined by AMUX Bus.
SIDA97	A-MONO	Monotonicity	_	_	_	Yes	-
SIDA98	A_GAINERR	Gain error	-	-	±2	%	In V _{REF} (2.4 V) mode with V _{DDA} bypass capacitance of 10 µF
SIDA99	A_OFFSET	Input offset voltage	-	-	3	mV	In V _{REF} (2.4 V) mode with V _{DDA} bypass capacitance of 10 µF
SIDA100	A_ISAR	Current consumption	_	_	0.25	mA	-
SIDA101	A_VINS	Input voltage range - single ended	V _{SSA}	_	V_{DDA}	V	-
SIDA103	A_INRES	Input resistance	_	2.2	-	ΚΩ	-
SIDA104	A_INCAP	Input capacitance	_	20	_	pF	-
SIDA106	A_PSRR	Power supply rejection ratio	-	60	-	dB	In V _{REF} (2.4 V) mode with V _{DDA} bypass capacitance of 10 µF
SIDA107	A_TACQ	Sample acquisition time	_	1	_	μs	-
SIDA108	A_CONV8	Conversion time for 8-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz.	_	_	21.3	μs	Does not include acquisition time. Equivalent to 44.8 ksps including acquisition time.
SIDA108A	A_CONV10	Conversion time for 10-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz.	_	_	85.3	μs	Does not include acquisition time. Equivalent to 11.6 ksps including acquisition time.
SIDA109	A_SND	Signal-to-noise and Distortion ratio (SINAD)	-	61	-	dB	With 10-Hz input sine wave, external 2.4-V reference, V _{REF} (2.4 V) mode
SIDA110	A_BW	Input bandwidth without aliasing	_	_	22.4	kHz	8-bit resolution
SIDA111	A_INL	Integral Non Linearity. 1 ksps	-	_	2	LSB	V _{REF} = 2.4 V or greater
SIDA112	A_DNL	Differential Non Linearity. 1 ksps	_	_	1	LSB	-

Digital Peripherals

Timer Counter Pulse-Width Modulator (TCPWM)

Table 15. TCPWM Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	_	_	45	μ А	All modes (TCPWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	_	_	155		All modes (TCPWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	_	-	650		All modes (TCPWM)
SID.TCPWM.3	TCPWM _{FREQ}	Operating frequency	_	_	Fc	MHz	Fc max = CLK_SYS Maximum = 48 MHz
SID.TCPWM.4	TPWM _{ENEXT}	Input trigger pulse width	2/Fc	-	-	ns	For all trigger events ^[7]
SID.TCPWM.5	TPWM _{EXT}	Output trigger pulse widths	2/Fc	_	_		Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	TC _{RES}	Resolution of counter	1/Fc	-	-		Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	1/Fc	_	-		Minimum pulse width of PWM Output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	1/Fc	-	-		Minimum pulse width between Quadrature phase inputs

P_C

Table 16. Fixed I²C DC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	_	50	μA	_
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	_	135		_
SID151	I _{I2C3}	Block current consumption at 1 Mbps	_	_	310		_
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	_	_	1.4		_

Table 17. Fixed I²C AC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	_	-	1	Msps	_

- Trigger events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.
 Guaranteed by characterization.

Document Number: 002-20489 Rev. *D

SPI

Table 18. SPI DC Specifications^[9]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID163	ISPI1	Block current consumption at 1 Mbps	-	-	360	μΑ	_
SID164	ISPI2	Block current consumption at 4 Mbps	-	-	560		_
SID165	ISPI3	Block current consumption at 8 Mbps	ı	ı	600		_

Table 19. SPI AC Specifications^[9]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID166	FSPI	SPI operating frequency (Master; 6X Oversampling)	_	_	8	MHz	_
Fixed SPI M	laster Mode A	C Specifications					
SID167	TDMO	MOSI Valid after SClock driving edge	_	_	15	ns	-
SID168	TDSI	MISO Valid before SClock capturing edge	20	_	-		Full clock, late MISO sampling
SID169	THMO	Previous MOSI data hold time	0	_	_		Referred to Slave capturing edge
Fixed SPI S	lave Mode AC	Specifications				•	
SID170	TDMI	MOSI Valid before Sclock Capturing edge	40	_	_	ns	_
SID171	TDSO	MISO Valid after Sclock driving edge	_	_	42 + 3*Tcpu		T _{CPU} = 1/F _{CPU}
SID171A	TDSO_EXT	MISO Valid after Sclock driving edge in Ext. Clk mode	_	_	48		_
SID172	THSO	Previous MISO data hold time	0	_	_		-
SID172A	TSSELSSCK	SSEL Valid to first SCK Valid edge	-	_	100	ns	_

Note9. Guaranteed by characterization.

UART

Table 20. UART DC Specifications^[10]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbps	_	1	55	μΑ	_
SID161	I _{UART2}	Block current consumption at 1000 Kbps	-	-	312	μΑ	_

Table 21. UART AC Specifications^[10]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	_	1	1	Mbps	_

LCD

Table 22. LCD Direct Drive DC Specifications^[10]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID154	I _{LCDLOW}	Operating current in low power mode	-	5	_	μA	16 × 4 small segment disp. at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	_	500	5000	pF	_
SID156	LCD _{OFFSET}	Long-term segment offset	_	20	_	mV	_
SID157	I _{LCDOP1}	LCD system operating current Vbias = 5 V	_	2	_	mA	32×4 segments. 50 Hz. 25 °C
SID158	I _{LCDOP2}	LCD system operating current Vbias = 3.3 V	_	2	_		32 × 4 segments. 50 Hz. 25 °C

Table 23. LCD Direct Drive AC Specifications^[10]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID159	F _{LCD}	LCD frame rate	10	50	150	Hz	_

10. Guaranteed by characterization.

Memory

Table 24. Flash DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V_{PE}	Erase and program voltage	1.71	-	5.5	V	_

Table 25. Flash AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[11]	Row (block) write time (erase and program)	-	_	20	ms	Row (block) = 128 bytes
SID175	T _{ROWERASE} ^[11]	Row erase time	_	_	16		_
SID176	T _{ROWPROGRAM} ^[11]	Row program time after erase	_	_	4		_
SID178	T _{BULKERASE} ^[11]	Bulk erase time (32 KB)	_	_	35		_
SID180 ^[12]	T _{DEVPROG} ^[11]	Total device program time	_	-	7	Seconds	_
SID181 ^[12]	F _{END}	Flash endurance	100 K	-	_	Cycles	_
SID182 ^[12]	F _{RET}	Flash retention. $T_A \le 55$ °C, 100 K P/E cycles	20	-	_	Years	_
SID182A ^[12]	_	Flash retention. $T_A \le 85$ °C, 10 K P/E cycles	10	-	_		_
SID256	TWS48	Number of Wait states at 48 MHz	2	-	_		CPU execution from Flash
SID257	TWS24	Number of Wait states at 24 MHz	1	_	_		CPU execution from Flash

System Resources

Power-on Reset (POR)

Table 26. Power On Reset (PRES)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.CLK#6	SR_POWER_UP	Power supply slew rate	1	1	67		At power-up and power-down.
SID185 ^[12]	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.5	V	_
SID186 ^[12]	V _{FALLIPOR}	Falling trip voltage	0.70	_	1.4		_

Brown-out Detect

Table 27. Brown-out Detect (BOD) for V_{CCD}

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190 ^[12]	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.48	-	1.62	V	_
SID192 ^[12]	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.11	-	1.5		_

Notes

Document Number: 002-20489 Rev. *D Page 24 of 36

^{11.} It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

^{12.} Guaranteed by characterization.

SWD Interface

Table 28. SWD Interface Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3~V \leq V_{DD} \leq 5.5~V$	1	1	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
	F_SWDCLK2	$1.71 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}$	-	-	7		SWDCLK ≤ 1/3 CPU clock frequency
	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	_	_	ns	_
SID216 ^[13]	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	_	_		_
SID217 ^[13]	T_SWDO_VALID	T = 1/f SWDCLK	_	_	0.5*T		_
SID217A ^[13]	T_SWDO_HOLD	T = 1/f SWDCLK	1	_	_		_

Internal Main Oscillator

Table 29. IMO DC Specifications

(Guaranteed by Design)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	_	_	250	μΑ	_
SID219	I _{IMO2}	IMO operating current at 24 MHz	_	_	180	μΑ	_

Table 30. IMO AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation at 24, 32, and 48 MHz (trimmed)	-	1	±2	%	_
SID226	T _{STARTIMO}	IMO startup time	_	_	7	μs	_
SID228	T _{JITRMSIMO2}	RMS jitter at 24 MHz	_	145	_	ps	_

Internal Low-Speed Oscillator

Table 31. ILO DC Specifications

(Guaranteed by Design)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231 ^[13]	I _{ILO1}	ILO operating current	_	0.3	1.05	μΑ	_

Table 32. ILO AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234 ^[13]	OIAITILOI	ILO startup time	1	1	2	ms	_
SID236 ^[13]	T _{ILODUTY}	ILO duty cycle	40	50	60	%	_
SID237	F _{ILOTRIM1}	ILO frequency range	20	40	80	kHz	_

Document Number: 002-20489 Rev. *D Page 25 of 36

Note 13. Guaranteed by characterization.

Watch Crystal Oscillator

Table 33. Watch Crystal Oscillator (WCO) Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID398	FWCO	Crystal Frequency	-	32.768	_	kHz	_
SID399	FTOL	Frequency tolerance	_	50	250	ppm	With 20-ppm crystal
SID400	ESR	Equivalent series resistance	-	50	_	kΩ	_
SID401	PD	Drive Level	-	_	1	μW	_
SID402	TSTART	Startup time	_	_	500	ms	_
SID403	CL	Crystal Load Capacitance	6	_	12.5	pF	-
SID404	C0	Crystal Shunt Capacitance	-	1.35	_	pF	_
SID405	IWCO1	Operating Current (high power mode)	_	_	8	μΑ	-
SID406	IWCO2	Operating Current (low power mode)	_	_	1	μΑ	-

External Clock

Table 34. External Clock Specifications

Spec ID#		Description	Min	Тур	Max	Units	Details/Conditions
	•	External clock input frequency	0	_	48	MHz	_
SID306 ^[14]	ExtClkDuty	Duty cycle; measured at V _{DD/2}	45	_	55	%	_

Block

Table 35. Block Specs

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID262 ^[14]	T _{CLKSWITCH}	System clock source switching time	3	1	4	Periods	

Smart I/O

Table 36. Smart I/O Pass-through Time (Delay in Bypass Mode)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID252	PRG_BYPASS	Max delay added by Smart I/O in	_	_	1.6	ns	_
		bypass mode					

Note

Document Number: 002-20489 Rev. *D Page 26 of 36

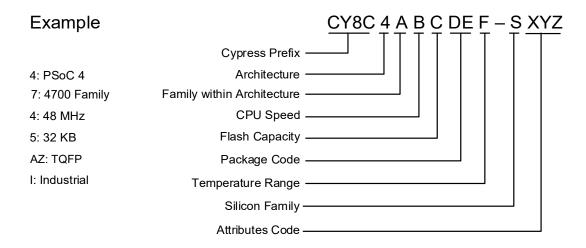
^{14.} Guaranteed by characterization.

Ordering Information

The PSoC 4700S part numbers and features are listed in the following table.

Table 37. PSoC 4700S Ordering Information

						F	eatur	es					ı	Package	
Category	MPN	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	CapSense	MagSense	10-bit CSD ADC	LP Comparators	TCPWM Blocks	SCB Blocks	Smart I/Os	GPIO	WLCSP (0.35-mm pitch)	24-Pin QFN	48-Pin TQFP
4724	CY8C4724FNI-S402	24	16	2	0	1	1	2	5	2	2	21	V	_	-
7127	CY8C4724LQI-S401	24	16	2	0	1	1	2	5	2	2	19	_	~	_
4725	CY8C4725FNI-S402	24	32	4	0	1	1	2	5	2	4	21	~	_	_
4723	CY8C4725LQI-S401	24	32	4	0	1	1	2	5	2	4	19	_	~	_
	CY8C4744FNI-S402	48	16	2	0	1	1	2	5	2	2	21	~	_	_
4744	CY8C4744LQI-S401	48	16	2	0	1	1	2	5	2	2	19	_	~	_
	CY8C4744AZI-S403	48	32	2	0	1	1	2	5	2	4	36	_	_	~
4745	CY8C4745FNI-S402	48	32	4	0	1	1	2	5	2	4	21	~	_	-
	CY8C4745LQI-S401	48	32	4	0	1	1	2	5	2	4	19	_	~	_
	CY8C4745AZI-S403	48	32	4	0	1	1	2	5	2	8	36	_	_	~
	CY8C4745FNI-S412	48	32	4	1	1	1	2	5	2	8	21	/	_	-
	CY8C4745LQI-S411	48	32	4	1	1	1	2	5	2	8	19	-	V	-
	CY8C4745AZI-S413	48	32	4	1	1	1	2	5	2	16	36	_	_	~


The nomenclature used in the preceding table is based on the following part numbering convention:

Field	Description	Values	Meaning
CY8C	Cypress Prefix		
4	Architecture	4	PSoC 4
А	Family	7	4700 Family
В	CDLI Speed	2	24 MHz
	CPU Speed	4	48 MHz
С	Floob Congoity	4	16 KB
	Flash Capacity	5	32 KB
		AZ	TQFP (0.5-mm pitch)
DE	Package Code	LQ	QFN
		FN	CSP
F	Temperature Range	I	Industrial
		S	PSoC 4 S-Series
S	Sub-family Identifier	M	PSoC 4 M-Series
		L	PSoC 4 L-Series
XYZ	Attributes Code	000-999	Code of feature set in the specific family

Document Number: 002-20489 Rev. *D

The following is an example of a part number:

Packaging

The PSoC 4700S will be offered in 48-pin TQFP, 24-pin QFN, and 25-ball WLCSP packages. Package dimensions and Cypress drawing numbers are in the following table.

Table 38. Package List

Spec ID#	Package	Description	Package Diagram
BID20	48-pin TQFP	7 × 7 × 1.4 mm height with 0.5-mm pitch	51-85135
BID34	24-pin QFN	4 × 4 × 0.6 mm height with 0.5-mm pitch	001-13937
BID34F	25-ball WLCSP	2.02 × 1.93 × 0.48 mm height with 0.35-mm pitch	002-09957

Table 39. Package Thermal Characteristics

Parameter	Description	Package	Min	Тур	Max	Units
ТА	Operating ambient temperature		-40	25	85	°C
TJ	Operating junction temperature		-40	_	100	°C
Тја	Package θ _{JA}	48-pin TQFP	_	73.5	_	°C/Watt
TJC	Package θ _{JC}	48-pin TQFP	_	33.5	_	°C/Watt
TJA	Package θ_{JA}	24-pin QFN	_	21.7	-	°C/Watt
TJC	Package θ_{JC}	24-pin QFN	_	5.6	-	°C/Watt
TJA	Package θ_{JA}	25-ball WLCSP	_	54.6	_	°C/Watt
TJC	Package θ_{JC}	25-ball WLCSP	_	0.5	_	°C/Watt

Table 40. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
All	260 °C	30 seconds

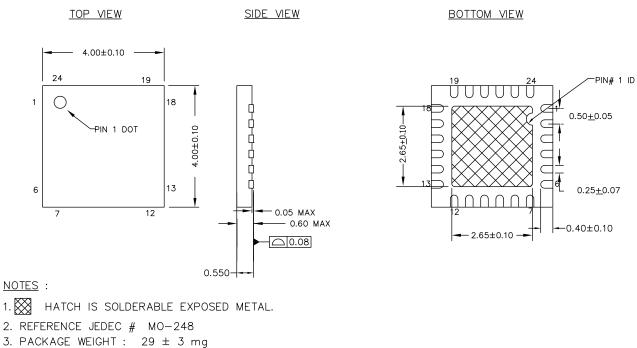
Table 41. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

Package	MSL
All except WLCSP	MSL 3
25-ball WLCSP	MSL 1

Document Number: 002-20489 Rev. *D Page 29 of 36

Package Diagrams

Figure 6. 48-pin TQFP Package Outline

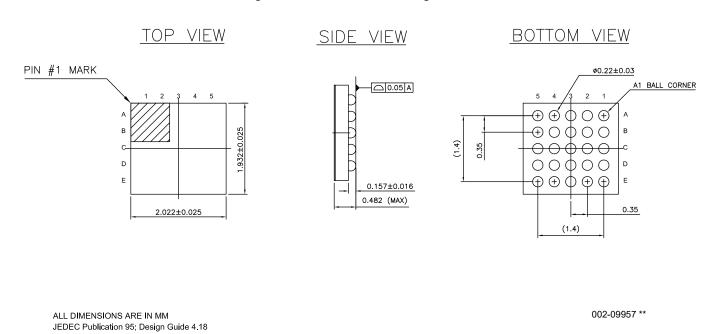


Figure 7. 24-pin QFN Package Outline

The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floating and not connected to any other signal.

Figure 8. 25-ball WLCSP Package Outline

4. ALL DIMENSIONS ARE IN MILLIMETERS

001-13937 *H

Acronyms

Table 42. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
АНВ	AMBA (advanced microcontroller bus architecture) high-performance bus, an Arm data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
Arm [®]	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMIPS	Dhrystone million instructions per second
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
EMIF	external memory interface
	end of conversion
EOC	Clid of conversion
EOC EOF	end of frame

Table 42. Acronyms Used in this Document (continued)

Acronym	Description			
ESD	electrostatic discharge			
ETM	embedded trace macrocell			
FIR	finite impulse response, see also IIR			
FPB	flash patch and breakpoint			
FS	full-speed			
GPIO	general-purpose input/output, applies to a PSoC pin			
HVI	high-voltage interrupt, see also LVI, LVD			
IC	integrated circuit			
IDAC	current DAC, see also DAC, VDAC			
IDE	integrated development environment			
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol			
IIR	infinite impulse response, see also FIR			
ILO	internal low-speed oscillator, see also IMO			
IMO	internal main oscillator, see also ILO			
INL	integral nonlinearity, see also DNL			
I/O	input/output, see also GPIO, DIO, SIO, USBIO			
IPOR	initial power-on reset			
IPSR	interrupt program status register			
IRQ	interrupt request			
ITM	instrumentation trace macrocell			
LCD	liquid crystal display			
LIN	Local Interconnect Network, a communications protocol.			
LR	link register			
LUT	lookup table			
LVD	low-voltage detect, see also LVI			
LVI	low-voltage interrupt, see also HVI			
LVTTL	low-voltage transistor-transistor logic			
MAC	multiply-accumulate			
MCU	microcontroller unit			
MISO	master-in slave-out			
NC	no connect			
NMI	nonmaskable interrupt			
NRZ	non-return-to-zero			
NVIC	nested vectored interrupt controller			
NVL	nonvolatile latch, see also WOL			
opamp	operational amplifier			

Document Number: 002-20489 Rev. *D Page 32 of 36

Table 42. Acronyms Used in this Document (continued)

PAL programmable array logic, see also PLD PC program counter PCB printed circuit board PGA programmable gain amplifier PHUB peripheral hub PHY physical layer PICU port interrupt control unit PLA programmable logic array PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio	
PCB printed circuit board PGA programmable gain amplifier PHUB peripheral hub PHY physical layer PICU port interrupt control unit PLA programmable logic array PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRS precise power-on reset PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PGA programmable gain amplifier PHUB peripheral hub PHY physical layer PICU port interrupt control unit PLA programmable logic array PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PHUB peripheral hub PHY physical layer PICU port interrupt control unit PLA programmable logic array PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PHY physical layer PICU port interrupt control unit PLA programmable logic array PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PICU port interrupt control unit PLA programmable logic array PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PLA programmable logic array PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I ² C serial clock SDA I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I ² C serial clock SDA I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I²C serial clock SDA I²C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I ² C serial clock SDA I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
SAR successive approximation register SC/CT switched capacitor/continuous time SCL I ² C serial clock SDA I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
SC/CT switched capacitor/continuous time SCL I ² C serial clock SDA I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
SCL I ² C serial clock SDA I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
SDA I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced	
SIO special input/output, GPIO with advanced	
SIO special input/output, GPIO with advanced features. See GPIO.	
SOC start of conversion	
SOF start of frame	
SPI Serial Peripheral Interface, a communication protocol	าร
SR slew rate	
SRAM static random access memory	
SRES software reset	

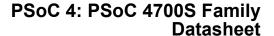
Table 42. Acronyms Used in this Document (continued)

Acronym	Description	
SWD	serial wire debug, a test protocol	
SWV	single-wire viewer	
TD	transaction descriptor, see also DMA	
THD	total harmonic distortion	
TIA	transimpedance amplifier	
TRM	technical reference manual	
TTL	transistor-transistor logic	
TX	transmit	
UART	Universal Asynchronous Transmitter Receiver, a communications protocol	
UDB	universal digital block	
USB	Universal Serial Bus	
USBIO	USB input/output, PSoC pins used to connect to a USB port	
VDAC	voltage DAC, see also DAC, IDAC	
WDT	watchdog timer	
WOL	write once latch, see also NVL	
WRES	watchdog timer reset	
XRES	external reset I/O pin	
XTAL	crystal	

Document Number: 002-20489 Rev. *D Page 33 of 36

Document Conventions

Units of Measure


Table 43. Units of Measure

Symbol	Unit of Measure			
°C	degrees Celsius			
dB	decibel			
fF	femto farad			
Hz	hertz			
KB	1024 bytes			
kbps	kilobits per second			
Khr	kilohour			
kHz	kilohertz			
kΩ	kilo ohm			
ksps	kilosamples per second			
LSB	least significant bit			
Mbps	megabits per second			
MHz	megahertz			
ΜΩ	mega-ohm			
Msps	megasamples per second			
μΑ	microampere			
μF	microfarad			
μΗ	microhenry			
μs	microsecond			
μV	microvolt			
μW	microwatt			
mA	milliampere			
ms	millisecond			
mV	millivolt			
nA	nanoampere			
ns	nanosecond			
nV	nanovolt			
Ω	ohm			
pF	picofarad			
ppm	parts per million			
ps	picosecond			
S	second			
sps	samples per second			
sqrtHz	square root of hertz			
V	volt			

Document History Page

Revision	ECN	Submission Date	Description of Change
**	5843084	09/12/2017	New data sheet.
*A	6219085	06/26/2018	Updated Features: Updated Inductive Sensing: Updated More Information: Updated Electrical Specifications: Updated Analog Peripherals: Updated Inductive Sensing (MagSense): Updated Table 13. Updated Package Diagrams: Spec 001-13937 – Changed revision from *F to *G. Updated to new template.
*B	6290288	08/24/2018	Changed "IndSense" to "MagSense" throughout the document. Updated links in More Information.
*C	6318929	09/24/2018	Updated Features, More Information. Updated Block Diagram. Removed Functional Description and updated Functional Overview. Updated Pinouts.
*D	6966119	12/17/2020	Updated Conditions for SR_POWER_UP in Table 26. Updated Figure 7 (spec 001-13937 *G to *H) in Packaging. Updated Sales, Solutions, and Legal Information.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/mcu

cypress.com/wireless

Products

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory

Microcontrollers

Wireless Connectivity

cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch cypress.com/usb

PSoC USB Controllers

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-20489 Rev. *D Revised December 17, 2020 Page 36 of 36

[©] Cypress Semiconductor Corporation, 2017-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liablity arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ARM Microcontrollers - MCU category:

Click to view products by Cypress manufacturer:

Other Similar products are found below:

R7FS3A77C2A01CLK#AC1 MB96F119RBPMC-GSE1 MB9BF122LPMC1-G-JNE2 MB9BF122LPMC-G-JNE2 MB9BF128SAPMC-GE2
MB9BF218TBGL-GE1 MB9BF529TBGL-GE1 26-21/R6C-AT1V2B/CT 5962-8506403MQA MB9AF342MAPMC-G-JNE2
MB96F001YBPMC1-GSE1 MB9BF121KPMC-G-JNE2 VA10800-D000003PCA CP8547AT CY9AF156NPMC-G-JNE2
MB9BF104NAPMC-G-JNE1 NHS3152UK/A1Z MK26FN2M0CAC18R EFM32TG230F32-D-QFN64 EFM32TG232F32-D-QFP64
EFM32TG825F32-D-BGA48 MB9AFB44NBBGL-GE1 MB9BF304RBPMC-G-JNE2 MB9BF416RPMC-G-JNE2 MB9AF155MABGL-GE1
MB9BF306RBPMC-G-JNE2 MB9BF618TBGL-GE1 ATSAMS70N21A-CN LPC1754FBD80 STM32F030K6T6TR AT91M42800A-33AU
ATSAM3N0AA-MU ATSAM3N0CA-CU ATSAM3SD8BA-MU ATSAM4LC2BA-UUR ATSAM4LS2AA-MU ADuC7023BCPZ62I-R7
ATSAM4LS4CA-CFU ADUCM3027BCPZ-R7 ADUCM3027BCPZ-RL ADUCM3029BCPZ-R7 LPC2141FBD64.151 CEC1702Q-B1-SX
ADUC7020BCPZ62IRL7 TMS5701114CZWTQQ1 TM4C123AE6PMIR S6E2H14G0AGV20000 ATSAMD20J15B-AU ATSAMD20J16B-MN ATSAMV71N20B-CB